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Preface

The goal of this book is to present the key algorithms, theory and applications that from the 
core of machine learning. Learning is a fundamental activity. It is the process of constructing 
a model from complex world. And it is also the prerequisite for the performance of any new 
activity and, later, for the improvement in this performance. Machine learning is concerned 
with constructing computer programs that automatically improve with experience. It draws 
on concepts and results from many fields, including artificial intelligence, statistics, control 
theory, cognitive science, information theory, etc. The field of machine learning is developing 
rapidly both in theory and applications in recent years, and machine learning has been 
applied to successfully solve a lot of real-world problems.

Machine learning theory attempts to answer questions such as “How does learning performance 
vary with the number of training examples presented?” and “Which learning algorithms 
are most appropriate for various types of learning tasks?” Machine learning methods are 
extremely useful in recognizing patterns in large datasets and making predictions based 
on these patterns when presented with new data. A variety of machine learning methods 
have been developed since the emergence of artificial intelligence research in the early 20th 
century. These methods involve the application of one or more automated algorithms to a 
body of data. There are various methods developed to evaluate the effectiveness of machine 
learning methods, and those methods can be easily extended to evaluate the utility of different 
machine learning attributes as well.

Machine learning techniques have the potential of alleviating the complexity of knowledge 
acquisition. This book presents today’s state and development tendencies of machine 
learning. It is a multi-author book. Taking into account the large amount of knowledge about 
machine learning and practice presented in the book, it is divided into three major parts: 
Introduction, Machine Learning Theory and Applications. Part I focuses on the Introduction 
of machine learning. The author also attempts to promote a new thinking machines design 
and development philosophy. Considering the growing complexity and serious difficulties of 
information processing in machine learning, in Part II of the book, the theoretical foundations 
of machine learning are considered, mainly include self-organizing maps (SOMs), clustering, 
artificial neural networks, nonlinear control, fuzzy system and knowledge-based system 
(KBS).Part III contains selected applications of various machine learning approaches, from 
flight delays, network intrusion, immune system, ship design to CT, RNA target prediction, 
and so on.
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The book will be of interest to industrial engineers and scientists as well as academics who 
wish to pursue machine learning. The book is intended for both graduate and postgraduate 
students in fields such as computer science, cybernetics, system sciences, engineering, 
statistics, and social sciences, and as a reference for software professionals and practitioners. 
The wide scope of the book provides them with a good introduction to many basic approaches 
of machine learning, and it is also the source of useful bibliographical information.

                                                      Editor:

Yagang Zhang  
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1. Introduction    
 

The year of 2006 was exceptionally cruel to me – almost all of my papers submitted for that 
year conferences have been rejected. Not “just rejected” – unduly strong rejected. Reviewers 
of the ECCV (European Conference on Computer Vision) have been especially harsh: "This 
is a philosophical paper... However, ECCV neither has the tradition nor the forum to present 
such papers. Sorry..." O my Lord, how such an injustice can be tolerated in this world? 
However, on the other hand, it can be easily understood why those people hold their 
grudges against me: Yes, indeed, I always try to take a philosophical stand in all my doings: 
in thinking, paper writing, problem solving, and so no. In my view, philosophy is not a 
swear-word. Philosophy is a keen attempt to approach the problem from a more general 
standpoint, to see the problem from a wider perspective, and to yield, in such a way, a better 
comprehansion of the problem’s specificity and its interaction with other world realities. 
Otherwise we are doomed to  plunge into the chasm of modern alchemy – to sink in partial, 
task-oriented determinations and restricted solution-space explorations prone to dead-ends 
and local traps.  
It is for this reason that when I started to write about “Machine Learning“, I first went to the 
Wikipedia to inquire: What is the best definition of the subject? “Machine Learning is a 
subfield of Artificial Intelligence“ – was the Wikipedia’s prompt answer. Okay. If so, then: 
“What is Artificial Intelligence?“ – “Artificial Intelligence is the intelligence of machines and 
the branch of computer science which aims to create it“ – was the response. Very well. Now, 
the next natural question is: “What is Machine Intelligence?“ At this point, the kindness of 
Wikipedia has been exhausted and I was thrown back, again to the Artificial Intelligence 
definition. It was embarrassing how quickly my quest had entered into a loop – a little bit 
confusing situation for a stubborn philosopher.  
Attempts to capitalize on other trustworthy sources were not much more productive (Wang, 
2006; Legg & Hutter, 2007). For example, Hutter in his manuscript (Legg & Hutter, 2007) 
provides a list of 70-odd “Machine Intelligence“ definitons. There is no consensus among 
the items on the list – everyone (and the citations were chosen from the works of the most 
prominent scholars currently active in the field),  everyone has his own particular view on 
the subject. Such inconsistency and multiplicity of definitions is an unmistakable sign of 
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philosophical immaturity and a lack of a will to keep the needed grade of universality and 
generalization. 
It goes without saying, that the stumbling-block of the Hutter’s list of definitions (Legg & 
Hutter, 2007) is not the adjectives that were used– after all the terms “Artificial“ and 
“Machine“ are consensually close in their meaning and therefore are commonly used 
interchangeably. The real problem –  is the elusive and indefinable term „Intelligence“. 
I will not try the readers’ patience and will not tediously explain how and why I had arrived 
at my own definition of the matters that I intend to scrutinize in this paper.    
I hope that my philosophical leanings will be generously excused and the benevolent 
readers will kindly accept the unusual (reverse) layout of the paper’s topics. For the reasons 
that would be explained in a little while, the main and the most general paper’s idea will be 
presented first while its compiling details and components will be exposed (in a discending 
order) afterwards. And that is how the proposed paper’s layout should look like:  

- Intelligence is the system’s ability to process information. This statement is true 
both for all biological natural systems as for artificial, human-made systems. By 
“information processing“ we do not mean its simplest forms like information 
storage and retrieval, information exchange and communication. What we have in 
mind are the high-level information processing abilities like information analysis 
and interpretation, structure patterns recognition and the system’s capacity to 
make decisions and to plan its own behavior. 

- Information in this case should be defined as a description – A language and/or 
an alphabet-based description, which results in a reliable reconstruction of an 
original object (or an event) when such a description is carried out, like an 
execution of a computer program. 

- Generally, two kinds of information must be distinguished: Objective (physical) 
information and subjective (semantic) information. By physical information we 
mean the description of data structures that are discernable in a data set. By 
semantic information we mean the description of the relationships that may exist 
between the physical structures of a given data set. 

- Machine Learning is defined as the best means for appropriate information 
retrieval. Its usage is endorsed by the following fundamental assumptions: 1) 
Structures can be revealed by their characteristic features, 2) Feature aggregation 
and generalization can be achieved in a bottom-up manner where final results are 
compiled from the component details, 3) Rules, guiding the process of such 
compilation, could be learned from the data itself. 

- All these assumptions validating Machine Learning applications are false. 
(Further elaboration of the theme will be given later in the text). Meanwhile the 
following considerations may suffice: 

- Physical information, being a natural property of the data, can be extracted 
instantly from the data, and any special rules for such task accomplishment are not 
needed. Therefore, Machine Learning techniques are irrelevant for the purposes of 
physical information retrieval. 

- Unlike physical information, semantics is not a property of the data. Semantics is a 
property of an external observer that watches and scrutinizes the data. Semantics is 
assigned to phisical data structures, and therefore it can not be learned 
straightforwardly from the data. For this reason, Machine Learning techniques are 

 

useless and not applicable for the purposes of smantic information extraction. 
Semantics is a shared convention, a mutual agreement between the members of a 
particular group of viewers or users. Its assignment has to be done on the basis of a 
consensus knowledge that is shared among the group members, and which an 
artificial semantic-processing system has to possess at its disposal. Accomodation 
and fitting of this knowledge presumes availability of a different and usually 
overlooked special learning technique, which would be best defined as Machine 
Teaching – a technique that would facilitate externally-prepared-knowledge 
transfer to the system’s disposal . 

These are the topics that I am interested to discuss in this paper. Obviously, the reverse 
order proposed above, will never be reified – there are paper organization rules and 
requirements, which none never will be allowed to override. They must be, thus, reverently 
obeyed. And I earnestly promiss to do this (or at least to try to do this) in this paper.  

 
2. When the State of the Art is Irrelevant 
 

One of the commonly accepted rules prescribes that the Introduction Section has to be 
succeeded by a clear presentation of a following subject: What is the State of the Art in the 
field and what is the related work done by the other researchers? Unfortunately, I’m unable 
to meet this requirement, because (to the best of my knowledge) there is no relevant work in 
the field that can be used for this purpose. Or, let us put this in a more polite way: The work 
presented in this paper is so different from other mainstream approaches that it would be 
unwise to compare it with the rest of the work in the field and to discuss arguments in 
favour or against their endless disagreements and discrepancies. However, to avoid any 
possible allegations in disrespectfulness, I would like to provide here some reflections on the 
departure points of my work, which (I hope) are common to many friends and foes in the 
domain. 
My first steps in the field were inspired by David Marr’s ideas about the “Primal” and the 
“Two-and-a-half” image representation sketch, which is carrying out the information 
content of an image (Marr, 1978; Marr, 1982). Image understanding was always the most 
relevant and the most palpable manifestation of human intelligence, and so, those who are 
busy with intelligence replications in machines, are due to cope with image understanding 
and image processing issues.  
“You see, – had I proudly agitated my employers, trying to convince them to fund my 
image-processing enterprises, – meagre lines of a painter’s caricature provide you with all 
information needed to comprehend the painter’s intention and to easily recognise the 
objects drawn in the picture. Edges are the information bearers! Edge exploration and 
processing will help us to reach advances in pattern recognition and image understanding. ” 
My employers were skeptic and penny-pinching, but nevertheless, I was allowed to do 
some work. However, very soon it had become clear that my problems are far from being 
information retrieval issues – my real problem was to run (approximately in a real-time 
fashion) a 3-by-3 (or 5-by-5) operator over a 256-by-256 pixel image. And only then, when 
the run is somehow successfully completed, I was doomed to find myself inflated with a 
multitude of edges: cracked, disjoint, and inconsistent. On one hand, an entire spectrum of 
dissimilar edge pieces, and on the other hand – a striking deficit of any hints regarding how 
to arrange them into something handy and meaningful. At least, to choose among them (to 
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discriminate, to segment, to threshold) those that would be suitable for further processing. 
Even though, it was at all not sure that anybody knows what such a processing should be. 
It was not only my nightmare. Many people have swamped in this bog. Many are still trying 
to tempt the fate – even today, the flow of edge extraction and segmentation publications 
does not dry up, and new machine learning techniques are reportedly proposed to cure the 
problem (Ghosh et al., 2007; Awad & Man, 2008; Qiu & Sun, 2009). 
Human vision physiology studies, which have been always seen as an endless source of 
computer vision R&D inspiration, have also proved to be of a little help here. Treisman’s 
feature-integration theory (Treisman & Gelade, 1980) and Biederman’s recognition-by-
components theory (Biederman, 1987) – the cornerstones of contemporary vision science – 
were fitting well the bottom-up image processing philosophy, (where initial feature 
gathering is followed by further feature consolidation), but they have nothing to say about 
how this feature aggregation and integration (into meaningful perceptible objects) has to be 
realized. They only say that this process has to be done in a top-down fashion, in opposite to 
the bottom-up processing of the initial features. 
To overcome the problem, a great variety of so-called “binding” theories have been 
proposed (Treisman, 1996; Treisman, 2003). However, all of them turned out as 
inappropriate. In a desperate attempt to resolve this irresolvable contradiction, even a 
theory of a mysterious homunculus has been proposed – a “little man inside the head” that 
perceives the world through our senses and then unmistakably fulfils all the needed 
(intelligent) actions (Crick & Koch, 2000). But the theory of the homunculus has not taken 
roots. Human level intelligence has been and continues to be a challenge, and nothing in the 
field has changed since the 50s of the past century, when the first steps of Artificial 
Intelligence exploration have been carried out (Turing, 1950; McCarthy et al., 1955). 

 
3. In Search for a Better Fortune 
 

I am not trying to claim that I am more clever or wise than others. All the stupid things that 
others have persistently tried to do, I have repeatedly tried as well. But in one thing, 
however, I was certainly different from the others – I have never neglected my final goal: To 
grasp the information content of an image. Together with other image-processing 
“partisans” and “camarados” I fought my pixel-oriented battles, but a dream about object-
oriented image processing was always blooming in my heart. 
As you can understand, nothing worthy had come out from that. Nevertheless, some of the 
things that I was lucky to make happen (at that time) are worth to be mentioned here. For 
example, I have invented a notion of “Single Pixel Information Content” and a way for its 
quantitative evaluation (Diamant, 2003). I have also invented a notion of “Specific 
Information Density of an Image”, and, relying on the pixel’s information content (measure), 
I have attempted to investigate the effect of “Image Information Content Conservation”. 
That is, when an image scale is successively reduced, Image Specific Information Density 
remains unchanged (or even slightly grows up). Then, at some level of reduction, it rapidly 
declines. This scale, actually the scale one step preceding the drop of Information Density, I 
thought, should be the most advantageous (scale) to start image information content 
explorations. 
A paper, containing quantitative results and a proof of this idea, has been submitted to the 
British Machine Vision Conference (Diamant, 2002), but, (as usually), was decisively 

 

rejected. Never mind, these investigations have led to an important insight that image 
information content excavation has to be commenced at an optimal, low-dimensional image 
representation scale. 
I am proud to inform the interested readers that similar investigations have been performed 
recently (and similar results have been attained) by MIT researchers (Torralba, 2009). 
However, that was done about seven years later, and only in qualitative experiments 
conducted on human participants (but not as a quantitative work). 
Never mind, the idea of initial low-dimensional image exploration was in some way 
consistent with a naïve psychological vision conjecture about how humans look at a scene. 
Since biological vision research was always busy with only foveated vision studies, one 
principal aspect of human vision was always remained neglected: How does the brain know 
where to look in a scene? We do not search our field of view in a regular, raster-scan 
manner. On the contrary, we do this in an unpredictable, but certainly a not-random manner 
(Koch et al., 2007; Shomstein & Behrmann, 2008). If so, how does the brain know where to 
place the eye’s fovea – (the main means for visual information gathering) – before it knows 
in advance where such information is to be found? Certainly, the brain must have a prior 
knowledge about the scene layout, about the general map of a scene. Certainly, the scale of 
this map must be several orders lower than the fovea resolution scale, and it is clear that 
these information gathering maps are being used simultaneously and interchangeably. 
Such considerations have inevitably led us to a conclusion that other theories, currently 
unknown to us, which would be capable of explaining such multiscale brain performance 
have to be urgently searched for. Indeed, very soon I came upon an appropriate theory. And 
even not a single one, but a whole bundle of theories. 
In the middle of the 60s of the previous century, three almost simultaneous, but absolutely 
independently developed, theories have sprung up: Solomonoff’s theory of Inference 
(Solomonoff, 1964), Kolmogorov’s Complexity theory (Kolmogorov, 1965), and Chaitin’s 
Algorithmic Information theory (Chaitin, 1966). Since among the three, Kolmogorov’s 
theory is the most known one, I will first and mainly refer to it in our further discussion. 
Just as Shannon’s Information theory (Shannon, 1948) published almost 20 years ahead, 
Kolmogorov’s theory was aimed at providing means for measuring “information”. 
However, while Shannon’s theory was dealing only with the average amount of information 
conveyed by an outcome of a random source, Kolmogorov’s theory was busy with 
information contained in a particular isolated object. Thus, Kolmogorov’s theory was far 
more suitable to deal with human vision peculiarities. 
However, I do not intend to bother the readers with explanations about Kolmogorov’s 
theory merits. Such expanded enlightenment could be found else where, for example (Li & 
Vitanyi, 2008; Grunvald & Vitanyi, 2008). My humble intention is, relying on the insights of 
the Kolmogorov’s theory, to provide some useful illuminations, which can be deduced from 
the theory and applied to the practice of image information content excavation. 
An essential part of my work has been already done in the past years, and has been even 
published on several occasions (Diamant, 2004; Diamant, 2005a; Diamant, 2005b). (The 
publications could be easily found at some freely accessible web repositories, like CiteSeer, 
Eprintweb, ArXiv, etc. And also on my personal web site: http://www.vidia-mant.info). 
However, for the consistency of our discussion, I would like to repeat here the main points 
of these previous publications. 
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3. In Search for a Better Fortune 
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rejected. Never mind, these investigations have led to an important insight that image 
information content excavation has to be commenced at an optimal, low-dimensional image 
representation scale. 
I am proud to inform the interested readers that similar investigations have been performed 
recently (and similar results have been attained) by MIT researchers (Torralba, 2009). 
However, that was done about seven years later, and only in qualitative experiments 
conducted on human participants (but not as a quantitative work). 
Never mind, the idea of initial low-dimensional image exploration was in some way 
consistent with a naïve psychological vision conjecture about how humans look at a scene. 
Since biological vision research was always busy with only foveated vision studies, one 
principal aspect of human vision was always remained neglected: How does the brain know 
where to look in a scene? We do not search our field of view in a regular, raster-scan 
manner. On the contrary, we do this in an unpredictable, but certainly a not-random manner 
(Koch et al., 2007; Shomstein & Behrmann, 2008). If so, how does the brain know where to 
place the eye’s fovea – (the main means for visual information gathering) – before it knows 
in advance where such information is to be found? Certainly, the brain must have a prior 
knowledge about the scene layout, about the general map of a scene. Certainly, the scale of 
this map must be several orders lower than the fovea resolution scale, and it is clear that 
these information gathering maps are being used simultaneously and interchangeably. 
Such considerations have inevitably led us to a conclusion that other theories, currently 
unknown to us, which would be capable of explaining such multiscale brain performance 
have to be urgently searched for. Indeed, very soon I came upon an appropriate theory. And 
even not a single one, but a whole bundle of theories. 
In the middle of the 60s of the previous century, three almost simultaneous, but absolutely 
independently developed, theories have sprung up: Solomonoff’s theory of Inference 
(Solomonoff, 1964), Kolmogorov’s Complexity theory (Kolmogorov, 1965), and Chaitin’s 
Algorithmic Information theory (Chaitin, 1966). Since among the three, Kolmogorov’s 
theory is the most known one, I will first and mainly refer to it in our further discussion. 
Just as Shannon’s Information theory (Shannon, 1948) published almost 20 years ahead, 
Kolmogorov’s theory was aimed at providing means for measuring “information”. 
However, while Shannon’s theory was dealing only with the average amount of information 
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The key point is that information is a description, a certain alphabet-based or language-
based description, which Kolmogorov’s theory regards as a program that, being executed, 
trustworthy reproduces the original object (Vitanyi, 2006). In an image, such objects are 
visible data structures from which an image is comprised of. So, a set of reproducible 
descriptions of image data structures is the information contained in an image. 
The Kolmogorov’s theory prescribes the way in which such descriptions must be created: At 
first, the most simplified and generalized structure must be described. Recall the Occam’s 
Razor principle: Among all hypotheses consistent with the observation choose the simplest 
one that is cohirent with the data, (Sadrzadeh, 2008). Then, as the level of generalization is 
gradually decreased, more and more fine-grained image details (structures) become 
revealed and depicted. This is the second important point, which follows from the theory’s 
pure mathematical considerations: Image information is a hierarchy of decreasing level 
descriptions of information details, which unfolds in a coarse-to-fine top-down manner. 
(Attention, please! Any bottom-up processing is not mentioned here! There is no low-level 
feature gathering and no feature binding!!! The only proper way for image information 
elicitation is a top-down coarse-to-fine way of image processing!)  
The third prominent point, which immediately pops-up from the two just mentioned above, 
is that the top-down manner of image information elicitation does not require 
incorporation of any high-level knowledge for its successful accomplishment. It is totally 
free from any high-level guiding rules and inspirations. (The homunculus have lost his job 
and is finally fired). 
That is why I call the information, which unconditionally can be found in an image, – the 
Physical Information. That is, information that reflects objective (physical) structures in an 
image and is totally independent of any high level interpretation of the interrelashions 
between them. 
What immediately follows from this is that high-level image semantics is not an integrated 
part of image information content (as it is traditionally assumed). It cannot be seen more as a 
natural property of an image. Semantic Information, therefore, must be seen as a property 
of a human observer that watches and scrutinizes an image. That is why we can say now: 
Semantics is assigned to an image by a human observer. That is strongly at variance with 
the contemporary views on the concept of semantic information. 
As it was mentioned above, I have no intention to argue with the mainstream experts, 
conference chaires, keynotes speekers and invited talks presenters about the validity of my 
contemplations, about my philosophical inclinations or research duties and preferences. 
These respected gentlemans would continue to teach you how to extract semantic 
information from an image or how it should be derived from low-level information 
features.  
(I do not provide here examples of such claims. I hope, the readers are well enough 
acquinted with the state of the art in the field and its mainstream developments, to be able 
to recall the appropriate cases by themselves. I also hope that readers of this paper are ready 
to change their minds – fifty or so years of Machine Learning triumfal marching in the head 
of the Artificial Intelligence parade have not got us closer to the desired goal of Intelligent 
Machines deployment and use. Partially and loosely defined (or it would be right to say, 
undefined) departure points of this enterprise were the main reasons responsible for this 
years-long wandering in the desert far away from the promissed land.)  

 

 

4. “Repetitio est Mater Studiorum” 
 

(For those who are not fluent enough in Latin, the translation of this proverb would be: 
Reiteration is the mother of learning). Okay, I am really sorry that instead of dealing with 
the declared subject of this paper (that is, Machine Learning and all its corresponding 
issues), I have to return again and again to topics that have been already discussed in the 
past and even published at some previous occasions. (But that is the bad luck of an image-
processing partisan). Therefore, with all apologies to be due, I will continue our discourse 
with some extended citations seized from my previously published papers.  

 
4.1 Image Physical information Processing  
The first citation is related to physical information processing issues and is taken from a five 
years old paper (Diamant, 2004). The citation subject is – an algorithmic implementation of 
image physical information mining principles. 
The algorithm’s block-scheme looks as follows: 
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Fig. 1. The block-diagram of physical information elucidation. 
 
As can be seen at Fig. 1, the proposed schema is comprised of three main processing paths: 
the bottom-up processing path, the top-down processing path and a stack where the 
discovered information content (the generated descriptions of it) is actually accumulated. 
The algorithm’s structure reflects the principles of information representation, which have 
been already defined previously. 
As it is shown in the schema, the input image is initially squeezed to a small size of 
approximately 100 pixels. The rules of this shrinking operation are very simple and fast: 
four non-overlapping neighbor pixels in an image at level L are averaged and the result is 
assigned to a pixel in a higher (L+1)-level image. This is known as “four children to one 
parent relationship”. Then, at the top of the shrinking pyramid, the image is segmented, and 
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each segmented region is labeled. Since the image size at the top is significantly reduced and 
since in the course of the bottom-up image squeezing a severe data averaging is attained, the 
image segmentation/labeling procedure does not demand special computational resources. 
Any well-known segmentation methodology will suffice. We use our own proprietary 
technique that is based on a low-level (single pixel) information content evaluation 
(Diamant, 2003), but this is not obligatory. 
From this point on, the top-down processing path is commenced. At each level, the two 
previously defined maps (average region intensity map and the associated label map) are 
expanded to the size of an image at the nearest lower level. Since the regions at different 
hierarchical levels do not exhibit significant changes in their characteristic intensity, the 
majority of newly assigned pixels are determined in a sufficiently correct manner. Only 
pixels at region borders and seeds of newly emerging regions may significantly deviate 
from the assigned values. Taking the corresponding current-level image as a reference (the 
left-side unsegmented image), these pixels can be easily detected and subjected to a 
refinement cycle. In such a manner, the process is subsequently repeated at all descending 
levels until the segmentation/classification of the original input image is successfully 
accomplished. 
At every processing level, every image object-region (just recovered or an inherited one) is 
registered in the objects’ appearance list, which is the third constituting part of the proposed 
scheme. The registered object parameters are the available simplified object’s attributes, 
such as size, center-of-mass position, average object intensity and hierarchical and 
topological relationship within and between the objects (“sub-part of…”, “at the left of…”, 
etc.). They are sparse, general, and yet specific enough to capture the object’s characteristic 
features in a variety of descriptive forms. 
Examples of algorithm’s performance and some concrete palpable results are provided in 
several previously published papers (Diamant, 2005a; Diamant, 2005b). 
In our current discussion it is worth to be mentioned that: First, image segmentation 
(physical image structures delineation, physical image information elicitation) is performed 
in a top-down manner, not in a conventional bottom-up mode. Second, the suggested image 
segmentation principle does not require any knowledge about high-level rules, which are 
used to support the segmentation process and which are  an obligatory part of any bottom-
up proceeding procedure. Third, canceling the necessity of these high-level rules, makes all 
Machine Learning techniques useless and invalidates all efforts that are specially carried out 
to meet this sacred requirement! In this way, Machine Learning loses its role as the main 
performer in physical information recovery enterprises. 

 
4.2 Image Semantic Information Processing  
The context of this sub-section is also an extended quotation from a recently  published 
paper (Diamant, 2008). The key point of this quotation is a semantic information processing 
architecture based on the same information-defining rules and the same (top-down) 
information representation principles that were already introduced in Section 3. The block-
schema of such a semantic information processing architecture is borrowed from the above 
mentioned paper (Diamant, 2008), and is depicted in the Fig. 2. 
 
 

 

       
Fig. 2. Physical and Semantic Information processing hierarchies. 
 
Scrutinizing of this general image information processing architecture must be preceded by 
some remarks: Semantic information, which (as we understand now) is a property of an 
external observer, is separated and dissociated from the physical information processing, in 
our case an image. Therefore it must be treated (or modeled) in accordance with observer-
specific (his/her) cognitive information processing rules. 
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It is well known that human cognitive abilities (including the aptness for image 
interpretation and the capacity to assign semantics to an image) are empowered by the 
existence of a huge knowledge base about the things in the surrounding world kept in 
human brain. 
This knowledge base is permanently upgraded and updated during the human’s life span. 
So, if we intend to endow our design with some cognitive capabilities we have to provide it 
with something equivalent to this (human) knowledge base. 
It goes without saying that this knowledge base will never be as large and developed as its 
human prototype. But we are not sure that such a requirement is valid here. After all, 
humans are also not equal in their cognitive capacities, and the content of their knowledge 
bases is very diversified as well. (The knowledge base of an aerial photographs interpreter is 
certainly different from the knowledge base of an X-ray images interpreter, or an IVUS 
images interpreter, or PET images). The knowledge base of our visual thinking machine has 
to be small enough to be effective and manageable, but sufficiently large to ensure the 
machine acceptable performance. Certainly, for our feasibility study we can be satisfied 
even with a relatively small, specific-task-oriented knowledge base.  
The next crucial point is the knowledge representation issue. To deal with it, we first of all 
must arrive at a common agreement about what is the meaning of the term “knowledge”. (A 
question that usually does not have a single answer.) We state that in our case a suitable 
definition of it would be: “Knowledge is memorized information”. Consequently, we can 
say that knowledge (like information) must be a hierarchy of descriptive items, with the 
grade of description details growing in a top-down manner at the descending levels of the 
hierarchy. 
One more point that must be mentioned here, is that these descriptions have to be 
implemented in some alphabet (as it is in the case of physical information) or in a 
description language (which better fits the semantic information case). Any farther 
argument being put aside, we will declare that the most suitable language in our case is the 
natural human language. After all, the real knowledge bases that we are familiar with are 
implemented in natural human languages. 
The next step, then, is predetermined: if natural language is a suitable description 
implement, the suitable form of this implementation is a narrative, a story tale (Tuffield et 
al., 2005). If the description hierarchy can be seen as an inverted tree, then the branches of 
this tree are the stories that encapsulate human’s experience with the surrounding world. 
And the leaves of these branches are single words (single objects) from which the story parts 
(single scenes) are composed of.   
The descent into description details, however, does not stop here, and each single word 
(single object) can be farther decomposed into its attributes and rules that describe the 
relations between the attributes. 
At this stage the physical information reappears. Because the words are usually associated 
with physical objects in the real world, words’ attributes must be seen as memorized 
physical information (descriptions).  Once derived (by the human visual system) from the 
observable world and learned to be associated with a particular word, these physical 
information descriptions are soldered in into the knowledgebase. Object recognition, thus, 
turns out to be a comparison and similarity test between currently acquired physical 
information and the one already retained in the memory. If the similarity test is successful, 
starting from this point in the hierarchy and climbing back up on the knowledgebase ladder 

 

we will obtain: first, the linguistic label for a recognized object; second, the position of this 
label (word) in the context of the whole story; and third, the ability to verify the validity of 
an initial guess by testing the appropriateness of the neighboring parts composing the 
object, that is, the context of a story. In this way, object’s meaningful categorization can be 
reached, and the first stage of image annotation can be successfully accomplished, providing 
the basis for farther meaningful (semantic) image interpretation. 
One question has remained untouched in our discourse: How does this artificial 
knowledgebase have to be initially created and brought into our thinking machine disposal? 
This subject deserves a special discussion. 

 
4.3 Can Semantic Knowledge be Learned? 
There is no need to reiterate the dictums of the today’s Internet revolution, where access and 
exchange of semantic information is viewed as a prime and an ultimate goal. Machines are 
supposed to handle the documents’ semantic content, and Machine Learning techniques, 
thus, supporting this knowledge mining venture are supposed to be the leading force, the 
centre forward of this exciting enterprise. Semantic Knowledge mining is now the hottest 
topic of every conference discussion, most recent research projects and many other applied 
science initiatives. However, in the light of our new definition of information, which was 
recently introduced in my work and re-introduced in the Section 3 of this paper, I am really 
skeptic about the Machine Learning ability to meet this challenge. 
Again, some philosophy would not be out of place here. At first, it must be reiterated that 
semantics is not a natural property of an image (or a natural property of the data, if you 
would like a more general view on the subject). Semantics is a property of a human observer 
that watches and scrutinizes the data, and this property is shared among the observer and 
other members of his community. By the way, this community does not have to embrace the 
whole mankind, it can be even a very small community of several people or so, which, 
nevertheless, were lucky to establish a common view on a particular subject and a common 
understanding of its meaning. That is the reason why this particular (privet) knowledge can 
not be attained in any reasonable way, including Machine Learning techniques and tricks. 
On the other hand, an intelligent information-processing system has to have at its disposal a 
memorized knowledgebase hierarchy (implemented, as we postulate, as a collection of 
typical stories) against which the physical information of its input sensors is matched and 
associated. Finding the suitable story whose attributes most closely match the sensors’ 
physical information is equivalent to finding the interpretation for the input sensor data (the 
input physical information). That is the novelty of our proposed architecture. That is the 
most important feature of our design approach: The knowledgebase hierarchy is used for a 
linguistic input interpretation, but this knowledge is not derived (by the system) from the 
input data. It is not learned from the data. On the contrary, in accordance with the top-down 
information unfolding principle, the knowledge-base hierarchy (as a whole) has to be 
transferred to the system disposal from the outside. The system doesn’t learn the 
knowledgebase, it is taught to use the knowledgebase (In our case, a pool of task related 
stories and their ramifications putted at system disposal in advance).  
Thus, providing the system with the needed new knowledge each time when the system is 
due for a new task accomplishment is becoming a natural duty of Artificial Intelligence 
(Machine Intelligence) system designer. This shift from Machine Learning to Machine 
Teaching paradigm should become the key point of intelligent system design and 
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development roadmap. But unfortunately, that has not happen although it has been about 
three years since the idea was at first articulated and even occasionally published (Diamant, 
2006b). 

 
4.4 Some additional remarks  
That is a very important and an interesting twist in the philosophy of intelligent artificial 
systems design. It does not result from the understanding of the principals of biological 
systems intelligence or other proudly declared biological inspirations. On the contrary, it 
results from pure mathematical considerations of the Kolmogorov’s complexity theory. 
Only now, drawing on the insights of Kolmogorov’s theory, we can seize the interpretation 
of the facts that we usually come across in our natural (biological) surrounding. 
It is a very subtle issue among the topics of machine intelligence that I would like to 
address. “Biologically inspired” means that we borrow from the nature some fruitful ideas, 
which we intend to replicate in our artificial designs. That is, we presume that we 
understand or at least are very close to the state of understanding how some biological 
mechanisms operate, performing their natural duties. But that is not true!. We don’t have 
even a slightest hint about how the nature works. What we have are gambling guesses, 
intuitive feelings, speculations, and – nothing more than that. 
Another important remark in this regard, is that Nature is not an Engineer. It does not 
invent new mechanisms and new solutions for its problem-solving. On the contrary, it 
gradually adjusts and adapts what it already has on the hand. Although the final results are 
really remarkable, it takes a lot of time to reach them in the course of natural evolution, 
millions and billions of years. Despite all this, the nature has never reached some very 
important human-life-shaping revelations – for example, the wheel (as a means for 
transportation), the cooked food, the writing and numbering practice, etc.  
The inventors of “Genetic Programming” provide very interesting quotations from Turing’s 
early works considering Machine Intelligence (Koza et al., 1999; Koza et al., 2002). In his 
1948 essay “Intelligent Machines” Alan Turing has identified three broad approaches by 
which machine intelligence could be achieved: “One approach… is a search through the 
space of integers representing candidate computer programs, (a logic-driven search)… 
Another approach is the “cultural search” which relies on knowledge and expertise 
acquired over a period of years from others. This approach is akin to present-day 
knowledge-based systems… The third approach is “genetical or evolutionary search”…” 
(Koza, et al., 1999). From the three, the inventors of Genetic Programming pick up the idea 
of biological relevance to the problem of machine intelligence acquisition. However, from 
our point of view (from the point of view inspired by Kolmogorov’s theory) this can not be 
true. Genetic Programming and Neural Networking are pure bottom-up information-
processing approaches. As we know today, the right way of information retrieval is a top-
down coarse-to-fine approach. Therefore, it might be more intelligent to embrace the first 
Turing’s alternative – the logic-driven approach. That is, relying on pure logical and 
engineering approaches to find out the best ways of intelligence reification, and only then to 
verify our hypothetical solutions against known (or unknown) biological evidences and 
facts. That is exactly what we are intended to do now. 
The first issue is the bottom-up versus top-down information-processing alternatives. 
Despite the traditional dominance of the bottom-up approach, evidence for top-down 
preliminary processing in biological vision systems is present in research literature since the 

 

early 80s of the previous century (Navon, 1977; Chen, 1982). Unfortunately, they were 
overlooked both by biological and computer vision communities.  
The next phenomenon which is usually misunderstood (and consequently mistreated) is the 
knowledge transfer (in human and animal world), which is usually mistakenly defined as a 
Learning process. We have proposed a more suitable definition – a Teaching process. 
Indeed, it turns out that in nature, teaching is a universal and a wide-spread phenomenon. 
Only recently this fact has become recognized and earned its careful investigation (Csibra, 
2007; Hoppitt et al., 2008). Teaching in nature does not mean human-like mentoring – 
animals do not possess spoken language capabilities. Teaching in nature assumes specific 
semantic knowledge transfer, specific information relocation from a teacher to a pupil, from 
one community member to another. And examples of this knowledge transfer are really 
abundant in our surrounding, if only we are ready to look at them and see them in a proper 
way. 
In this regard, dancing bees that convey to the rest of the hive the information about 
melliferous sites (Zhang et al., 2005), ants that learn in tandem (Franks & Richardson, 2006), 
and even bacteria developing their antibiotic resistance as a result of a so-called horizontal 
gene transfer when a single DNA fragment of one bacteria is disseminated among other 
colony members (Lawrence & Hendrickson, 2003), all these examples convincingly support 
our claim that meaningful information (the semantic knowledge base) is always transfered 
to the individual information processing system from the outside, from the external world. 
The system does not learn it in a traditionally assumed Machine Learning manner.  
Another benefit which biological science can gain from our logically-driven (engineering) 
approach is the issue of astrocyte-neuron communication. Only defining information as a 
description message you can explain how astrocities, (the dominant glial cells), “listen and 
talk” with neuronal and synaptic networks. In their paper, Voltera & Meldolesi wrote that: 
“One reason that the active properties of astrocytes have remained in the dark for so long 
relates to the differences between the excitation mechanisms of these cells and those of 
neurons. Until recently, the electrical language of neurons was thought to be the only form 
of excitation in the brain. Astrocytes do not generate action potentials, they were considered 
to be non-excitable and, therefore, unable to communicate. The finding that astrocytes can 
be excited non-electrically has expanded our knowledge of the complexity of brain 
communication to an integrated network of both synaptic and non-synaptic routs” (Voltera 
& Meldolesi, 2005). That is, traditional belief that a spiking neuron burst is a valid form of 
information exchange  and representation does not hold any more, and has to be replaced 
by a chemical molecular-language-based discription-massages transfer mechanism. 
 A very important issue of our discussion about semantic information processing is the issue 
of knowledge representation. As it was already mentioned above, and it also stems from the 
insights of Kolmogorov’s theory, the best form of knowledge representation has to be a 
language-based description, a narrative, a story. I do not intend to expand here on the 
implementaition deatails of this issue. I would like to continue to maintain our discussion on 
a philosophical level. What follows from this is that we have always to consider intelligence 
as being carried out in a language, in a linguistic structure. That is, although the block-
schema depicted in Fig. 2 outlines only visual information incorporation into the semantic 
processing hierarchy, you can easily imagin physical information of other modalities 
(hearing, haptics, olfactory senses information) being subjected (usually in parallel with 
information from other sensors) as attributes of semantic (linguistic) objects into the 
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knowledgebase processing hierarchy. (That will again explain you why functional Magnetic 
Resonance Imaging shows you that visual stimuli are processed in audio stimuli processing 
zones, which are naturally associated with speech processing. The simple explanation for 
this is that all modalities are finally processed in the language processing zone, as it is 
proposed by our approach.) 
The next important issue, which naturally follows the preceeding ones, is the narrative story 
form of knowledge representation accepted for the discussed case of semantic information 
processing. Linguistic tagging, that means labeling image objects with words, is a well 
known and widely used methodology of image semantics retrival supported by a special 
class of Machine Learning techniques (Barnard et al., 2003; Duygulu et al., 2008; Blondin 
Masse et al., 2008). This way of thinking naturally stems from another wide-spread 
assumption that ontology (the basis of semantic reasoning and elaboration) is a vocabulary, 
a thesaurus, a dictionary. What follows from our descriptive form of knowledge 
representation is that ontology has to be treated as a story, a narrative, which naturally 
describes the system’s behavior in various real-life-encountered situations. However, this 
very important aspect of intelligent systems design philosophy leads us far away from the 
main theme of our discussion – the philosophy of Machine Learning. And for that reason I 
will quit at this point, and not continue further. 

 
5. Conclusions 
 

In this paper I have attempted to promote a new Thinking Machines design and 
development philosophy. The central point of my approach is a new definition of 
information, that is, a notion of information as a language-based description. Then, above it 
the notion of intelligence can be placed, defining intelligence as the system’s ability to 
process information. The principles of information mining should be placed in the lower 
part of the construction. Thus, it seems to me, a proper frame for a rational Artificial or 
Machine Intelligence devices research and development enterprise can be established.  
Essentially, the declared focus of the paper’s subject is the issue of Machine Learning, which 
is assumed to be a bundle of techniques used to support all information-processing 
machinery. But, as you know, Machine Learning as by now (and already for a very long 
time) is treated as an independent and stand alone discipline, totally detached from its 
original destination – Thinking Machines research and development (Turing, 1950). The 
roadmap for this challenge was formulated at the Dartmouth College meeting in the 
summer of 1956 (McCarthy, et al. 1955). The date of this meeting is considered today as the 
Artificial Intelligence (AI) birthday. (The very name of AI was coined at this time by John 
McCarthy, one of the authors of the Dartmouth Proposal). 
At first, the excitement and hopes were really high, and the goals have seemed to be 
reachable in a short while. In the Panel Discussion at the Artificial General Intelligence 
(AGI) Workshop in 2006, Steve Grand has recalled that “Rodney Brooks has a copy of a 
memo from Marvin Minsky (another father of the Dartmouth Proposal), in which he 
suggested charging an undergraduate for a summer project with the task of solving vision. I 
don’t know where that undergraduate is now, but I guess he hasn’t finished yet” (Panel 
Discussion, 2006).  
Indeed, problems of Vision, as well as all other AI troubles, have turned out to be much 
more complicated and problematic than it looked out at the beginning. Within a decade or 

 

so, it became clear that AI tribulations are immense, maybe even intractable. As a 
consequence, the AI community to a large extent has abandoned its original dream, and 
turned to more “practical” and “manageable” problems (Wang & Goertzel, 2006). “AI has 
evolved to being a label on a family of relatively disconnected efforts” (Brachman, 2005). 
Exactly the same were the milestones of Machine Learning. Machine Learning, which was 
always perceived as an indispensible component of intelligence, has undergone all the 
metamorphoses as its general domain. At first, there was a generous offer to let the system 
by itself (in an autonomous manner) to find out the best way to mimic Intelligence. Why to 
trouble oneself trying to grasp the principles of intelligence? Let us give the machine the 
chance to do this by itself. (I can not to withstand the temptation to provide an example of 
such a fatal misunderstanding: IGI Global Publisher (formerly Idea Group Inc.) has 
published a Call for Chapter Proposals for a future book “Intelligent Systems for Machine 
Olfaction: Tools and Methodologies” (Can be found at the publisher site: http://www.igi-
global.com/requests/details.asp?ID=610). You can read in the Introduction part of it: 
“Intelligent systems are those that, given some data, are able to learn from that data. This 
ability makes it possible for complex systems to be modeled and/or for performance to be 
predicted. In turn it is possible to control their functionality through learning/training, 
without the need for a priory knowledge of the system’s structure”. Once more, I apologize 
for such a so long quotation.) 
Then, when the first idealistic objective has failed, Machine Learning was broken into pieces, 
disintegrated and fragmented to many partial tasks and goals. Now the question in the 
paper’s title – “When and Where the Horses Went Astray?” – can be answered beyond any 
doubts: It has happened about 50 years ago! 
From the standpoint that we possess today, we can even spell out the fundamental flaws 
which are responsible for this derailment: First, the bottom-up philosophy of information 
retrieval. (As we know today, the right way of information treatment is the top-down 
coarse-to-fine line of information processing). Second, is the lack of a proper definition of 
information, leading, consequently, to a lack of a clear distinction between physical and 
semantic information. (This failure had a tremendous impact on the Machine Learning 
disruption). The same can be said about the third misleading factor – misunderstanding of 
the very nature of semantic information, which has led to an endless, infamous race for 
knowledge and semantic meaning extraction directly from the raw data. (Which is, 
obviously, a philosophical lapse).  
For the same reasons, the basic notion of intelligence has been overlooked and defined 
erroneously. I hope, in this paper I was lucky to repair some of these misconceptions.    
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semantic information. (This failure had a tremendous impact on the Machine Learning 
disruption). The same can be said about the third misleading factor – misunderstanding of 
the very nature of semantic information, which has led to an endless, infamous race for 
knowledge and semantic meaning extraction directly from the raw data. (Which is, 
obviously, a philosophical lapse).  
For the same reasons, the basic notion of intelligence has been overlooked and defined 
erroneously. I hope, in this paper I was lucky to repair some of these misconceptions.    
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1. Introduction     
 

In this chapter we offer a survey of self-organizing feature maps with emphasis on recent 
advances, and more specifically, on growing architectures. Several of the methods are 
developed by the authors and offer unique combination of theoretical fundamentals and 
neural network architectures. Included in this survey of dynamic architectures, will also be 
examples of application domains, usage and resources for learners and researchers alike, to 
pursue their interest in SOMs. 
The primary reason for pursuing this branch of machine learning, is that these techniques 
are unsupervised – requiring no a priori knowledge or trainer. As such, SOMs lend 
themselves readily to difficult problem domains in machine learning, such as clustering, 
pattern identification and recognition and feature extraction. SOMs utilize competitive 
neural network learning algorithms introduced by Kohonen in the early 1980’s. SOMs 
maintain the features (in terms of vectors) of the input space the network is observing. This 
chapter, as work emphasizing dynamic architectures, will be incomplete without presenting 
the significant achievements in SOMs including the work of Fritzke and his growing 
architectures.  
To exemplify more modern approaches we present state-of-the art developments in SOMs. 
These approaches include parallelization (ParaSOM – as developed by the authors), 
incremental learning (ESOINN), connection reorganization (TurSOM – as developed by the 
authors), and function space organization (mnSOM). Additionally, we introduce some 
methods of analyzing SOMs. These include methods for measuring the quality of SOMs 
with respect to input, neighbors and map size. We also present techniques of posterior 
recognition, clustering and input feature significance. In summary, this chapter presents a 
modern gamut of self-organizing neural networks, and measurement and analysis 
techniques.  

 
2. Overview of competitive learning 
 

2.1 Unsupervised and competitive learning 
Very broadly defined, neural networks learn by example and mimic human brain in its 
decision or object identification capabilities. The concept of artificial neural networks (ANN) 
is based on two different views of the human brain activity, both of which rely on the 
functionality of a single neuron. The neurons are perceived as adding devices, which react, 

2
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or fire, once the incoming signals sum reaches a threshold level. Fig.1 illustrates the 
functionality of a single neuron, which receives signals from other neurons it is connected to 
via weighted synapses. Upon reaching the firing level, the neuron will broadcast a signal to 
the units connected to its output.  
 

 
Fig. 1. Artificial neuron functionality 
 
Returning to the two major types of ANN, one view generally relies on the individual 
neuron and its ability to respond, or fire, given sufficient stimulus. The topology of neurons 
and the connections among them is not the goal of this type of ANN, but rather the output 
produced by the respective neuron. 
The second view banks on the neurons functioning as a team. As such, it takes into account 
the concept of map formed by neuron positions, much like the visual cortex map, producing 
a two dimensional image of the perceived visual field. This type of ANN produces a 
topology of neurons, connected by weighted synapses and features the natural grouping of 
the input data (Fig.2). This translates into input density map and necessitates the 
development of evaluation procedures on the formed clusters for the purpose of identifying 
or matching patterns in the data. 
 

Fig. 2. The black area denotes input space distribution, where the neurons have organized to 
cover that input topology as a team 

 
The taxonomy of learning methods and algorithms for ANN is multifaceted and includes 
many hierarchical classifications (Fig.3). In this chapter we are concerned with unsupervised 
learning that is also competitive. Learning in ANN is the process of connection weight 
adjustment, which, in turn guides the neuron to a better position in terms of input data 
configuration.  
In the case of supervised learning, the weight adjustment will be guided by the teaching 
signal and the penalty/reward of the error in the ANN response. Unsupervised learning 
methods do not benefit from teacher signal guidance. The neurons compete to match the 
input as closely as possible, usually based on Euclidean distance. The neuron closest to the 
considered input exemplar is the winner taking it all, i.e. adjusting its weight to improve its 
position and thus move closer to the input. 

inputs 

output 
  

We are describing the extreme case of competition, i.e. winner-take-all. Depending on the 
learning algorithm and the ANN application, while the winning neuron will be selected, a 
neighbourhood of influence may be established, whereby the winning neuron neighbours 
will also move in the same direction albeit at a lesser distance. 
 

 
Fig. 3. Taxonomy of ANN learning methods 
 
Unsupervised learning (UL) is generally based on competition. UL seeks to map the 
grouping or patterns in the input data. This can be accomplished either by neurons 
resonating with the input exemplar (e.g. adaptive resonance theory) or by neurons winning 
the distance from the input exemplars competition. It must be noted that there are ANN 
models that learn in unsupervised manner, but are not based on competition. Among those, 
the principal component network should be mentioned here as a prelude to later sections in 
this chapter. 

 
2.2 Kohonen’s SOM 
The brains of higher animals are organized by function, e.g. the visual cortex processes the 
information received through the optical nerve from the eyes, the somatosensory cortex 
maps the touch information from the surface of the body, etc.  Inspired by the mapping 
abilities of the brain, the self-organizing feature map (SOM) was introduced in early 1980’s 
by Teuvo Kohonen (Kohonen, 1995). SOMs are used to topologically represent the features 
of the input based on similarity usually measured by Euclidean distance. SOMs are useful 
tools in solving visualization and pattern recognition tasks as they map a higher dimension 
input space into a one- or two-dimensional structure. SOMs are initialized usually randomly 
(Fig.4b), in a topology with fixed number of neurons, that can be ordered in a chain (i.e. each 
neuron has at most two neighbors) or in a two-dimensional grid of rectangular (Fig.4c) or 
hexagonal nature, where the neurons have at most four neighbors.  
 

Fig. 4. Input space: a) distribution; b) with randomly initialized neurons; c) two-dimensional 
rectangular grid 

ANN training paradigms 

Supervised Unsupervised 

Hopfield Associative 
memory ART SOM Backpropagation 
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or fire, once the incoming signals sum reaches a threshold level. Fig.1 illustrates the 
functionality of a single neuron, which receives signals from other neurons it is connected to 
via weighted synapses. Upon reaching the firing level, the neuron will broadcast a signal to 
the units connected to its output.  
 

 
Fig. 1. Artificial neuron functionality 
 
Returning to the two major types of ANN, one view generally relies on the individual 
neuron and its ability to respond, or fire, given sufficient stimulus. The topology of neurons 
and the connections among them is not the goal of this type of ANN, but rather the output 
produced by the respective neuron. 
The second view banks on the neurons functioning as a team. As such, it takes into account 
the concept of map formed by neuron positions, much like the visual cortex map, producing 
a two dimensional image of the perceived visual field. This type of ANN produces a 
topology of neurons, connected by weighted synapses and features the natural grouping of 
the input data (Fig.2). This translates into input density map and necessitates the 
development of evaluation procedures on the formed clusters for the purpose of identifying 
or matching patterns in the data. 
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cover that input topology as a team 
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adjustment, which, in turn guides the neuron to a better position in terms of input data 
configuration.  
In the case of supervised learning, the weight adjustment will be guided by the teaching 
signal and the penalty/reward of the error in the ANN response. Unsupervised learning 
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grouping or patterns in the input data. This can be accomplished either by neurons 
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of the input based on similarity usually measured by Euclidean distance. SOMs are useful 
tools in solving visualization and pattern recognition tasks as they map a higher dimension 
input space into a one- or two-dimensional structure. SOMs are initialized usually randomly 
(Fig.4b), in a topology with fixed number of neurons, that can be ordered in a chain (i.e. each 
neuron has at most two neighbors) or in a two-dimensional grid of rectangular (Fig.4c) or 
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Before a brief overview of the SOM algorithm, let us take the reader through the concept of 
Kohonen’s ANN. The input space of Fig.4a is used along with the random initialization in 
Fig.4b. As every input vector (in this case a two-dimensional x, y representation of the 
location of each dot comprising the black area in Fig.4a) is presented to the network, the 
closest neuron responds as a winner of the Euclidean distance-based competition and 
updates its weight vector to be closer to the input just analyzed. So do its neighbors 
dependent on the neighborhood radius, which can be reduced as the time progresses. The 
rate of reduction is determined by the learning rate. As inputs are presented in a random 
order, the neurons move closer to the input vectors they can represent and, eventually, the 
movement of neurons becomes negligible. Usually, that is when the map is considered to 
have converged. This process is illustrated in Fig.5a for one-dimensional SOM and Fig.5b for 
rectangular SOM. 
 

Fig. 5. Converged SOM: a) one-dimensional topology; b) two-dimensional topology 
 

Fig. 6. Hilbert curve initialization approach: a) initialized network; b) resulting map 
 
While the classic SOM features random initialization of the weight vectors, the authors have 
demonstrated the advantages of one-dimensional SOM initialization based on a Hilbert 
curve (Buer, 2006; Valova, Beaton, & MacLean, 2008a) with neurons positioned in a chain 
following the space-filling curve (Fig.6a). Kohonen posited that one-dimensional SOM 
converge in a shape resembling Peano curves. The authors followed this observation and 
utilized the idea in the initialization process to speed up convergence and ensure linearity of 
the network. Fig.6b demonstrates the resulting map. It is obvious that the map is not 
tangled, and the neurons that are physical neighbors also represent topologically close input 
vectors unlike the map on Fig.5a, which is tangled and topologically close neighbors do not 
always share physical proximity. 
The algorithm can now be formalized. Each neuron in the network has a weight or reference 
vector 1 2[ , ,..., ]mx x x   where ix  is an individual attribute of  .  The neurons are gradually 
organized over an n-dimensional input space nV .  Each input 1 2[ , ,..., ] n

n V     , where 

i  is an attribute in  , has the same number of attributes as the weight vector   of each 
neuron in the network. 

Once the network is initialized, the input is presented sequentially to the network.  The best-
matching unit in the network is determined by comparing each neuron to the current input 
based on Euclidean distance, with the winner being the neuron closest to the input. 
 

arg min{ }i i ic     (1) 
 
where c is the best-matching unit. 
The winning neuron and all neurons falling within the neighborhood radius for an iteration 
i  update their reference vectors to reflect the attraction to  .  To change the reference 
vector of a neuron, the following equation (which is a very common SOM learning equation) 
is used: 
 

( 1) ( ) ( ) ( )( )t t h t t         (2) 
 
where t is the current iteration and  (t) is a monotonically decreasing learning rate, and 
h(t) is the neighborhood function.  

 
2.3 Visualizing a SOM 
In low dimensional patterns, such as one- or two-dimensional, the input and the SOM can 
be visualized by using positions of pixels. However, when scaling to three, or five 
dimensions, pixels can be used for dimensions that represent two-dimensional space, but 
the remaining one or three attributes in this case would be represented by gray scale or 
RGB, respectively. This, however, implies that the visualization of the data, and the SOM 
can be expressed in x, y and color values. 
When dealing with complex data that is not directly visualized, or even very high 
dimensional data (e.g. greater than 10) visualization becomes an issue. One of the methods 
used for showing the lattice structure style network for high dimensional data, is to use a 
dimensionality reduction or dimensionality mapping technique. One of the simplest, and 
most well known is Sammon’s mapping (Eq.3) (Sammon 1969).  
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This mapping measure effectively takes the distances between high dimensional objects, e.g. 
neurons, and allows them to be plotted in two-dimensions, so the researcher may visually 
inspect the geometric relations between neurons. Often, when the number of inputs is very 
high, or patterns are non-distinct and complex, the visualization does not include input 
data, rather, just the neurons. 
To form the lattice structure correctly, the connections between known neighbors should be 
illustrated. The neurons are often recorded in one- or two-dimensional arrays, to allow the 
physical neighbors of each neuron to be recorded. 
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Before a brief overview of the SOM algorithm, let us take the reader through the concept of 
Kohonen’s ANN. The input space of Fig.4a is used along with the random initialization in 
Fig.4b. As every input vector (in this case a two-dimensional x, y representation of the 
location of each dot comprising the black area in Fig.4a) is presented to the network, the 
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have converged. This process is illustrated in Fig.5a for one-dimensional SOM and Fig.5b for 
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based on Euclidean distance, with the winner being the neuron closest to the input. 
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where c is the best-matching unit. 
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vector of a neuron, the following equation (which is a very common SOM learning equation) 
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where t is the current iteration and  (t) is a monotonically decreasing learning rate, and 
h(t) is the neighborhood function.  
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This mapping measure effectively takes the distances between high dimensional objects, e.g. 
neurons, and allows them to be plotted in two-dimensions, so the researcher may visually 
inspect the geometric relations between neurons. Often, when the number of inputs is very 
high, or patterns are non-distinct and complex, the visualization does not include input 
data, rather, just the neurons. 
To form the lattice structure correctly, the connections between known neighbors should be 
illustrated. The neurons are often recorded in one- or two-dimensional arrays, to allow the 
physical neighbors of each neuron to be recorded. 
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3. Growing Self-organizing Algorithms 
 

3.1 Fritzke’s growing SOM variants 
Self-organizing Maps, as introduced by Kohonen, are static sized network. The obvious 
disadvantage to the predetermined number of neurons is that number is either not high 
enough to adequately map the input space or too high, thus leaving many neurons 
underutilized. SOM being trained without supervision, is not expected to know the input 
space characteristics apriori. Hence, a topology which allows the addition/removal of 
neurons, is a logical step in the development of self-organization. Fritzke introduced three 
architectures in the 1990’s - growing grid (GG), growing cells (GC), and growing neural gas 
(GNG) (Fritzke, 1992, 1993a, b, c, 1994, 1995). All three start with minimal number of 
neurons and add neurons as needed. The need is based on an age parameter, while an error 
parameter determines which neuron will be joined by a new neighbor (GC, GNG) or a new 
set of neighbors (GG). 
In the case of GC, once a neuron with the highest error value is selected, its longest 
connection (or edge) is replaced by two edges and a neuron is added to facilitate their 
connection (Fig.7).  
 

     
Fig. 7. Growing cells at: a) 3333 iterations; b) 15000 iterations 
 

     
Fig. 8. Growing grid at: a) 33333 iterations; b) 100000 iterations 
 
GG also utilizes an age parameter for the neurons. Every time a neuron wins, its age is 
incremented. At intervals, the neuron with the most wins is slated to receive new neighbors 
and the furthest direct topological neighbor from the selected neuron is found. GG utilizes a 
rectangular grid topology, which is maintained during growth. If these two neurons are in 
the same row of neurons, a column will be added between the two – thus affecting neurons 

in other rows. If the selected neurons are in the same column, then a new row will be added 
between them – thus affecting neurons in other columns (Fig. 8). 
In the third Fritzke contribution - the GNG - a similar concept to GC is observed. However, 
the connections between the neurons are assigned the age parameter. Therefore, GNG adds 
and removes connections, based on neuron selection. GNG is also capable of attaining 
configurations with multiple networks (Fig. 9). 
One of the major drawbacks to GNG, as well as other growing methods, is that the number 
of nodes are ever increasing. This is, in part, compensated for by an extension to GNG, 
Growing neural gas with utility (GNG-U), which features removal of neurons based on the 
criterion of low probability density in the underlying input space “beneath” the neuron. The 
downfalls to these methods are than they do not exhibit incremental learning – a problem 
that is discussed in a later section on ESOINN. 
 

 
Fig. 9. Provided by (DemoGNG); At 7500 iterations (left) the map is starting to take the form 
of the input; At 12000 iterations (right) the map is a much better topological representation 
of the given input. 
 
Fritzke’s growing methods can be explored by the reader interactively at the DemoGNG 
website (DemoGNG), provided by the Institut für Neuroinformatik. 

 
3.2 ParaSOM 
The ParaSOM is architecture developed by the authors (Valova, Szer, Gueorguieva, & Buer 
2005), which shares several similar attributes with the classic SOM and the growing 
architectures developed by Fritzke.  However, it improves the effectiveness of the network 
and allows for different approaches to cluster analysis and classification, which will be 
demonstrated in later sections. The unique characteristics of the architecture include: 
parallel input processing, the adoption of cover region to manage the influence area of a 
neuron, and network growth, which is inspired by the GC architecture.  
The ParaSOM is designed to process the entire input space in parallel. The classic SOM 
presents the network with one input at a time and determines the winner to move closer to 
that input.  With the ParaSOM, however, the entire input space is presented to the network 
at the same time.  Therefore, multiple neurons can adapt to nearby inputs independently of 
other neurons.  This trait helps the network in recognizing patterns that it has already 
learned.  For instance, imagine the network adapted itself to a particular pattern A, and 
another pattern B, that is very similar to A, is presented to the network.  Because the 
neurons process the input space independently of each other, the ones that are already 
covering the pattern (most of them, since A is very similar to B) will not move.  As a result, 
adapting to B is much faster, as the network only needs to learn the small differences 
between A and B. 
ParaSOM features the following parameters that are unique to the architecture. The network 
produces a cover matrix, which represents the approximation of an input pattern made by 
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the network in its current state. The cover matrix calculation is based on the cover region, 
which is an attribute of every neuron. This is the area surrounding the point in space where 
the neuron exists and is considered to be the region of space that the neuron is covering. The 
move vector is another neuron attribute, which indicates the amount a neuron should move 
and in which direction is calculated, and added to the neuron’s reference (weight) vector. 
The age parameter, which represents for how long a neuron has been well or poorly 
positioned is closely related to the inertness of a neuron. The inertness is the measure of how 
effectively a neuron covers the input space. Both, age and inertness determine when and 
where the network should grow or contract. 
The ParaSOM in action is illustrated in Fig.10. The network is initialized with a minimal 
number of neurons, which have large cover regions (denoted by the large circles in Fig.10a). 
As the input space is shown to the network, the move vectors are calculated along with the 
other parameters gauging the performance of individual neurons (i.e. age, inertness, cover 
region) and the neurons are moved, new ones are added or some are removed in order to 
achieve the final comprehensive coverage illustrated in Fig.10c.   
 

     
Fig. 10. ParaSOM in action: a) randomly initialized with a predetermined number of 
neurons; b) the network position at iteration 25; c) the network at iteration 500 
 
The formalization of the algorithm will begin with the cover matrix which consists of 
subtracting a set of cover regions from the input space. Each such region is associated with a 
single neuron, and represents the contribution of the neuron to the total approximation. The 
job of the cover region is to weaken the signals of the inputs that are being covered, where 
the weaker the signal, the better the neuron is covering that region. Each cover region also 
maintains a radius which decreases in each epoch. The cover matrix is formulated as 
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for radius   and   being an attribute of the input vector. 
The cover function is utilized in the computation of a cover value, which indicates how well 
the neuron is covering the inputs and is calculated as 
 

ic  = 
ii mC f  (7) 

 
where the local cover matrix is represented by 
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The inertness, is an indicator as to whether the neuron should be moved, removed, or is in a 
place where new neurons ought to be added nearby. The lower the inertness the better the 
coverage and hence position of the neuron. The inertness is given by 
 

i =  maxic c  (9) 
 
where the cover value max is calculated by 
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The network utilizes the inertness to determine whether and where to grow/shrink. A high 
inertness indicates that the neuron is well positioned and should not move (or move very 
little), while a low inertness indicates poor positioning and greater neuron movement.  
Inertness is one of two components that dictate network growth, with age being the second. 
Each neuron has an age attribute that.  When a neuron is well positioned, as determined by 
a high-inertness threshold, its age is incremented.  The same is true with a poorly positioned 
neuron having its age decremented based on a low-inertness threshold.  When a neuron is 
well (or poorly) positioned for a sufficient period of time, it becomes a candidate to have a 
neuron added as a neighbor, or to be removed from the network, respectively. 
Finally, the move vector, which indicates the amount a neuron should move and in which 
direction is calculated, and added to the neuron’s reference vector. The attractions also affect 
immediate neighbors of the neuron but to a lesser degree where the amount of movement is 
proportional to the distance between the neuron and neighbor. The move vector iv = ( 1iv , 2iv , 
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The authors have explored the effect a Hilbert initialization has on ParaSOM. As with the 
classic SOM, this network is also positively influenced by this mode of initialization. Fig.11 
shows some results. Fig.11a features the network at iteration 0, using the same input 
topology as Fig.10. Fig.11b illustrates the intermediate result at iteration 25, and Fig.11c 
illustrates the final converged state of ParaSOM at iteration 500, same as the iteration in 
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the network in its current state. The cover matrix calculation is based on the cover region, 
which is an attribute of every neuron. This is the area surrounding the point in space where 
the neuron exists and is considered to be the region of space that the neuron is covering. The 
move vector is another neuron attribute, which indicates the amount a neuron should move 
and in which direction is calculated, and added to the neuron’s reference (weight) vector. 
The age parameter, which represents for how long a neuron has been well or poorly 
positioned is closely related to the inertness of a neuron. The inertness is the measure of how 
effectively a neuron covers the input space. Both, age and inertness determine when and 
where the network should grow or contract. 
The ParaSOM in action is illustrated in Fig.10. The network is initialized with a minimal 
number of neurons, which have large cover regions (denoted by the large circles in Fig.10a). 
As the input space is shown to the network, the move vectors are calculated along with the 
other parameters gauging the performance of individual neurons (i.e. age, inertness, cover 
region) and the neurons are moved, new ones are added or some are removed in order to 
achieve the final comprehensive coverage illustrated in Fig.10c.   
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for radius   and   being an attribute of the input vector. 
The cover function is utilized in the computation of a cover value, which indicates how well 
the neuron is covering the inputs and is calculated as 
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The network utilizes the inertness to determine whether and where to grow/shrink. A high 
inertness indicates that the neuron is well positioned and should not move (or move very 
little), while a low inertness indicates poor positioning and greater neuron movement.  
Inertness is one of two components that dictate network growth, with age being the second. 
Each neuron has an age attribute that.  When a neuron is well positioned, as determined by 
a high-inertness threshold, its age is incremented.  The same is true with a poorly positioned 
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Finally, the move vector, which indicates the amount a neuron should move and in which 
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The authors have explored the effect a Hilbert initialization has on ParaSOM. As with the 
classic SOM, this network is also positively influenced by this mode of initialization. Fig.11 
shows some results. Fig.11a features the network at iteration 0, using the same input 
topology as Fig.10. Fig.11b illustrates the intermediate result at iteration 25, and Fig.11c 
illustrates the final converged state of ParaSOM at iteration 500, same as the iteration in 
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Fig.10c. The last point is made to focus the reader attention to the tangled state of the 
randomly initialized network in Fig.10c. The Hilbert initialization, as the same iteration, 
features untangled, well-organized network. 
 

Fig. 11. ParaSOM in action: a) Hilbert initialized with a predetermined number of neurons; 
b) the network position at iteration 25; c) the network at iteration 500 
 
Other investigations with ParaSOM include parallelization (Hammond, MacLean, & Valova, 
2006) via message-passing interface (MPI) among 4 worker and 1 director machines (Valova 
et al., 2009), controlling the parameters of ParaSOM with genetic algorithms (MacLean & 
Valova, 2007), and more recently, testing and network adjustment for multidimensional 
input. 

 
3.3 ESOINN 
The Enhanced Self-Organizing Incremental Neural Network (ESOINN) (Furao, Ogura, & 
Hasegawa 2007) represent growing architectures, which are partially inspired by GNG and 
GNG-U. According to the authors of ESOINN, it addresses the stability-plasticity dilemma 
(Carpenter & Grossberg 1988), by providing the ability to retain knowledge of patterns it has 
already learned (stability), while still being able to adapt to, and learn, new patterns that it is 
yet to be exposed to (plasticity). ESOINN identifies clusters during execution by joining 
together subclusters that form within a larger cluster.  Thus, overlap in multiple clusters can 
be identified and effectively separated. 
Typically with growing architectures, the network grows by adding neurons in sufficiently 
dense area of the input space. In ESOINN, neurons are added when the current input is 
adequately distant from the closest neuron. A new neuron is added to the network 
containing the same (not similar) reference vector as the input. 
ESOINN decides on adding a neuron based on similarity threshold. It is basically a dynamic 
distance measure calculated by the distance of the neuron’s neighbors, or, if no neighbors 
are available, all other neurons in the network. When an input is presented to the network, 
the first and second winners, or best matching unit (BMU) and second matching unit 
(2BMU), are determined. The network then decides if a connection between the winner and 
second winner should be created, if one does not already exist.  
In ESOINN, knowledge of the neuron density in a given area of the input space is critical to 
performing tasks such as creating connections between neurons and detecting overlap in 
clusters.  By being able to measure the density, the network can better determine whether a 
particular section of the input space is part of a single cluster or of an overlapped section. 
After detection of overlapped areas, connections between neurons of different subclasses are 

removed.  This separates the subclasses belonging to different composite classes.  This 
process is performed at regular intervals, where the number of inputs presented to the 
network is evenly divisible by predetermined integer value. 
 

 
Fig. 12. Neurons in {A, B, C, D} are all connected by paths and therefore are in the same 
cluster.  The same is true with {E, F, G}, and {H, I}.  Conversely, A and E have no path to 
each other, and therefore are not in the same class 
 
Connections in ESOINN are used to identify subclasses.  To aide in this identification, they 
are created and removed from neurons as new data is presented to the network.  When a 
connection is removed between two neurons, a boundary is identified between the different 
classes that each neuron is a part of.  The paths created by connections are also the way that 
neurons are classified at the end of ESOINN execution.  Any given neuron i, and all other 
neurons that are connected to i by a path, are considered to be in the same class.  Neurons 
that cannot be connected by a path are said to be in different classes (Fig.12). 
Connections in ESOINN are created when there is no existing connection between a winner 
and second winner.  In this case, the newly created connection has an age attribute that is set 
to zero.  If a connection already exists between the winner and second winner, the age of 
that connection is reset to zero.  In either scenario, the ages of all existing connections 
between the winner and its neighbors are increased by one (except the connection between 
it and the second winner). Deletion of connections occurs when the ESOINN algorithm 
determines that the current winner and second winner are in different subclasses and those 
subclasses should not be merged. 
ESOINN adds neurons because they represent noisy input which is likely to be distant from 
relevant patterns.  As a result, the input will be outside of the similarity threshold of the 
winner and second winner, and a new neuron is created.  These neurons are undesirable 
because they are generally placed in low-density areas and can skew the cluster 
identification.  ESOINN removes neurons with two or fewer neighbors utilizing average 
density value. When a neuron is deleted, all connections associated with it are also removed.  
This process also occurs after predetermined number of inputs has been presented. 
The connection removal and addition features of ESOINN make it very powerful at finding 
distinct patterns in a wide array of problem domains. ESOINN is a major step forward in 
unsupervised learning. Since ESOINN addresses the stability-plasticity dilemma (continued 
learning with no forgetting), it is an algorithm that can be used for varying types of data 
sets, including overlapping Gaussian distributions.  

 
3.4 TurSOM 
TurSOM (the amalgamation of Turing and SOM) is a new variant of the Kohonen Self-
organizing Map, introduced by the authors (Beaton, 2008; Beaton, Valova, & MacLean, 
2009a, b, c). TurSOM’s primary contribution is the elimination of post-processing techniques 



SOMs for machine learning 29

Fig.10c. The last point is made to focus the reader attention to the tangled state of the 
randomly initialized network in Fig.10c. The Hilbert initialization, as the same iteration, 
features untangled, well-organized network. 
 

Fig. 11. ParaSOM in action: a) Hilbert initialized with a predetermined number of neurons; 
b) the network position at iteration 25; c) the network at iteration 500 
 
Other investigations with ParaSOM include parallelization (Hammond, MacLean, & Valova, 
2006) via message-passing interface (MPI) among 4 worker and 1 director machines (Valova 
et al., 2009), controlling the parameters of ParaSOM with genetic algorithms (MacLean & 
Valova, 2007), and more recently, testing and network adjustment for multidimensional 
input. 

 
3.3 ESOINN 
The Enhanced Self-Organizing Incremental Neural Network (ESOINN) (Furao, Ogura, & 
Hasegawa 2007) represent growing architectures, which are partially inspired by GNG and 
GNG-U. According to the authors of ESOINN, it addresses the stability-plasticity dilemma 
(Carpenter & Grossberg 1988), by providing the ability to retain knowledge of patterns it has 
already learned (stability), while still being able to adapt to, and learn, new patterns that it is 
yet to be exposed to (plasticity). ESOINN identifies clusters during execution by joining 
together subclusters that form within a larger cluster.  Thus, overlap in multiple clusters can 
be identified and effectively separated. 
Typically with growing architectures, the network grows by adding neurons in sufficiently 
dense area of the input space. In ESOINN, neurons are added when the current input is 
adequately distant from the closest neuron. A new neuron is added to the network 
containing the same (not similar) reference vector as the input. 
ESOINN decides on adding a neuron based on similarity threshold. It is basically a dynamic 
distance measure calculated by the distance of the neuron’s neighbors, or, if no neighbors 
are available, all other neurons in the network. When an input is presented to the network, 
the first and second winners, or best matching unit (BMU) and second matching unit 
(2BMU), are determined. The network then decides if a connection between the winner and 
second winner should be created, if one does not already exist.  
In ESOINN, knowledge of the neuron density in a given area of the input space is critical to 
performing tasks such as creating connections between neurons and detecting overlap in 
clusters.  By being able to measure the density, the network can better determine whether a 
particular section of the input space is part of a single cluster or of an overlapped section. 
After detection of overlapped areas, connections between neurons of different subclasses are 

removed.  This separates the subclasses belonging to different composite classes.  This 
process is performed at regular intervals, where the number of inputs presented to the 
network is evenly divisible by predetermined integer value. 
 

 
Fig. 12. Neurons in {A, B, C, D} are all connected by paths and therefore are in the same 
cluster.  The same is true with {E, F, G}, and {H, I}.  Conversely, A and E have no path to 
each other, and therefore are not in the same class 
 
Connections in ESOINN are used to identify subclasses.  To aide in this identification, they 
are created and removed from neurons as new data is presented to the network.  When a 
connection is removed between two neurons, a boundary is identified between the different 
classes that each neuron is a part of.  The paths created by connections are also the way that 
neurons are classified at the end of ESOINN execution.  Any given neuron i, and all other 
neurons that are connected to i by a path, are considered to be in the same class.  Neurons 
that cannot be connected by a path are said to be in different classes (Fig.12). 
Connections in ESOINN are created when there is no existing connection between a winner 
and second winner.  In this case, the newly created connection has an age attribute that is set 
to zero.  If a connection already exists between the winner and second winner, the age of 
that connection is reset to zero.  In either scenario, the ages of all existing connections 
between the winner and its neighbors are increased by one (except the connection between 
it and the second winner). Deletion of connections occurs when the ESOINN algorithm 
determines that the current winner and second winner are in different subclasses and those 
subclasses should not be merged. 
ESOINN adds neurons because they represent noisy input which is likely to be distant from 
relevant patterns.  As a result, the input will be outside of the similarity threshold of the 
winner and second winner, and a new neuron is created.  These neurons are undesirable 
because they are generally placed in low-density areas and can skew the cluster 
identification.  ESOINN removes neurons with two or fewer neighbors utilizing average 
density value. When a neuron is deleted, all connections associated with it are also removed.  
This process also occurs after predetermined number of inputs has been presented. 
The connection removal and addition features of ESOINN make it very powerful at finding 
distinct patterns in a wide array of problem domains. ESOINN is a major step forward in 
unsupervised learning. Since ESOINN addresses the stability-plasticity dilemma (continued 
learning with no forgetting), it is an algorithm that can be used for varying types of data 
sets, including overlapping Gaussian distributions.  

 
3.4 TurSOM 
TurSOM (the amalgamation of Turing and SOM) is a new variant of the Kohonen Self-
organizing Map, introduced by the authors (Beaton, 2008; Beaton, Valova, & MacLean, 
2009a, b, c). TurSOM’s primary contribution is the elimination of post-processing techniques 



Machine Learning30

for clustering neurons. Its features are inspired in part by Turing’s work on unorganized 
machines (Turing, 1948). Turing’s unorganized machines (TUM) represent early 
connectionist networks, meant to model the (re)organization capability of the human cortex. 
In Kohonen’s SOM algorithm, the neurons are the components of self-organization, whereas 
with Turing’s idea, the connections also fulfil that role. In TurSOM, we capitalize on both 
methods of self-organization. 
While the neurons of TurSOM adhere to the same learning rules and criteria of the standard 
SOM, the major differentiating feature of TurSOM is the ability to reorganize connections 
between neurons. Reorganization includes the removal, addition, or exchanging of 
connections between neurons. These novelties make TurSOM capable of identifying unique 
regions of input space (clustering) during execution (on-the-fly), as demonstrated in Fig.13. 
The clustering behavior is achieved by allowing separate networks to simultaneously 
execute in a single input space. As TurSOM progresses, connections may be removed, or 
exchanged – causing a network to split into two networks, and two into three or four, and so 
on.  Additionally, when separate networks get closer to one another they may join to form a 
single network. 
 

         
Fig. 13. TurSOM on connection reorganization: a) TurSOM at initialization; b) TurSOM at 
250 iterations – exemplary of TurSOM reorganizing connections; c) TurSOM at 350 iterations  
– exemplary of TurSOM identifying unique patterns 
 
In order for TurSOM to achieve the behavior it exhibits, several new mechanisms are 
introduced to the Kohonen SOM. 
In SOM algorithms, there is a neuron learning rate. The point of the neuron learning rate is 
to decrease the movement of winning neurons (and subsequently their neighbors) as time 
progresses. As a SOM adapts to input, it should require less drastic organization, i.e., 
smaller movements. 
Similarly, TurSOM introduces a connection learning rate (CLR), which regulates the 
reorganization of connections as TurSOM progresses. The CLR is a global value controlling 
the maximum allowable distance between two neurons. If the distance between any two 
neurons exceeds the CLR, they must disconnect. CLR is computed as follows: 
 

CLR = Q3+(i   (Q3-Q1)) (11) 
 
The CLR formula is derived from the upper outlier formula from box-plots (a statistical 
technique of measuring distribution by analyzing four quartiles). In CLR, the x in Qx 
represents which quartile it is, and i, is an incrementing value as time progresses. The data 

being measured (for the quartiles), is the length of all connections available in the current 
input space. The CLR is instrumental to the reorganization process in TurSOM as it 
effectively decides which connections are unnecessary.  
 

Fig. 14. CLR in TurSOM: a) the square pattern with random initialization; b) the first 50 
iterations of TurSOM, where its behavior is the same as a SOM; c) CLR has been active for 
100 iterations and a rapid, and sudden reorganization of connections is evident 
 
Fig.14a, b and c demonstrates a simple solid pattern for the first 150 iterations of TurSOM. 
The CLR determines which connections will be eliminated. The connections that are not 
considered optimal are removed and as evident by the figure, the removed connections 
were negatively impacting the network. 
So far, we have described how TurSOM may separate into different networks, but we have 
not addressed how two networks can rejoin into one. The neuron responsibility radius 
(NRR), inspired by ParaSOM’s neuron cover region (addressed in section 3.2), becomes 
active in TurSOM when two neurons disconnect from one another. However, there is one 
requirement for networks that disconnect – they must be of size three or greater. 
Empirically, it has been shown (in TurSOM) that networks smaller than three (i.e. 2 or a 
single neuron) become “pushed aside” for other neurons that are active in a network. A 
neuron with an active radius still has one neighbor.  
The neuron responsibility radius, is effectively a “feeler”, actively searching for other “free” 
neurons with similar features. To calculate the NRR, the following formulae are used when 
the dimensionality of input space is even: 
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where  represents the number of dimensions, and  represents the number of inputs a 
neuron is responsible for.  is calculated by dividing the number of neurons, by the 
number of inputs. To follow along with the example provided in the previous section on 
connection learning rate, the following Fig.15) demonstrate the remaining iterations of 
TurSOM, where the effects of the NRR are seen. 
 

Fig. 15. The effects of NRR: a) demonstrates the reconnection process, which is governed by 
the NRR; b) The single pattern in an optimal mapping, where the Peano-like curve of the 
network must be noted 

 
As demonstrated in Fig.15, the NRR determines the reconnection process, and works in 
cooperation with the CLR (the disconnection process). TurSOM also provides for a neuron 
to sense nearby neurons that are better suited to be connected neighbors than current 
neighbors. Simply stated, this is a check that neurons perform by knowing the distance to 
their neighbors, and knowing of other neurons in the network that are nearby. This process 
is considered to be a part of the reorganization process. 
Similar to Frtizke’s growing grid algorithm, TurSOM has a growth mechanism. TurSOM 
begins as a one-dimensional chain, which upon convergence, will spontaneously grow (SG) to 
two-dimensional grids. The term convergence is used loosely here to mean a network 
reaching a fairly stable representation of the input where further computation would not 
benefit the network significantly. During the spontaneous growth phase, connection 
reorganization (which implies network splitting and rejoining) is turned off. Presumably, at 
this point, the one-dimensional networks have settled to satisfactory positions, and do not 
require further adaptation. The growing process is demonstrated in Fig.16. Fig.16a 
illustrates the input pattern. The converged one-dimensional SOM is shown in Fig.16b. 
Finally, the SG is demonstrated in Fig.16c, where it is evident that each one-dimensional 
network grows independently.  
 

     
Fig. 16. TurSOM in action: a) Input space with 4 distinct patterns, which are five-dimensional 
data (X,Y, R, G, B); b) TurSOM in one-dimensional form mapping each of the distinct patterns; 
c) TurSOM with SG for a better representation of the patterns 

TurSOM’s growing capabilities are an instrumental part facilitating the performance of the 
network. Often times, one-dimensional networks do not represent the underlying data well 
enough. Two-dimensional networks have a better representation, or, a better resolution.  
Finally, the TurSOM algorithm can be summarized in the following steps: 

a) Select Input 
b) Find best-matching unit (BMU) 
c) Update BMU and BMU’s neighbors 
 1) Record the distances between all connected neighbors 
d) Check lengths of all connections (Step c.1) 

1) If connection is too large 
- Disconnect neurons 
- Update Connection Learning Rate 
- Activate Neuron Responsibility Radius 

e) Check neuron physical locations 
1) If neuron A is a neighbor of B, but not C (which is a neighbor of B), but 
A is closer to C than B, switch connections - thereby changing neighbors 

f) Check neuron responsibility radius for proximity to other neurons 
1) Reconnect neurons that have overlapping NRR 

 g) If TurSOM has reached convergence 
  1) Spontaneous Growth 

 
3.5 Modular Network Self-organizing Map 
While not a growing architecture, a very recent SOM architecture called the modular 
network Self-Organizing Map (mnSOM) (Tokunagaa & Furukawa, 2009) is mentioned here. 
This architecture is a hybrid approach to neural network computing. The mnSOM 
architecture consists of a lattice structure like that of a typical SOM. Additionally, the 
neurons in the SOM behave in a similar self-organizing fashion. However, each neuron is 
composed of or “filled with” a feed-forward network, such as a multi-layer perceptron 
(MLP).  
The major difference between SOMs and feed-forward networks, is that SOMs learn the 
topology or structure of data. Feed-forward architectures learn functions about input. 
The effective outcome of this network is that it self-organizes function space. That is to say, 
when presented with various types of input patterns where functional knowledge might be 
very important, mnSOM is able to topologically order functions based on similarity. 

 
4. Methods for SOM analysis 
 

Self-organizing maps are powerful analytical tools. Visualization is often employed to 
analyze the resulting topological map. However, sometimes networks do not represent 
optimal mappings. This can skew the understanding, or even representation of the data that 
is supposed to be visualized. In this section we provide methods of analyzing the quality of a 
SOM network. Commonly, these techniques are used post-execution, in order to analyze how 
well the SOM converged to the given data. A survey of SOM quality measures can be found 
in (Pölzlbauer 2004). 
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4.1 Quantization Error 
Quantization error (QE) is a simple measure used in other fields, including clustering and 
vector quantization as a technique for verifying that inputs are with their proper (or best 
suited) clusters. As SOMs perform clustering, QE can be utilized. However, one major draw 
back is that QE does not address the quality of organization of the network. Rather, it 
measures neuron placement to inputs.  
Quantization error is measured by computing the average distance from inputs to their 
appropriate outputs. One point to note about this measure, is that when the number of 
neurons is decreased or increased for the same input space, the value acquired by 
quantization error is increased or decreased respectively. Effectively, more neurons mean a 
smaller error, and vice versa for less neurons. The QE is calculated by computing the 
average distance from inputs to their associated neuron. Short pseudocode is given below: 
  uniquely number all neurons 
  for each input 

find best-matching unit (BMU); aka neuron 
array[BMU#][1] = array[BMU#][1] + distance from input to BMU 
array[BMU#][2] = array[BMU#][2] + 1; 

 end 
 for each neuron as x 
  error[x] = array[x][2] / array[x][1] 

end 

 
4.2 Topographic Error 
Topographic error (TE) measures the quality of organization of SOMs, and provides 
information of how well organized neurons are with respect to other neurons. This measure is 
used to see if neurons are correctly identified as topological neighbors, with respect to 
inputs.  
Conceptually, TE is attempting to give an idea as to how twisted, or tangled a SOM network 
is. An example of a 2-dimensional pattern, with a 1-dimensional map is shown in Fig.17. 
Topographic error is represented as a value between 0 and 1, where 0 indicates no 
topographic error, therefore, no tangling, and 1 would indicate maximum topographic error 
or complete tangling. 
 

Fig. 17. This pattern shows (in the bottom right) a 1-dimensional network that intersects, or 
crosses connections. Effectively, this network is tangled, as there are more appropriate 
neighbors for some of the neurons. 

 
Topographic error is computed as follows: 
 error = 0 
 for each data sample 
  find best-matching unit (BMU) 
  find second best-matching unit (2BMU) 

  if BMU is not a lattice neighbor of 2BMU 
   error = error + 1; 
  end 
 end 
 error = error / number of neurons; 

 
4.3 Topographic Product 
Topographic product (TP), introduced by (Bauer & Pawelzik, 1992), is a measure to indicate 
if a SOM is too large or too small for the input it is representing. TP measures the suitability 
and size appropriateness of a map, for a given set of input. Two primary variables are utilized 
for the computation of TP, Qx and Px. Qx is a ratio of distances found in input and output 
spaces, and Px is a multiplicative normalization of it’s respective Qx value. Below are the 
initial steps for TP: 
  Step 1: For the weight (in input space) (w) of neuron j (wj), find the kth: 

a. Closest data in input space, as distance d1
V  

b. Closest neuron in output space, as distance d2
V  

Step 2: For the neuron j, find the kth 

a. Closest neuron in output space, as distance d1
A  

b. Closest data in input space, as distance d2
A  

Step 3: Create two ratios: 
 Q1(j,k) = d1

V / d2
V  

 Q2(j,k) = d1
A / d2

A , where k represents an iterative value. 
When using k in the SOM, the iteration occurs through all other neurons besides j (steps 1a 
and 2a). Similarly, when calculating Q1, the iteration occurs through all inputs, excluding wj 
if wj  is equal to one of the inputs (steps 1b and 2b).  
These two values, Q1 and Q2, optimally would be equal to 1, if and only if neighbors are 
correctly preserved and suitably organized. However, Bauer and Pawelzik point out that 
this is far too sensitive. A normalization of Q1 and Q2 is required, via   function (pseudo 
code provided): 
 Px(j,k) = 1; 

for each neighbor of a neuron j, represented by k 
  Px(j,k) = Px(j,k) * Qx(j,k) 
 end 
 Px(j,k) = power(Px(j,k), (1/k)) 
 
x of Px, and Qx are either 1 or 2, defined from the previous steps. At this point, P1   1, and 
P2   1, as P1 is a value created from all the data in input space, based on the weights of all 
neurons. If there is a 1-to-1 mapping of neurons to input, then this value should be 1. 
Additionally, P2 will be less than or equal to one, because it is a representation of 
neighboring neurons in the output space. This occurs because the denominator of Q2 comes 
from input space distances and the numerator comes from neurons distances.  
However, having two numbers to explain a mapping is not desirable, so Bauer and 
Pawelzik introduce P3 (provided below in pseudo code): 
 P3(j,k) = 1; 
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4.1 Quantization Error 
Quantization error (QE) is a simple measure used in other fields, including clustering and 
vector quantization as a technique for verifying that inputs are with their proper (or best 
suited) clusters. As SOMs perform clustering, QE can be utilized. However, one major draw 
back is that QE does not address the quality of organization of the network. Rather, it 
measures neuron placement to inputs.  
Quantization error is measured by computing the average distance from inputs to their 
appropriate outputs. One point to note about this measure, is that when the number of 
neurons is decreased or increased for the same input space, the value acquired by 
quantization error is increased or decreased respectively. Effectively, more neurons mean a 
smaller error, and vice versa for less neurons. The QE is calculated by computing the 
average distance from inputs to their associated neuron. Short pseudocode is given below: 
  uniquely number all neurons 
  for each input 

find best-matching unit (BMU); aka neuron 
array[BMU#][1] = array[BMU#][1] + distance from input to BMU 
array[BMU#][2] = array[BMU#][2] + 1; 

 end 
 for each neuron as x 
  error[x] = array[x][2] / array[x][1] 

end 

 
4.2 Topographic Error 
Topographic error (TE) measures the quality of organization of SOMs, and provides 
information of how well organized neurons are with respect to other neurons. This measure is 
used to see if neurons are correctly identified as topological neighbors, with respect to 
inputs.  
Conceptually, TE is attempting to give an idea as to how twisted, or tangled a SOM network 
is. An example of a 2-dimensional pattern, with a 1-dimensional map is shown in Fig.17. 
Topographic error is represented as a value between 0 and 1, where 0 indicates no 
topographic error, therefore, no tangling, and 1 would indicate maximum topographic error 
or complete tangling. 
 

Fig. 17. This pattern shows (in the bottom right) a 1-dimensional network that intersects, or 
crosses connections. Effectively, this network is tangled, as there are more appropriate 
neighbors for some of the neurons. 

 
Topographic error is computed as follows: 
 error = 0 
 for each data sample 
  find best-matching unit (BMU) 
  find second best-matching unit (2BMU) 

  if BMU is not a lattice neighbor of 2BMU 
   error = error + 1; 
  end 
 end 
 error = error / number of neurons; 

 
4.3 Topographic Product 
Topographic product (TP), introduced by (Bauer & Pawelzik, 1992), is a measure to indicate 
if a SOM is too large or too small for the input it is representing. TP measures the suitability 
and size appropriateness of a map, for a given set of input. Two primary variables are utilized 
for the computation of TP, Qx and Px. Qx is a ratio of distances found in input and output 
spaces, and Px is a multiplicative normalization of it’s respective Qx value. Below are the 
initial steps for TP: 
  Step 1: For the weight (in input space) (w) of neuron j (wj), find the kth: 

a. Closest data in input space, as distance d1
V  

b. Closest neuron in output space, as distance d2
V  

Step 2: For the neuron j, find the kth 

a. Closest neuron in output space, as distance d1
A  

b. Closest data in input space, as distance d2
A  

Step 3: Create two ratios: 
 Q1(j,k) = d1

V / d2
V  

 Q2(j,k) = d1
A / d2

A , where k represents an iterative value. 
When using k in the SOM, the iteration occurs through all other neurons besides j (steps 1a 
and 2a). Similarly, when calculating Q1, the iteration occurs through all inputs, excluding wj 
if wj  is equal to one of the inputs (steps 1b and 2b).  
These two values, Q1 and Q2, optimally would be equal to 1, if and only if neighbors are 
correctly preserved and suitably organized. However, Bauer and Pawelzik point out that 
this is far too sensitive. A normalization of Q1 and Q2 is required, via   function (pseudo 
code provided): 
 Px(j,k) = 1; 

for each neighbor of a neuron j, represented by k 
  Px(j,k) = Px(j,k) * Qx(j,k) 
 end 
 Px(j,k) = power(Px(j,k), (1/k)) 
 
x of Px, and Qx are either 1 or 2, defined from the previous steps. At this point, P1   1, and 
P2   1, as P1 is a value created from all the data in input space, based on the weights of all 
neurons. If there is a 1-to-1 mapping of neurons to input, then this value should be 1. 
Additionally, P2 will be less than or equal to one, because it is a representation of 
neighboring neurons in the output space. This occurs because the denominator of Q2 comes 
from input space distances and the numerator comes from neurons distances.  
However, having two numbers to explain a mapping is not desirable, so Bauer and 
Pawelzik introduce P3 (provided below in pseudo code): 
 P3(j,k) = 1; 
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for each neighbor of a neuron j, as k 
  P3(j,k) = P3(j,k) * (P1(j,k) * P2(j,k)) 
 end 
 P3(j,k) = power(P3(j,k), (1/2k)) 
 
P3 is normalized. The relationship of P1 and P2 is inverse, thereby giving way to these rules: 
 1: P3 > 1 means the map is too large, P1 > (1/P2) 
 2: P3 < 1 means the map is too small, P1 < (1/P2) 
The final step in topographic product is computing an average of the values already 
obtained, when using all neurons in a SOM: 
 P = 0; 
 for each neuron, as j 
  for each neighbor as k 
   P  = P + log(P3(j,k)) 
  end 
 end 
 P = P/(N*(N-1)) // where N is the number of neurons 
 
All values of P that deviate from 1, should be of concern. The same rules apply to P as do P3, 
concerning deviation from 1. The formulaic view of P3 is provided by Eqs. (16) and (17). 
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4.4 Other Measures 
We have presented three measures of SOM that evaluate fundamental aspects of SOM 
quality, namely, correct neuron to input positioning (QE), network organization quality 
(TE), and suitability of map size (TP).  
However, there are several measures beyond these that attempt to combine these 
fundamental aspects, or measure other characteristics of SOMs. Some of these measures 
include Trustworthiness and Neighborhood Preservation (Venna & Kaski, 2001), which aim 
to measure data projection relations, by comparing input data relations to output data 
relations; and Topographic Function (Villmann et al., 2007), a measure which accounts for 
network structure, and neuron placement. 

 
5. Pattern identification and clustering 
 

Over the years many methods of analyzing the patterns of the neurons of SOMs have been 
introduced. One of the simplest methods is the gray scale clustering presented by Kohonen 
in his book, on the poverty map data set (Kohonen, 1995). Kohonen’s example colors 
distances between nodes a shade of light gray, if the nodes are close, or dark gray, if the 
nodes are far. However, visual methods leave interpretation up to the reader. In this section 

we present two methods of analyzing and identifying patterns exhibited by the neuron 
configurations of SOMs. These are methods for post-convergence analysis. When a SOM 
converges, it is not always necessary to perform any post-processing techniques, especially 
in lower dimensionality. At the time of convergence, what we do know is that each neuron 
has found a suitable region of space, where it is representing a given amount of inputs. 
Exactly what inputs is not always clear unless another technique is used (one technique to 
map inputs to neurons is QE). Additionally, there may be a relationship that exists between 
neurons. This section will explain methods of measuring similarity and the relationships 
between neurons.  

 
5.1 PCA 
Principal components analysis (PCA) is a well-established statistical technique, used in a 
variety of fields on high-dimensional data. The primary goals of PCA are dimensionality 
reduction and explanation of covariance (or correlation) in variables. Effectively, PCA 
provides linearly separable groups, or clusters within high-dimensional data along a given 
dimension (variable). Additionally, the principal components computed by PCA can 
identify which variables to focus on, i.e. which variables account for the most variance. 
Variables are determined to be unnecessary when they do not explain much variance. For a 
detailed explanation on PCA and how to implement it, please see (Smith 2002, Martinez, & 
Martinez 2005). 
PCA can be used as a pre- (Kirt, Vainik & Võhandu, 2007; Sommer & Golz, 2001) and post- 
(Kumar, Rai & Kumar 2005; Lee & Singh, 2004) processor for SOM. Additionally, a SOM has 
been created to combine the capabilities of both PCA and SOM (López-Rubio, Muñoz-Pérez, 
Gómez-Ruiz, 2004). 
When analyzing a SOM for potential clusters, understanding the relationship among 
neurons usually presents great challenge. This analysis can become difficult when analyzing 
a converged map when there are very few (small network) or very many (large network) 
neurons. Additionally, it may be more useful to ignore certain variables prior to executing a 
SOM on a data set. This is where PCA becomes a very useful tool. 
It is important to note that PCA is a linearly separable unsupervised technique. Effectively, a 
vector is drawn from the origin to a point in space and it is determined that the groups to 
one side and the other are significantly distinct (based on a given variable or dimension). 
SOM on the other hand, is non-linear, and each neuron can be thought of as a centroid in the 
k-means clustering algorithm (MacQueen, 1967). Neurons become responsible for the input 
that they are closest to, which may be a spheroid, or even a non-uniform shape. 
In the case PCA is performed prior to executing a SOM on a data set, it will be determined 
which variables, or dimensions, are most important for a SOM, and now the neurons in a 
SOM will have less weights than the original data set. In case PCA is performed after a SOM 
has executed, the method will determine which variables in the weights of the SOMs are 
most important. This will help explain which neurons are more similar than others, by 
contrast to other methods like distance measures and coloring schemes. In summary, PCA 
helps eliminate attributes that are largely unnecessary.  
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for each neighbor of a neuron j, as k 
  P3(j,k) = P3(j,k) * (P1(j,k) * P2(j,k)) 
 end 
 P3(j,k) = power(P3(j,k), (1/2k)) 
 
P3 is normalized. The relationship of P1 and P2 is inverse, thereby giving way to these rules: 
 1: P3 > 1 means the map is too large, P1 > (1/P2) 
 2: P3 < 1 means the map is too small, P1 < (1/P2) 
The final step in topographic product is computing an average of the values already 
obtained, when using all neurons in a SOM: 
 P = 0; 
 for each neuron, as j 
  for each neighbor as k 
   P  = P + log(P3(j,k)) 
  end 
 end 
 P = P/(N*(N-1)) // where N is the number of neurons 
 
All values of P that deviate from 1, should be of concern. The same rules apply to P as do P3, 
concerning deviation from 1. The formulaic view of P3 is provided by Eqs. (16) and (17). 
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4.4 Other Measures 
We have presented three measures of SOM that evaluate fundamental aspects of SOM 
quality, namely, correct neuron to input positioning (QE), network organization quality 
(TE), and suitability of map size (TP).  
However, there are several measures beyond these that attempt to combine these 
fundamental aspects, or measure other characteristics of SOMs. Some of these measures 
include Trustworthiness and Neighborhood Preservation (Venna & Kaski, 2001), which aim 
to measure data projection relations, by comparing input data relations to output data 
relations; and Topographic Function (Villmann et al., 2007), a measure which accounts for 
network structure, and neuron placement. 

 
5. Pattern identification and clustering 
 

Over the years many methods of analyzing the patterns of the neurons of SOMs have been 
introduced. One of the simplest methods is the gray scale clustering presented by Kohonen 
in his book, on the poverty map data set (Kohonen, 1995). Kohonen’s example colors 
distances between nodes a shade of light gray, if the nodes are close, or dark gray, if the 
nodes are far. However, visual methods leave interpretation up to the reader. In this section 

we present two methods of analyzing and identifying patterns exhibited by the neuron 
configurations of SOMs. These are methods for post-convergence analysis. When a SOM 
converges, it is not always necessary to perform any post-processing techniques, especially 
in lower dimensionality. At the time of convergence, what we do know is that each neuron 
has found a suitable region of space, where it is representing a given amount of inputs. 
Exactly what inputs is not always clear unless another technique is used (one technique to 
map inputs to neurons is QE). Additionally, there may be a relationship that exists between 
neurons. This section will explain methods of measuring similarity and the relationships 
between neurons.  

 
5.1 PCA 
Principal components analysis (PCA) is a well-established statistical technique, used in a 
variety of fields on high-dimensional data. The primary goals of PCA are dimensionality 
reduction and explanation of covariance (or correlation) in variables. Effectively, PCA 
provides linearly separable groups, or clusters within high-dimensional data along a given 
dimension (variable). Additionally, the principal components computed by PCA can 
identify which variables to focus on, i.e. which variables account for the most variance. 
Variables are determined to be unnecessary when they do not explain much variance. For a 
detailed explanation on PCA and how to implement it, please see (Smith 2002, Martinez, & 
Martinez 2005). 
PCA can be used as a pre- (Kirt, Vainik & Võhandu, 2007; Sommer & Golz, 2001) and post- 
(Kumar, Rai & Kumar 2005; Lee & Singh, 2004) processor for SOM. Additionally, a SOM has 
been created to combine the capabilities of both PCA and SOM (López-Rubio, Muñoz-Pérez, 
Gómez-Ruiz, 2004). 
When analyzing a SOM for potential clusters, understanding the relationship among 
neurons usually presents great challenge. This analysis can become difficult when analyzing 
a converged map when there are very few (small network) or very many (large network) 
neurons. Additionally, it may be more useful to ignore certain variables prior to executing a 
SOM on a data set. This is where PCA becomes a very useful tool. 
It is important to note that PCA is a linearly separable unsupervised technique. Effectively, a 
vector is drawn from the origin to a point in space and it is determined that the groups to 
one side and the other are significantly distinct (based on a given variable or dimension). 
SOM on the other hand, is non-linear, and each neuron can be thought of as a centroid in the 
k-means clustering algorithm (MacQueen, 1967). Neurons become responsible for the input 
that they are closest to, which may be a spheroid, or even a non-uniform shape. 
In the case PCA is performed prior to executing a SOM on a data set, it will be determined 
which variables, or dimensions, are most important for a SOM, and now the neurons in a 
SOM will have less weights than the original data set. In case PCA is performed after a SOM 
has executed, the method will determine which variables in the weights of the SOMs are 
most important. This will help explain which neurons are more similar than others, by 
contrast to other methods like distance measures and coloring schemes. In summary, PCA 
helps eliminate attributes that are largely unnecessary.  
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5.2 ParaSOM modifications 
The ParaSOM architecture takes a unique approach to performing cluster identification.  It 
relies heavily on the features of the network and the behavior it exhibits because of those 
features (Valova, MacLean & Beaton, 2008b). 
When the network is well-adapted and near the end of execution, the cover regions of the 
neurons are generally small and covering their respective sections of the input space 
precisely.  Therefore, in dense regions the neurons should be plentiful and in very close 
proximity.  A key property of the network at convergence is that the distances between 
intra-cluster neurons will likely be much smaller than the distance between inter-cluster 
neurons.  This is the central concept of the cluster identification algorithm that ParaSOM 
takes advantage of. 
Once convergence takes place, the network will perform clustering in two phases.  The first 
phase utilizes statistical analysis to initially identify clusters.  The second phase employs 
single and complete linkage to combine any clusters that may have been separated, but are 
in close enough proximity to be considered a single cluster. 
In order to determine the minimal distance between neurons in different clusters we make 
use of the mean of the distances between neighboring neurons, x , as well as their standard 
deviation, σ.  The standard deviation is used to determine how far away from the mean is 
considered acceptable in order for a neighbor to be labeled in the same cluster as the neuron 
in question.  
The overwhelming majority of the connections between neighbors will be within clusters. 
Therefore, the number of standard deviations away from the mean connection distance that 
a certain majority of these connections is within will be a good indicator of an adequate 
distance threshold. 
To discover the initial clusters, the mean of the distances between neighbors is determined 
through iteration on all neurons.  Following that, the standard deviation of the distances 
between neighboring neurons is computed via Eq. (18). 
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where di is the distance between a pair of neighboring neurons. 
Further, determine how many neuron pairs lie within x m  standard deviations, for 
each  1m n  . Based on some threshold α, where 0.0<= α <=1.0, determine the minimum 
distance x m  that the percentage of neurons specified by α are within. This distance will 
become the initial cutoff threshold κ. Finally, iterate through the neurons one final time to 
determine where new clusters are formed.  When a neuron’s distance to a neighbor exceeds 
κ, add the neighbor to new cluster.  
The method used to determine κ is based on Chebyshev's theorem (Sternstein, 1994), which 
states that at least 2

11 p  of the values in a set of data lie between p standard deviations of 

the mean. This theorem is applicable to generalizations that are valid for any set of data. 
However, the behavior of the ParaSOM requires heuristic modifications to the theorem.  We 
modify the original theorem to obey the following principle:  
 

x p    (19) 
 
where p satisfies the minimum p   from x  that the percentage of neurons specified by α 
lie within. Since the ParaSOM provides a narrow normal distribution of distances between 
neighbors, the determination of κ for it to be fine-tuned provides effective adaptation to any 
input space distribution. 
There are situations where separating clusters based on distances between neighbors leads 
to undesired results. Ideally, the cutoff threshold   should be adequate to accurately 
determine cluster membership. However, a number of factors that influence the location of 
neurons can cause erroneous decisions by the method described above. There are cases 
where the distance between neighboring neurons is outside the cutoff threshold because of 
the insertion of neurons between them (Fig.18). 
 

 
Fig. 18. Neurons N1 and N2 are neighbors, but their distance exceeds the cutoff threshold 
because N3 is between them. 
 
The cluster identification algorithm takes this into account and will recombine clusters that 
are originally determined to be disjoint, but have sufficient similarity to merge.  This cluster 
recombination is facilitated by two techniques used in tandem: single and complete linkage. 
Single linkage is a technique that links together clusters based on the minimal distance 
between any one element in one cluster and any one element in a second cluster.  Single 
linkage recombination sometimes has a tendency to chain together clusters and produce 
potentially undesirable results.  Being aware of this tendency, ParaSOM‘s recombination 
algorithm uses a threshold value   to make sure the linkage distance between clusters does 
not exceed this value.  The   threshold determination also relies on the ParaSOMs 
tendency to create an abundance of tightly packed neurons in dense input regions.   
Looking again at Fig.18, let us assume that the distance separating N1 and N2 is greater than 
κ.  Therefore, according to the initial clustering, N1 and N2 are in different clusters.  Let us 
also assume that N2 and N3 are in the same cluster.  Because N1, N2, and N3 are all in such 
close proximity, it makes sense that they should be in the same cluster.  When single linkage 
occurs, the distance between cluster containing N1 and the cluster containing N2 (or N3) 
will be well within the   threshold, and these clusters will be combined. 
Since the ParaSOM covers space as effectively as possible, in a mature network adaptation 
of the input space the distance between neighboring clusters that should be combined will 
be very close to 2r, where r is the cover region radius.  As a result, any reasonable  value 
will recombine these two clusters.  For the ParaSOM,  is set to x  . 
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5.2 ParaSOM modifications 
The ParaSOM architecture takes a unique approach to performing cluster identification.  It 
relies heavily on the features of the network and the behavior it exhibits because of those 
features (Valova, MacLean & Beaton, 2008b). 
When the network is well-adapted and near the end of execution, the cover regions of the 
neurons are generally small and covering their respective sections of the input space 
precisely.  Therefore, in dense regions the neurons should be plentiful and in very close 
proximity.  A key property of the network at convergence is that the distances between 
intra-cluster neurons will likely be much smaller than the distance between inter-cluster 
neurons.  This is the central concept of the cluster identification algorithm that ParaSOM 
takes advantage of. 
Once convergence takes place, the network will perform clustering in two phases.  The first 
phase utilizes statistical analysis to initially identify clusters.  The second phase employs 
single and complete linkage to combine any clusters that may have been separated, but are 
in close enough proximity to be considered a single cluster. 
In order to determine the minimal distance between neurons in different clusters we make 
use of the mean of the distances between neighboring neurons, x , as well as their standard 
deviation, σ.  The standard deviation is used to determine how far away from the mean is 
considered acceptable in order for a neighbor to be labeled in the same cluster as the neuron 
in question.  
The overwhelming majority of the connections between neighbors will be within clusters. 
Therefore, the number of standard deviations away from the mean connection distance that 
a certain majority of these connections is within will be a good indicator of an adequate 
distance threshold. 
To discover the initial clusters, the mean of the distances between neighbors is determined 
through iteration on all neurons.  Following that, the standard deviation of the distances 
between neighboring neurons is computed via Eq. (18). 
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where di is the distance between a pair of neighboring neurons. 
Further, determine how many neuron pairs lie within x m  standard deviations, for 
each  1m n  . Based on some threshold α, where 0.0<= α <=1.0, determine the minimum 
distance x m  that the percentage of neurons specified by α are within. This distance will 
become the initial cutoff threshold κ. Finally, iterate through the neurons one final time to 
determine where new clusters are formed.  When a neuron’s distance to a neighbor exceeds 
κ, add the neighbor to new cluster.  
The method used to determine κ is based on Chebyshev's theorem (Sternstein, 1994), which 
states that at least 2

11 p  of the values in a set of data lie between p standard deviations of 

the mean. This theorem is applicable to generalizations that are valid for any set of data. 
However, the behavior of the ParaSOM requires heuristic modifications to the theorem.  We 
modify the original theorem to obey the following principle:  
 

x p    (19) 
 
where p satisfies the minimum p   from x  that the percentage of neurons specified by α 
lie within. Since the ParaSOM provides a narrow normal distribution of distances between 
neighbors, the determination of κ for it to be fine-tuned provides effective adaptation to any 
input space distribution. 
There are situations where separating clusters based on distances between neighbors leads 
to undesired results. Ideally, the cutoff threshold   should be adequate to accurately 
determine cluster membership. However, a number of factors that influence the location of 
neurons can cause erroneous decisions by the method described above. There are cases 
where the distance between neighboring neurons is outside the cutoff threshold because of 
the insertion of neurons between them (Fig.18). 
 

 
Fig. 18. Neurons N1 and N2 are neighbors, but their distance exceeds the cutoff threshold 
because N3 is between them. 
 
The cluster identification algorithm takes this into account and will recombine clusters that 
are originally determined to be disjoint, but have sufficient similarity to merge.  This cluster 
recombination is facilitated by two techniques used in tandem: single and complete linkage. 
Single linkage is a technique that links together clusters based on the minimal distance 
between any one element in one cluster and any one element in a second cluster.  Single 
linkage recombination sometimes has a tendency to chain together clusters and produce 
potentially undesirable results.  Being aware of this tendency, ParaSOM‘s recombination 
algorithm uses a threshold value   to make sure the linkage distance between clusters does 
not exceed this value.  The   threshold determination also relies on the ParaSOMs 
tendency to create an abundance of tightly packed neurons in dense input regions.   
Looking again at Fig.18, let us assume that the distance separating N1 and N2 is greater than 
κ.  Therefore, according to the initial clustering, N1 and N2 are in different clusters.  Let us 
also assume that N2 and N3 are in the same cluster.  Because N1, N2, and N3 are all in such 
close proximity, it makes sense that they should be in the same cluster.  When single linkage 
occurs, the distance between cluster containing N1 and the cluster containing N2 (or N3) 
will be well within the   threshold, and these clusters will be combined. 
Since the ParaSOM covers space as effectively as possible, in a mature network adaptation 
of the input space the distance between neighboring clusters that should be combined will 
be very close to 2r, where r is the cover region radius.  As a result, any reasonable  value 
will recombine these two clusters.  For the ParaSOM,  is set to x  . 
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The second aspect of the cluster recombination process is using complete linkage to rejoin 
stray clusters that were mishandled by the initial clustering and not accounted for by single 
linkage.  Complete linkage is utilized by taking the maximum distance, or dissimilarity, 
between elements of two clusters.  Complete linkage is employed to join small clusters and 
clusters containing only a single neuron.  These are cases where the clusters may have been 
too distant for single linkage to recombine them.  Generally, when complete linkage is used, 
there is a chance that the quality of clusters may degrade if the farthest neighbors that join 
two clusters together happen to be closer to other clusters than they are to their own.  
However, such an event will not be the case. Since complete linkage measures cluster 
distance based on the furthest neighbors, the threshold that determines if clusters are 
recombined is more lenient than .  For complete linkage, we use a threshold of , which 
was introduced previously.  
Following the methodology description, we provide two examples of the pattern 
identification capabilities of ParaSOM. Figs.19 and 20 take the network through its progress 
in adjusting to the input topology and proceeding to evaluate the number of distinct regions 
the input space features. The pattern in Fig.19 is clearly requiring one class, however due to 
the two very distant shoulders, presents problems for most unsupervised clustering 
methods. Not so for ParaSOM, which recognizes and configures the final result into one 
cluster. The pattern in Fig.20 presents the difficulty of the two clusters being very close 
together. Within 600 iterations and the above described algorithm, ParaSOM clearly 
identifies the correct number of clusters. 
 

 
Fig. 19. Identification of patterns with ParaSOM: a) network at 100 iterations; b) network 
state at 400 iterations; c) 600 iterations; d) inspite of the input distribution, the single object is 
identified 
 

 
Fig. 20. Identification of patterns with ParaSOM: a) network at 100 iterations; b) network 
state at 300 iterations; c) 600 iterations; d) the two distinct regions are recognized  

 
6. Conclusions 
 

In summary, we present a number of SOM algorithms, with a primary focus on growing 
architectures. The goal of this chapter is to introduce, in chronological order, the 

development of growing SOM-based techniques, featuring various variants based on 
Kohonen and Fritzke algorithms. The authors present their two major contributions - 
ParaSOM and TurSOM along with the ESOINN network which features incremental 
learning and cluster identification. We also present methods for SOM analysis which we 
have used in our research to facilitate the comparison between the methods we develop and 
the state-of-the-art algorithms presented by other researchers.  
As a point of future work, we are continuing the development of both ParaSOM and 
TurSOM for various applications and further improve the algorithms in terms of complexity 
of performance and implementation. 
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1. Introduction

One of the most used techniques among many others in the data mining field is the clus-
tering. The aim of this technique is to synthetize and summarize huge amounts of data by
splitting it into small and homogenous clusters such that the data (observations) inside the
same cluster are more similar to each other than to the observations inside the other clus-
ters. This definition assumes that there exists a well defined clustering quality measure that
quantifies how much homogeneous are the obtained clusters. The aim of this chapter is to
expose an original approach to merge different partitions, related to the same data set, which
are obtained either by applying different clustering techniques either by the same cluster-
ing technique with different parameters. Fusing partitions has been broadly studied and has
been given several names, depending on different scientific fields, like machine learning or
bioinformatics (Dudoit & Fridlyand, 2003; Kim & Lee, 2007; Monti et al., 2003). Among these
names we can quote: consensus clustering, clustering aggregation, clustering combination,
fusion of clustering, ...etc. Several studies (Frossyniotis et al., 2002; Minaei-Bidgoli et al., 2004;
Strehl & Ghosh, 2002; Topchy et al., 2004; 2005) have pioneered clustering data sets as a new
branch of the conventional clustering methodology. In (Topchy et al., 2004) the authors pro-
pose a probabilistic formalism of clustering concensus using a finite mixture of multinomial
distributions in a space of clustering. The approach proposed in (Frossyniotis et al., 2002)
is designed for combining runs of clustering algorithms with the same number of clusters.
In (Strehl & Ghosh, 2002) the authors proposed combiners based on a hyper-graph model to
solve the cluster fusion problem. The authors discuss two manners of consensus clustering:
(1) Feature Distributed Clustering (FDC): a set of clustering are obtained from partial view of
variables using all observations (2) Object-Distributed Clustering (ODC): with this technique
the ensemble clustering has limited to subset of observation with access to all variables. The
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authors provide three techniques (CSPA1, HGPA2, MCLA3), but indicate that HGPA delivers
poor scores for the both data sets used in this chapter. Our work is in FDC category. In (Az-
imi et al., 2007) authors propose a modification of k-means for clustering a multiple runs of
k-means. It’s named intelligent k-means, which is especially defined for clustering ensembles.
All these models assume that the correct number of clusters is given as parameter of model.
In (Gionis et al., 2007) the authors give a formulation of ensemble clustering titled clustering
aggregation, which does not require a number of clusters. The authors give a nice review of
algorithm dedicated to ensemble clustering.
In this chapter, we offer a representation of consensus clustering as a set of new variables
characterizing the observations. This leads to a formulation of the fusion problem as categor-
ical clustering problem. We propose to use Relational Analysis (RA) as consensus method for
unsupervised learning.The concensus clustering is provided as solution of the minimization
of the objective function for a given consensus clustering. The main idea, shared with other
algorithm is : If many clustering algorithms assign two observations in the same cluster, it
will not benefit to consensus clustering to split these observations.
There are several advantages of RA consensus function: first we have low computational
complexity, and second ability to deal with huge data set. Another purpose of our algorithm
is not to neglect the weak clustering result. Often in the ensemble/aggreation/fusion
clustering we combine only the best results. Given observations and m clustering result
proposed with categorical variables, the purpose is to produce a single clustering that agree
as much as possible with all results of clustering algorithms. The algorithm we propose for
the problem of consensus clustering takes advantage of statistical formulation, (Benhadda &
Marcotorchino, 2007).

Relational Analysis as clustering fusion can be applied in various settings. Multiple runs of
clustering algorithm, like self-organizing map, generate a new variable space, which is signif-
icantly better than pure or normalized variable space. Therefore, running a simple clustering
algorithm on generated variable space can provide the consensus cluster significantly better
than pure observations. In this chapter we present another features of our framework:

• Clustering categorical variable: Consensus clustering provides a natural method for clus-
tering categorical data.

• Determining the correct number of clusters: The formulation we propose don’t require as
parameter the number of clusters. The only parameter needed by RA is the similarity
threshold.

• Clustering mixed data : the clustering fusion method can be particularly effective in the
cases where data are defined over heterogeneous variables that contain incomparable
values. We consider in this chapter a particular case, that we deal with continuous and
categorical variables. In such cases the data set can be divided vertically into sets of
homogeneous variables. Thus we apply an appropriate clustering algorithm and then
combine the individual clustering into single clustering using categorical data cluster-
ing method.

1 Cluster-based Similarity Partitioning Algorithm
2 HyperGraph Partitioning Algorithm
3 Meta-Clustering Algorithm

The rest of the chapter is structured as follows: In section 2 we describe in detail the proposed
model for consensus clustering. In section 3 we present a special case of global fusion based
on self-organizing map. In section 4 we present experiments on public data set.

2. Relational analysis framework

Relational analysis theory is a mathematical data analysis approach with a broad application
field. It was initiated and developed by (Marcotorchino & Michaud, 1978) at the IBM’s Euro-
pean Center of Applied Mathematics (ECAM) by the end of the seventies. This technique uses
the concept of "pairwise comparisons" which has been introduced in the statistical literature
by the end of the thirties, through the work of (Kendall & Smith, 1940). Nevertheless the
concept which has inspired the previous authors, dates of 1785 based upon some works of
the "marquis de Condorcet" (Condorcet, 1785), related to "voting theory". In a general way,
Relational Analysis makes it possible to model and solve problems whose general formulation
can be stated as : Seeking a particular relation R which fits "as well as possible" single (or several)
given relations

(
R1,R2, . . . Rm)

.

Unlike the existing clustering techniques, RA methodology does not need necessarily, neither
to do sampling to be able to get results in a raisonable computing time, nor to fix arbitrarily
the number of clusters that could be hidden in the data.
The principle of "pairwise comparisons" consists in transforming, each variable V measured
on N objects into a N × N squared matrix C representing the similarity, with regards to vari-
able V, between the N2 couples of objects. An illustration of the "pairwise comparison princi-
ple" can be found in (Benhadda et al., 2007).

2.1 Relational analysis clustering methodology
To cluster a data set P composed of n observations (O1, O2, ..., On) described by m variables
(V1, V2, ..., Vm), we firstly start by transforming each column Vk into a relational matrix Ck

with general term ck
ii′ defined by:

ck
ii′ =

{
1 if Oi and Oi′ have the same modality of variable Vk

0 otherwise
(1)

This term representing the similarity between the observations Oi and Oi′ , with respect to
variable Vk. Once all the m matrices Ck had been built up, we construct a global relational
matrix C called "Condorcet’s matrix" of general term cii′ representing the global similarity of

Oi and Oi′ with respect to the whole set of the m variables: cii′ =
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∑
k=1

ck
ii′ . This global similarity

has the so called "self maximal similarity property defined by: cii′ ≤ Mii′ ∀Oi, Oi′ , where
Mii′ = Min(cii, ci′ i′ ) is the "maximum possible similarity" between the two observations Oi
and Oi′ .

Using the global similarity cii′ and the "maximum possible similarity" Mii′ between Oi and
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cii′ = Mii′ − cii′ (2)
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Two observations will be, a priori, in the same cluster of the final expected partition as soon
as their similarity will be greater than their dissimilarity i.e.: cii′ ≥ cii′ . The required final par-
tition will be represented by a N × N binary squared matrix X with general term xii′ defined
as follows:

xii′ =




1 if Oi and Oi′ are in the same cluster
of the final partition

0 otherwise
(3)

This partition will be obtained by maximizing the Condorcet’s criterion C(X) defined here-
after:

C(X) =
n

∑
i=1

n

∑
i′=1

(cii′ xii′ + cii′ xii′ )

where:

xii′ = 1 − xii′ (4)

Using the expressions (2) and (4), the criterion C(X) can be rewritten as:

C(X) =
n

∑
i=1

n

∑
i′=1

(2cii′ −Mii′ )xii′ +
n

∑
i=1

n

∑
i′=1

cii′ (5)

As the second member of the sum of expression (5) is a constant, we deduce that maximizing
the Condorcet’s criterion is equivalent to maximizing the following criterion C′(X)

C′(X) =
n

∑
i=1

n

∑
i′=1

(
cii′ −

Mii′

2

)
xii′

The cost function of the criterion C′(X) will be positive when the similarity cii′ between two
observations Oi and Oi′ is greater or equal to half of their "possible maximal similarity". This
condition is sometimes very difficult to reach, especially when the number of variables (or
descriptors) is very high compared to the number of observations i.e. m >> n, this is usually
the case when the data set to be clustered is a set of documents. In that case, the number of
clusters of the final partition will be so high that it could deprive the clustering task of its
interest for practical purpose. As the goal of the clustering task is to summarize the amount
of data into simpler structures, to avoid this problem, a solution consists in relaxing the cost
function related to the clustering criterion. To reach that goal it is sufficient to replace the
coefficient 1/2 of Mii′ by a parameter α such that 0 < α < 1/2. The new formulation of the
criterion C′(X) will be then:

C′(X) =
n

∑
i=1

n

∑
i′=1

(cii′ − α ×Mii′ ) xii′

Thus, the mathematical formulation of the relational analysis clustering problem is:

max
X

C′(X)

under the constraints:



xii′ ∈ {0, 1} ∀ (Oi , Oi′ ) ∈ P2 (binarity)
xii = 1 ∀ Oi ∈ P (reflexivity)

xii′ − xi′ i = 0 ∀ (Oi , Oi′ ) ∈ P2 (symmetry)
xii′ + xi′ i” − xii” ≤ 1 ∀ (Oi , Oi′ , Oi”) ∈ P3 (transitivity)

2.2 The RA heuristic
The exact solution of the problem above can be obtained by linear programming techniques
when the studied population is relatively small (few hundreds). But, in practice, the data set
size can often exceed hundreds of thousands or millions of observations. This situation leads
to use heuristics, to get the "best" and closest partition to the exact one, in reasonable time
processing. We give below the description of the heuristic which was used by the relational
analysis methodology in the eighties.

Phase 1
This step consists in intializing the clustering process by building a first partition. To build up
this first partition we construct progressively its clusters according the operations described
bellow:

1. Initialization: we take randomly a first observation which constitutes the first cluster of
the unknown partition

2. We take an observation Oi ∈ P , and compute its link LiV (expression 6) with all the
existing clusters V .

LiV = ∑
i′∈V

Lii′ (6)

where the link Lii′ between Oi and Oi′ :

Lii′ = cii′ − α ×Mii′ (7)

This observation is assigned to the cluster which has the biggest strictly positive link
with. If all the links are negative, then we create a new cluster to put in this new obser-
vation.

3. Repeat this process until all observations of population P had been assigned to a clus-
ter.

Phase 2
At the end of the first step, we obtain a partition with a number of clusters4.

1. Merging two clusters: We take, now, the clusters one after another and we compute the
link LVV′ (expression 8) of each cluster V with all the others V′.

LVV′ = AVV′ − α ×MVV′ (8)

where the agreement AVV′ between the two clusters:

AVV′ = ∑
i∈V

∑
i′∈V′

cii′ .

The disagreement AVV′ between the two clusters is:

AVV′ = ∑
i∈V

∑
i′∈V′

cii′ ,

and the possible maximal agreement MVV′ between the two clusters:

MVV′ = ∑
i∈V

∑
i′∈V′

Mii′ .

4 This number is not fixed a priori, but will be discovered automatically during the first process
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C′(X) =
n

∑
i=1

n

∑
i′=1

(cii′ − α ×Mii′ ) xii′

Thus, the mathematical formulation of the relational analysis clustering problem is:
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size can often exceed hundreds of thousands or millions of observations. This situation leads
to use heuristics, to get the "best" and closest partition to the exact one, in reasonable time
processing. We give below the description of the heuristic which was used by the relational
analysis methodology in the eighties.
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This step consists in intializing the clustering process by building a first partition. To build up
this first partition we construct progressively its clusters according the operations described
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1. Initialization: we take randomly a first observation which constitutes the first cluster of
the unknown partition

2. We take an observation Oi ∈ P , and compute its link LiV (expression 6) with all the
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where the link Lii′ between Oi and Oi′ :
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This observation is assigned to the cluster which has the biggest strictly positive link
with. If all the links are negative, then we create a new cluster to put in this new obser-
vation.

3. Repeat this process until all observations of population P had been assigned to a clus-
ter.

Phase 2
At the end of the first step, we obtain a partition with a number of clusters4.

1. Merging two clusters: We take, now, the clusters one after another and we compute the
link LVV′ (expression 8) of each cluster V with all the others V′.
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We will, then, merge the clusters, which have the best link (higher strict positive value).
This must be carried out as long as there is a possibility to improve the criterion C′(X).

2. Transferring an observation from a cluster to another one. When no cluster’s
merging is possible, we take the observations of each cluster and compute the link LiV
(expression 6) of each observation Oi with the other clusters V . If an observation has a
better link with another cluster than its own, then this observation is transferred from
its own cluster to this new cluster. This will be carried out, as long as improvement of
the criterion C′(X) occurs.

When, no observation’s transfer is possible, we turn back to the merging step to see whether
it is possible to improve the Condorcet’s criterion by merging other clusters. These four steps
will be applied, until no more improvements of the criterion occurred.

2.2.1 Illustrative example
Let us suppose that the studied population P is composed of seven observations
(O1, O2, . . . , O7) which have three qualitative variables

(
V1, V2, V3) were measured. The data

set is presented in table 1.

V1 V2 V3

O1 1 1 1
O2 1 1 1
O3 1 2 2
O4 2 2 2
O5 2 2 2
O6 3 2 3
O7 3 3 3

Table 1. Data set

After transformation of the three qualitative variables into their relational matrix represen-
tations, and after summing up those matrices, we obtain the Condorcet’s global matrix C
represented in table 2

O1 O2 O3 O4 O5 O6 O7
O1 3 3 1 0 0 0 0
O2 3 3 1 0 0 0 0
O3 1 1 3 2 2 1 0
O4 0 0 2 3 3 1 0
O5 0 0 2 3 3 1 0
O6 0 0 1 1 1 3 2
O7 0 0 0 0 0 2 3

Table 2. Condorcet’s global matrix C.

As the number of variables measured on this population is equal to three, it represents also
the "maximum possible similarity" that can occur between two observations Oi and Oi′ . We

can then deduce, that the global dissimilarity between those observations is cii′ = 3 − cii′ .
The binary squared matrix X, representing the obtained final partition of population P has
the following general term:

xii′ =
{

1 if cii′ ≥ cii′

0 otherwise (9)

Due to the transitivity constraints, the solution is not so trivial5 because of the so called "Con-
dorcet’s effect" cf. (Marcotorchino & Michaud, 1978; 1982), but the proposed heuristic is able
to take into account some of those constraints limitations and avoid getting untransitive so-
lutions. Applying the heuristic to the example (see Table 3), one gets the following optimal
solution:

• Cluster 1: O1, O2

• Cluster 2: O3, O4, O5

• Cluster 3: O6, O7

The relational representation X of this partition is then:

O1 O2 O3 O4 O5 O6 O7
O1 1 1 0 0 0 0 0
O2 1 1 0 0 0 0 0
O3 0 0 1 1 1 0 0
O4 0 0 1 1 1 0 0
O5 0 0 1 1 1 0 0
O6 0 0 0 0 0 1 1
O7 0 0 0 0 0 1 1

Table 3. Binary matrix representation X of the final partition .

The corresponding Condorcet’s criterion value is: C(X) = 131.

3. Special case of clustering mixed data: Global Fusion

A specific SOM (Self-Organizing Map) model has been developed for mixed data using
the similar cost function as the model presented in Kohonen (2001); Lebbah et al. (2005).
The model dedicated to binary and continuous data is called MTM (Mixed Topological
Map). As with a traditional self-organizing map, we assume that the lattice C (map) has
a discrete topology defined by an indirect graph. Usually, this graph is a regular grid
in one or two dimensions. For each pair of cells (c,r) on the map, the distance δ(c, r) is
defined as the length of the shortest chain linking cells r and c. Let P = {Oi, i = 1..n}
the learning data set where each observation Oi = (O1

i , O2
i , ..., Ok

i , ..., Om
i ) is made of

two parts: continuous part Or[.]
i = (Or[1]

i , Or[2]
i , ..., Or[dr ]

i ) (Or[.]
i ∈ Rdr ) and binary part

Ob[.]
i = (Ob[1]

i , Ob[2]
i , ..., Ob[k]

i , ..., xb[db ]
i ) where the kth component Ob[k]

i is binary variable

(Ob[k]
i ∈ β = {0, 1}) such as each observation Oi is thus, a realization of a random variable

which belongs to Rdr × βdb . With these notations a particular observation Oi = (Or[.]
i , Ob[.]

i ) is

5 Just applying the rule (9) could yield to untransitive solution.
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• Cluster 1: O1, O2
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Map). As with a traditional self-organizing map, we assume that the lattice C (map) has
a discrete topology defined by an indirect graph. Usually, this graph is a regular grid
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a mixed of subvectors (continuous and binary variables) of dimension m = dr + db.

Since for binary vectors the Euclidean distance is no more than the Hamming distance H, then
the Euclidean distance can be rewritten by:

||O − wc||2 = ||Or[.] − wr[.]
c ||2 + H(Ob[.], wb[.]

c )

where H(Ob[.], wb[.]
c ) the complement of global similarity between a binary part of an

observation O and referent wb[.]
c ).

Using this expression, the cost function of the traditional SOM algorithm, which is dedicated
to mixed data can be expressed as:

G(φ,W) = ∑
Oi∈P

∑
r∈C

K(δ(r, φ(Oi)))||O
r[.]
i − wr[.]

r ||2

+ ∑
Oi∈P

∑
r∈C

K(δ(r, φ(Oi)))H(Ob[.]
i , wb[.]

r )

(10)

Where φ assigns each observation Oi to a single cell in C. K is a particular kernel function
which is positive and symmetric ( lim

|y|→∞
K(y) = 0).

The first term is the classical cost function used by the Kohonen Batch algorithm Kohonen
(2001), and the second term is the cost function used in BinBatch model Lebbah et al. (2000).
The cost function (10), is minimized using an iterative process with two steps.

1. Assignment step, which leads to the use of the following assignment function:

∀O, φ(O) = arg min
c

(
||Or[.] − wr[.]

c ||2 + H(Ob[.], wb[.]
c )

)

2. Optimization step: It is easy to see that this two minimizations of both terms allow to
define:

• The continuous part wr[.]
c of the referent vector wc as the mean vector as:

wr[.]
c =

∑
Oi∈P

K(δ(c, φ(Oi)))Or[.]
i

∑
Oi∈P

K(δ(c, φ(Oi)))
,

• The binary part wb[.]
c of the referent vector wc as the median center of the binary

part of the observations Ob[.]
i ∈ P weihted by K(δ(c, φ(Oi))). Each component

wb[.]
c = (wb[1]

c , ..., wb[k]
c , ..., wb[db ]

c ) is then computed as follows:

wb[k]
c =




0 if
[
∑Oi∈P K(δ(c, φ(Oi)))(1 − Ob[k]

i )
]
≥[

∑Oi∈P K(δ(c, φ(Oi)))Ob[k]
i

]

1 otherwise

,

4. Experimental evaluation

In the following, the RA is used as the clustering consensus/fusion based algorithm for
categorical and mixed data. First, the original data set is divided into two sub-data sets: pure
categorical data set and pure continuous data set. Next, existing well established clustering
algorithms designed for different data types are employed to provide corresponding clusters.
We can run many algorithms or the same with different parameter using the same data.
Finally the clustering results are combined as categorical data set to provide a consensus
single clustering.

As quality evaluation criterion we use purity index. However, when class labels are available
for each observation, we can use purity measure to indicate the match between cluster labels
and class labels. The purity assess clustering quality from 0 (worst) to 1 (best).

5. Relational analysis for clustering categorical dataset

We used our RA clustering technique to cluster textual database "20 Newsgroups", which
is a reference, for benchmarks for the data analysis scientific and technical community.
This database is composed of 19997 documents, stemming from 20 different forums and
described by 145980 descriptors (or variables). A major characteristic of this database is its
heterogeneity both in terms of size of the documents and in terms of their themes and styles
citelemoine.

At the end of the clustering process, we obtain 330 clusters. These clusters were sorted out
in decreasing of magnitude (their size) order. As an example, we give here the list of the
7 first bigest clusters. Each cluster is described by the words or expressions (descriptors)
participating the most into its constitution

Cluster Descriptors Cardinal
1 game, team, player, hockey, season, 1325

playoff, fan, baseball, league, coach
2 file, directory, program, window, FTP, 1144

archive, DOS, disk, server
3 Government, right, law, constitution, weapon, 1095

citizen, president, gun, policy
4 Car, engine, mile, tire, mileage, 755

brake, dealer, wheel, auto, clutch
5 Clipper, encryption, key, chip, escrow, 673

crypto, wire tap, algorithm, privacy, government
6 Drive, SCSI, IDE, disk, controller, 628

ram, floppy, CD-ROM, jumper, software
7 Card, video, driver, ISA, monitor, 579

bus, VGA, VLB, SVGA, graphics

Table 4. The first seven clusters of the final partition.
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Interpretation attempt
We can observe, in view of the descriptors characterizing the clusters that:

• the cluster 1 is compound of documents which generally deal, with "sport",

• the cluster 2 is compound of documents which are mainly related to "software" in gen-
eral,

• the cluster 3 is built up with documents which are concerned with "politics"("policy"),

• the cluster 4 gathers documents which deal, in general, with "motorcar",

• the cluster 5 is made up of documents dedicated to "encoding and data protection",

• the cluster 6 is compound of documents which deal, generally, with "computer hard-
ware" and more particularly with the choice between IDE or SCSI, and finally,

• the cluster 7 gathers documents which are also concerned with "computer hardware"
and more particularly with video material.

5.1 Artificial data sets for fusion
We illustrate the cluster consensus applications on two artificial data sets downloaded
from http://strehl.com/ and used by (Strehl & Ghosh, 2002). The first data set (2D2K) was
artificially generated and contains 500 observations each of two 2-dimensional (2D) Gaussian
clusters. The second data set (8D5K) contains 1000 observations from multivariate Gaussian
distributions (200 observations each) in 8D space.

For this experiment we take several clustering results provided by Strehl in his website
http://strehl.com/. The authors provide two simulations of clustering ensemble: (FDC, Exp1)
Feature-distributed Clustering (ODC, Exp2): Object-distributed Clustering. Table 5 indicates
different results provided by Strehl and Ghosh adding the result obtained with our consen-
sus clustering technique RA in both experimentations. Our purpose through this comparison,
is not to assert that our method is the best, but to show that RA method can obtain quite the
same good results as the two previews ones, without making any arbitrary assumptions about
the number of clusters to be found. Indeed, as shown in the table bellow, we can see that RA
method give similar results and quite comparable to the ones obtained by both proposed tech-
niques (FDC, ODC). The main difference between these three methods is that, unlike the two
other methods, RA doses not require a priori knowledge of the number of clusters.

8D5K RA
FDC (Exp1) 0.9970 0.9930
ODC (Exp2) 0.9480 0.9330

2D2K RA
FDC (Exp1) 0.9440 0.9440
ODC(Exp2) 0.9680 0.9700

Table 5. Comparison of consensus clustering. FDC: Feature-Distributed Clustering; ODC:
Object-Distributed Clustering; RA: Relational Analysis; Exp: Experimentation

5.2 Real data sets and fusion
We will use three data sets coming from UCI repository (Asuncion & Newman, 2007). These
data are mixed, in the sense that they contain both numerical and categorical data. These data
are decribed bellow.

Heart disease data set: this data set, which is D. Detrano’s heart disease data set, was
generated by the Clevlande Clinic. It consists in 303 observations, described by 6 numerical
and 8 categorical variables. The observations are also classified into two classes: healthy class
(buff) and with heart-disease class (sick).

Credit data set : The data set has 690 instances, each being described by 6 continuous and 9
categorical variables. The observations were classified into two classes, approved class and
rejected class.

Handwritten data: this data set consists of the handwritten numerals ("0"−"9") extracted
from a collection of Dutch utility maps. There are 200 samples of each digit such that there is a
total of 2000 samples. Each sample is a 15× 16 binary pixel image. The data set is represented
as a 2000 × 240 binary data matrix. Each categorical variable is a pixel with two possible
values "On=1" and "Off=0".

In the first experiment we simulate such clustering result by running several clustering algo-
rithms, each one having access to only a restricted categorical or continuous variables. Thus,
each clusters has a partial view of the observations. The clusters are found using subspaces
and adapted clustering technique. In the consensus clustering, cluster labels are clustered us-
ing RA technique. In order to compare our result, we cluster the data using a dedicated Self-
organizing map for mixed categorical and continuous data. This technique is titled Mixed
Topological Map (MTM), and provide a small cluster organized as map (see section 3). Of-
ten we use hierarchical clustering to reduce the number of the clusters (Vesanto & Alhoniemi,
2000). The combining method is indicated by MTM+HC and the number of clusters between
bracket.

The figures 1 and 2 show the comparative results in term of number of clusters and the
purity index. As can be seen, the both figures indicate that RA provides the high scores when
compared for the same number of clusters. Note in this case for the both data set we have, a
priori, two classes, and the RA (2) provides high purity for this case. We note also that RA
don’t require two steps of clustering, comparing to the MTM and other clustering ensemble
algorithms found in the literature which needs an agglomerative clustering technique to
reduce the number of clusters. The only parameter needed by RA is the similarity threshold.

In this second experiment we use Handwritten data set. The purpose is to use RA as
consensus clustering of several runs of the same clustering algorithm. In this case we simu-
late 16 cluster results obtained with Self-organizing map dedicated to categorical data and
hierarchical clustering, using different parameters (Lebbah et al., 2005; Vesanto & Alhoniemi,
2000). We use 5 cluster results with purity score lower than 0.4, and four results lower than
0.72, and the rest results are between 0.74 and 0.76. Thus the RA consensus clustering provide
a stable purity with 0.76.
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Fig. 1. Credit data set. Purity scores for consensus clustering. RA : Relational Analysis; MTM:
Mixed Topological Map. HC: Hierarchical Clustering. The number between brackets indicates
the number of clusters provided automatically

Fig. 2. Heart disease data set. Purity scores for consensus clustering. RA : Relational Analysis;
MTM: Mixed Topological Map. HC: Hierarchical Clustering.The number between brackets
indicates the number of clusters provided automatically

The figure 3 shows the distribution of each class of digit in all 15 consensus clusters. The
figure 4 shows the best map obtained among the 16 maps used for consensus clustering. We
visualize this figure in order to interpret the results of consensus. We note that RA grouped
in a cluster numbered 12, 13, 15, the mix of digit 7, 9 and digit 5. It is clear to see on the map
(Fig.4) that some figures such as "9" are written in the same way as "5" and "7". The same
analysis could be done with the other clusters.

Fig. 3. Consensus clustering with RA. Each bar shows the distribution of each cluster.

6. Conclusions

In this chapter, we formally defined the problem of clustering and we presented an origi-
nal and new approach of fusion/ensemble/consensus/aggregation clustering. The main idea
was to find a clustering (or partition) of observations that represents the best consensus be-
tween several other clustering related to the same data set. The goal of the proposed algorithm
is the improvement of confidence in cluster assignments by evaluating a history of cluster as-
signments for each observation. If we compare our algorithm (or method) to some recent
clustering algorithm, we can assert that, unlike these new algorithms, our method is scalable,
linear, in memory use and computational time and can handle data represented as observa-
tions cross attributes or as similarity matrix. Our clustering method handles missing values
without replacing them by values that could be very far away from the true ones. It also
contains a preprocessing module that, among other processings, can compute how discrimi-
nant are the attributes measured on the observations to be clustered. Finally we verified the
intuitive appeal of the proposed approach and we studied the behavior of our algorithm on
real and synthetic heterogeneous data sets. We observed that the proposed method increases
performance as more as iterations of the process are performed. Another advantage of our
method is that, neither do we need to re-process the data; nor do we need to fix the same
cluster numbers for each application or clustering algorithm. In the future, we would like to
perform a more detailed analysis involving huger data set and investigating the collaborative
clustering.
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Fig. 4. 16 × 16 map using MTM with only categorical data
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1. Introduction 
 

Recognition reliability is a vital and sensitive issue in the pattern recognition applications. 
Recognition with a proper rejection option provides a means to reduce the error rate and to 
increase recognition reliability (Chow, 1970). It deals with how research projects can be 
developed into real applications. Relatively few research papers on this topic have been 
reported in  literature (Frelicot & Mascarilla, 2002). In order to clearly explain the 
recognition reliability problem, the Recognition Rate (RR), Mis-Recognition Rate (MR), 
Rejection Rate (RJ), and Reliability (Re) are defined and their relationships are analyzed as 
follows: 
 
The Recognition Rate (RR) is defined as: 

                                                 objectstestingofnumberTotal
objectsrecognizedcorrectlyofNumberRR                                       (1)       

The Misrecognition Rate (MR) is presented as: 

                                                         objectstestingofnumberTotal
objectszedmisrecogniofNumberMR                                          (2) 

The Rejection Rate (RJ) is written as: 
 

                                                     objectstestingofnumberTotal
bjectsorejectedofNumberRJ                                                 (3) 

 

4
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The Reliability (RE) can be denoted as: 

                                 objectstestingofnumberTotal
objectszedmisrecogniofNumberobjectstestingofnumberTotalRE                   (4)                           

The reliability can also be deduced as: 

                                                  RRRJMRRE  1                                                (5) 

Technically speaking, there is a tradeoff for a recognition system to pursue a very high 
recognition rate and a very low misrecognition rate at the same time given a specific set of 
feature set and a classifier or a combination of classifiers (Chow, 1970). It is common sense 
that setting a relatively low threshold for a recognition system can achieve a high 
recognition rate; however, it also introduces more misrecognitions.  
In many pattern recognition systems, the goal is to seek the highest reliability and the 
highest recognition rate as possible at the same time. In other words, the misrecognition rate 
must be suppressed. When designing a sensitive  object recognition system, it is preferred 
rejecting objects with low confidences over mistakenly recognizing the objects 
(Zimmermann, Bertolami & Bunke, 2002). For example, in an automatic bank check 
processing system, a very high recognition reliability is a vital criterion. The misrecognition 
is absolutely forbidden and a small percentage of rejection is allowed. The rejected checks 
can be sent for manually handling.   
An automatic bank check processing system can be divided into the following aspects: 1) 
magnetic ink character recognition (MICR); 2) handwritten legal amount recognition 
(English character recognition, or other language character recognition); 3) handwritten 
courtesy amount recognition (handwritten digital recognition); 4) payer’s signature 
verification or recognition; 5) the recognition of name and address of a payer, etc. 
Among the above mentioned recognitions, MICR plays an important role in the automatic 
bank check processing system based on the following reasons: 
a) Information in the MICR area includes the account number of a payer and bank 
identification number; both of which need to be firstly recognized in order to verify the 
payer’s identification and the payer’s bank number while transition is processed; 
b) Individual character recognition rate in the MICR area is very high (over 99%), it is 
possible to use an automatic process. 
However, some errors have been reported in the bank applications due to the following 
reasons: the mechanical deficiency of MICR scanners; the distortion of the printed characters 
in the MICR area, and others. 
In this paper, we will propose a novel classifier fusion system with a verification module to 
improve system’s reliability. The arrangement of the paper is as follows: In Section 2, the 
concept of MICR is briefly introduced, which includes one dimensional MICR waveform 
process and two dimensional image process. The flowchart of the new classifier fusion 
system with a verification module is proposed in the section 3;  In Section 4, the basic 
concepts of classifiers: Artificial Neural Networks (ANNs), modified K-Nearest Neighbor 
(KNN) classifier and Support Vector Machines (SVMs) are reviewed. A gating network for 
congregating the outputs of ANN and KNN is applied to the classifier fusion system.  Three 

experiments conducted on the MICR character recognition are reported, and the recognition 
reliability is analyzed in the section 5. Finally, the conclusion ends this paper.  

 
2. MICR Information Processing  
 

Fig. 1 shows a blank bank check image. The MICR area is located at the bottom of the check. 
In North America, E13B font has been officially used as the printed fonts in the MICR area 
for almost commercial banks. E13B symbols include ten numerals and four symbols: On-Us 
symbol, Transit symbol, Amount symbol, and Dash symbol.  
 

                                      
Fig. 1. MICR area at the bottom of check 
 
MICR characters are printed with a magnetic ink or toner.  A specially designed MICR 
scanner can read not only the E13B character waveforms (one dimensional signals), but also 
the characters’ images with different resolutions (two dimensional images). The standard 
font images and their waveforms of the fourteen characters are shown in Fig. 2.
       

Fig. 2. E13B MICR fonts and their waveforms  

 
2.1 One Dimensional MICR Waveform 
One dimensional MICR waveform processing and recognition has been extensively 
researched for a long time. The very high recognition rate was reported under an ideal 
condition. However, there are still some recognition errors and rejections reported in the 
commercial applications due to unstable paper feeding mechanism of scanners, the 
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One dimensional MICR waveform processing and recognition has been extensively 
researched for a long time. The very high recognition rate was reported under an ideal 
condition. However, there are still some recognition errors and rejections reported in the 
commercial applications due to unstable paper feeding mechanism of scanners, the 
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distoration of printed MICR characters on the checks and other factors, which lead to 
waveform distortions and noise on MICR images. Fig. 3 shows two MICR waveforms 
scanned from two personal  bank checks: one has two sub-MICR areas; another has four 
sub-MICR areas. 
A waveform segmentation algorithm can segment each sub-MICR waveform into individual 
waveforms, each representing one character. The detail algorithm for waveform 
segmentation is beyond the scope of this paper.  
                                  

                  
                             (a)  Two sub-MICR areas                            (b) Four sub-MICR areas       
Fig. 3. MICR waveform   

 
2.2 Image-based Character Segmentation 
For the recognition of image-based MICR characters, the key issue is how to deal with image 
segmentation, noise removal, image enhancement, feature extraction, and the design of 
classifiers for recognition. The image-based character image segmentation in the MICR area 
can be divided into two steps: 1) locating top and bottom lines of the characters; 2) 
segmenting each character from the vertical direction. 
In order to accurately locate the top and the bottom lines of the MICR characters in the 
check images, a fast algorithm is proposed as follows: scanning each line in the horizontal 
direction, counting the number of zero-crossing points in each horizontal line as NC; If the 
number of characters in the MICR area is N, then following conditions apply to locate the 
top or the bottom lines of MICR characters: 
Condition 1: If NC >= 2*N, then the line likely belongs to MICR character area. 
Condition 2: Beginning at the Lth line of the MICR image, then moving downwards, if there 
are a few consecutive lines satisfy condition 1, then the Lth line is the top line of MICR 
character area. The same method is applied to locate the bottom line of MICR character area. 
Condition 3: if a check is scanned with certain angle w, the line seeking algorithm presented 
in Condition 2 is also traced with this angle.  
As soon as the top line and the bottom line of the MICR character area are located, the 
characters are segmented based on character’s connectivity and vertical profiles. As to four 
special symbols, each symbol consists of three black blocks. The following criteria are used 
to combine three black blocks as a symbol:  
a) The distance between two adjacent black blocks is shorter than the distance between two 
characters; 
b) The length and the width of any black block of the four symbols are shorter than that of 
the ten numerals. 

Fig. 4 (a) shows an MICR character image; Fig. 4 (b) shows the segmentation result of Fig. 4 
(a). MICR area image with background is shown in Fig. 5 (a) and the segmented image is 
shown in Fig. 5 (b) 
    

 
Fig. 4 (a) Original MICR character image 
 

Fig. 4. (b) Segmentation result of Fig. 4 (a) 
   

 
Fig. 5. (a) MICR character image with background 
 

 
Fig. 5. (b) Segmented image of Fig. 5 (a) 

 
3. Classifier Fusion System with SVM Verification Module  
 

It is difficult for a single classifier to obtain a very high reliability and recognition rate at the 
same time for a complex pattern recognition system. Some theoretical advancements have 
been proposed in literature (Kuncheva, 2002; Kittler, Hatef, Duin & Matas, 1998). There are a 
few possible solutions to help reduce the number of errors. One solution is to employ a 
verification module. Another solution is to use a combination of multiple classifiers (Suen  & 
Tan, 2005). The different features extracted by different means, which are inputted to 
different ensemble classifiers for classification, have different merits for recognition because 
some of the features are complementary (Zhang, Bui. & Suen, 2007).  It is reasonable to 
combine two classifiers to produce a higher reliability and at the same time to seek the 
lowest misrecognition rate. A classifier fusion system with SVM verification module is 
proposed and it is shown  in Fig. 6. 
In the proposed recognition and verification scheme, a classifier fusion system consists of an 
ANN classifier and a KNN classifier, which are trained by two sets of feature vectors 
respectively. As the two sets of feature vectors may be complementary, the trained  ANN 
and KNN as recognizers have their merits on character recognition. Experiments will  prove 
that the combination of two classifiers can achieve a higher recognition rate. 
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Fig. 6. Classifier Fusion system with SVM verification module 
 
There are fourteen characters in the E13B character set. For the verification purpose, 
fourteen two-class SVMs are applied to classify the MICR waveforms. the result of SVMs is 
used to verify the image-based recognition result. The detail recognition and verification 
process will be elaborated in Section 5. 

 
4. Classifier Design and Feature Extraction   
 

4.1 Artificial Neural Network Classifier 
An ANN is an interconnected group of artificial neurons (Duda, Hart & Stork, 2000). ANN 
refers to electrical, mechanical, or computational simulations or models of biological neural 
networks. One of the most popular methods for training a multilayer network is based on 
the gradient descent principle using the back-propagation algorithm or generalized delta 
rule. The principle is a natural extension of the Least Mean Squares (LMS) algorithm 
because it is powerful, useful, and relatively easy to understand and implement.   
An ANN classifier consists of input units, hidden units, and output units. In terms of 
classifying fourteen numerals and symbols in this research, the ANN will have fourteen 
output units. The signal from each output unit is the discriminant function gk(x). The 
discriminant function can be expressed as: 
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where ix is a feature component; jiw is a weight between the input layer and the hidden 

layer; kjw  is a weight between the hidden layer and the output layer; i=1,…,d, and d is the 

number of nodes in the input node; j=1,…, r, and r is the number of nodes in the hidden 
layer; k=0,1,2,…, m, which represents the number of nodes in the outputs layer. For example, 
fourteen nodes of outputs represent ten digits and four special symbols used in this paper. 
Thus, the discriminant function can be implemented by a three-layer neural network. The 
configuration of the three-layer neural network for the recognition is drawn in Fig. 7.  
We now turn to the crucial problem of setting the weights based on training patterns and 
the desired output. Backpropagation algorithm is used to train the classifier. Some of 
considerations in the training and testing procedures are listed as follows: 
Target Values: The target value (the desired output) of the output category is chosen as +1, 
while others are set equal to 0.0. 
Number of Nodes in the ANN: According to a convenient rule of thumb, the total number 
of weights in the net is roughly chosen as n/10~n/4. Here n is the number of training 
samples.   
Initializing Weights: Random data are generated for all weights in the range of -1.0< all 
weights <+1.0. 
Learning Rates: In general, the learning rate is small enough to ensure convergence. A 
learning rate of (0.1-0.4) is often adequate as a first choice. 
Training Different Patterns: We used the following strategies to train the classifiers: our 
training procedure concentrates on the “difficult” patterns. Firstly, an ANN classifier is 
trained on all training samples, then the same set of training samples are fed into the ANN 
for testing. Those “difficult” patterns, which are not correctly recognized, are copied several 
times and randomly put into the training set for training again. As more “difficult” patterns 
are in the training set, the ANN can adaptively learn how to correctly recognize those 
“difficult” patterns without losing its generality. 
 

 
Fig. 7. Configuration of three-layer neural networks 



A Classifier Fusion System with Verification Module for Improving Recognition Reliability 67

 
Fig. 6. Classifier Fusion system with SVM verification module 
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4.2 KNN Classifier 
In a KNN classifier, for each testing sample, the Euclidean distance between the testing 
sample and all the training samples are calculated. Let the testing sample xi be represented 
by the feature vector Ti

N
iii xxxx ],...,,,[ 321 , where i

kx denotes the value of the kth feature 
component in the ith sample. The distance between xi and xj can be calculated by 
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If the number of training data is N, then N distances will be identified as neighbors. If K=1, 
then the class label of the testing sample is equal to the closest training data. If K>1, then the 
class label of the testing sample is equal to the class label that most of the neighbors belong. 
The output of the KNN algorithm can be interpreted as a posteriori probability. Hence, 
instead of labeling the output class label equal to the class label that most of the neighbors 
have, we assign the following class confidence values of x: 
 
                                             pc(x)=(no. of neighbors with class label c)/K                                           (8)  
 
Here, pc is the a posteriori probability that x belongs to the class c; K denotes the number of 
nearest neighbors. We can assign class label j to the testing sample x when 
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Here M is the total number of classes. 
 
One improvement to the KNN algorithm is to weigh the contribution of each of the K 
neighbors based on its distance to the testing sample. The closest neighbor should receive 
the highest weight. It can be represented by modifying the equation into following: 
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The equation can be normalized as:  
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The KNN algorithm with this refinement is also known as the fuzzy K-nearest neighbor 
algorithm (Keller, Gray and Givens, 1985). The normalized pc(x) can be used as input of gating 
network indicated in Fig. 6. 

 
4.3 SVM Classifier 
SVMs rely on the preprocessing the data to represent patterns in a higher dimension by an 
appropriate nonlinear mapping (.). Data from two categories can always be separated by a 

hyperplane. The detail theory can be referred to the references (Decoste & Scholkopf, 2002;  
Heisele, Serre, Prentice & Poggio, 2003). 
In this research, the kernel function is a Gaussian radial basis kernel: 
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Training a support vector machine for the pattern recognition problem leads to the 
following quadratic optimization problem: 
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The number of training examples is denoted by l,   is a vector of l variables. Each 
component i  corresponds to a training examples (xi,yi). The solution is the vector   for 
which (12) is minimized and the constraints (13) are fulfilled.  
SVM is a two-class classifier. For each testing sample, we compare the coefficients of 
fourteen classifiers and assign a class with maximum coefficient as overall recognition 
output. If the output matches the character’s label, it means that the testing character is 
correctly recognized. Otherwise, this character is misrecognized. For example, SVM0 
classifier can be employed to distinguish character 0 from all other characters. The overall 
recognition is congregated from all SVM classifiers. 
Fig. 8 shows the flowchart of MICR waveform recognition using fourteen SVM classifiers. 
 

 
Fig. 8. Flowchart of MICR waveform recognition using SVMs 

 
4.4 Feature Extraction 
Feature extraction is a very important step for the image-based character recognition in the 
MICR area. Three feature extraction methods (Zhang, Bui & Suen, 2005) are used to 
construct two hybrid feature sets. The feature sets include: Directional-based Wavelet 
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4.2 KNN Classifier 
In a KNN classifier, for each testing sample, the Euclidean distance between the testing 
sample and all the training samples are calculated. Let the testing sample xi be represented 
by the feature vector Ti

N
iii xxxx ],...,,,[ 321 , where i

kx denotes the value of the kth feature 
component in the ith sample. The distance between xi and xj can be calculated by 
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If the number of training data is N, then N distances will be identified as neighbors. If K=1, 
then the class label of the testing sample is equal to the closest training data. If K>1, then the 
class label of the testing sample is equal to the class label that most of the neighbors belong. 
The output of the KNN algorithm can be interpreted as a posteriori probability. Hence, 
instead of labeling the output class label equal to the class label that most of the neighbors 
have, we assign the following class confidence values of x: 
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Here, pc is the a posteriori probability that x belongs to the class c; K denotes the number of 
nearest neighbors. We can assign class label j to the testing sample x when 
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Here M is the total number of classes. 
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The equation can be normalized as:  
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The KNN algorithm with this refinement is also known as the fuzzy K-nearest neighbor 
algorithm (Keller, Gray and Givens, 1985). The normalized pc(x) can be used as input of gating 
network indicated in Fig. 6. 

 
4.3 SVM Classifier 
SVMs rely on the preprocessing the data to represent patterns in a higher dimension by an 
appropriate nonlinear mapping (.). Data from two categories can always be separated by a 

hyperplane. The detail theory can be referred to the references (Decoste & Scholkopf, 2002;  
Heisele, Serre, Prentice & Poggio, 2003). 
In this research, the kernel function is a Gaussian radial basis kernel: 
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The number of training examples is denoted by l,   is a vector of l variables. Each 
component i  corresponds to a training examples (xi,yi). The solution is the vector   for 
which (12) is minimized and the constraints (13) are fulfilled.  
SVM is a two-class classifier. For each testing sample, we compare the coefficients of 
fourteen classifiers and assign a class with maximum coefficient as overall recognition 
output. If the output matches the character’s label, it means that the testing character is 
correctly recognized. Otherwise, this character is misrecognized. For example, SVM0 
classifier can be employed to distinguish character 0 from all other characters. The overall 
recognition is congregated from all SVM classifiers. 
Fig. 8 shows the flowchart of MICR waveform recognition using fourteen SVM classifiers. 
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Feature extraction is a very important step for the image-based character recognition in the 
MICR area. Three feature extraction methods (Zhang, Bui & Suen, 2005) are used to 
construct two hybrid feature sets. The feature sets include: Directional-based Wavelet 
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Feature Set, Medial Axial Transformation (MAT) Gradient Feature Set, and Geometrical 
Feature Set.  

 
4.5 Genetic Algorithm Used to Envolve Gating Network 
A new combination scheme of classifiers is proposed in order to achieve the lowest error 
rate while pursuing the highest recognition rate for the recognition of E13B characters.  The 
schematic diagram is shown in Fig. 6. The output confidence values of the ANN are 
weighted by w1,0~w1,13 and the output confidence values of the KNN classifier are weighted 
by w2,0~w2,13.  
A genetic algorithm is used to evolve the optimal weights for the gating network from the 
confidence values of ANN classifier and KNN classifier. 

Suppose the outputs of two classifiers are represented as: {c1,0, c1,1,…,c1,13}, {c2,0, c2,1,…,c2,13}. 

The weighted outputs of the two classifiers’ confidence values can be calculated as follows: 
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Add two weighted confidence values into a Y vector:  
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In order to generalize the output, the j-th output jg  of the gating network is the “softmax” 

function of  jy  as follows (Friedman, 1997): 
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G is the output of the gating network. 

Our goal is to pursue a lowest misrecognition rate and at the same time to seek the highest 
recognition performance. We can create a vector Otarget with fourteen elements, which 
represent ten numerals and four symbols of the E13B fonts. In the vector, the value of the 
corresponding label is set equal to 1.0, while others are set equal to 0.0. A fitness function f is 
chosen to minimize the difference between the output G and the corresponding training 
sample vector

ettO arg
 as follows: 
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By minimizing the equation (17) through a genetic evolution, the weights tend to be 
optimal.  Then, the recognition criterion is set as follows:  
A recognition result is accepted if one of the following three conditions is satisfied:  

1) ANN classifier and KNN classifier vote for the same character at the same time, where the 
sum of the confidence values is equal to or larger than 1.6;  

2) The gating network votes for a character, where the confidence value of the gating 
network is larger than 0.85; 

3) The confidence value of any classifier is larger than 0.95 and the gating network votes for 
the same character;  

Otherwise, the character is rejected. 

 
4.6 Genetic Algorithms for Training Gating Network 
Genetic Algorithms have been developed based on Darwinian evolution and natural 
selection for solving optimization problems. GA applies evolution-based optimization 
techniques of selection, mutation, and crossover to a population for computing an optimal 
solution (Siedlecki & Sklansky, 1989). The problem of the weight selection in the gating 
network is well suited to the evolution by GAs. 
In the ANN training procedure, the most difficult problem is to find a reasonable fitness 
function for a large set of training samples. Ideally, the recognition rate can be used as a 
fitness criterion for training a classifier. However, using the recognition rate this way is 
unfeasible for some pattern recognition problems because it requires huge computations for 
each generation of learning.  
In this paper, we use GAs to train the gating network. When equation (17) is used as the 
fitness function, the GAs pursue the smallest difference between the gating network’s 
outputs and the target label vector Otarget. The following is a description of the steps used for 
our genetic algorithms. 
Chromosome Representation 
There are an ANN classifier, a KNN classifier in the system. Each classifier’s outputs have 
fourteen nodes. A chromosome is a vector consisting of 28 weights. A chromosome is 
presented as:  
[ w1,0    w1,1         …          w1,13     w1,14   w1,15  …        w1,27    w1,28]   
|--14 weights for ANN--|      |--14 weights for KNN--|      
Population Initialization 
The initial chromosomes P (48 populations), are randomly created (0.0~1.0). 
Selection 
The best 24 chromosomes with minimum fitness values, taken from 48 populations in each 
generation, are chosen to go into the mating pool. 
Fitness Computation 
Equations (17) are used to calculate the fitness function.  
Crossover 
Crossover occurs when information is exchanged between two parent chromosomes and the 
new information is introduced to child chromosomes. A single offspring parameter value, 
wnew, comes from a combination of the two corresponding parent parameter values. The 
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Feature Set, Medial Axial Transformation (MAT) Gradient Feature Set, and Geometrical 
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chosen to minimize the difference between the output G and the corresponding training 
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By minimizing the equation (17) through a genetic evolution, the weights tend to be 
optimal.  Then, the recognition criterion is set as follows:  
A recognition result is accepted if one of the following three conditions is satisfied:  

1) ANN classifier and KNN classifier vote for the same character at the same time, where the 
sum of the confidence values is equal to or larger than 1.6;  

2) The gating network votes for a character, where the confidence value of the gating 
network is larger than 0.85; 

3) The confidence value of any classifier is larger than 0.95 and the gating network votes for 
the same character;  

Otherwise, the character is rejected. 

 
4.6 Genetic Algorithms for Training Gating Network 
Genetic Algorithms have been developed based on Darwinian evolution and natural 
selection for solving optimization problems. GA applies evolution-based optimization 
techniques of selection, mutation, and crossover to a population for computing an optimal 
solution (Siedlecki & Sklansky, 1989). The problem of the weight selection in the gating 
network is well suited to the evolution by GAs. 
In the ANN training procedure, the most difficult problem is to find a reasonable fitness 
function for a large set of training samples. Ideally, the recognition rate can be used as a 
fitness criterion for training a classifier. However, using the recognition rate this way is 
unfeasible for some pattern recognition problems because it requires huge computations for 
each generation of learning.  
In this paper, we use GAs to train the gating network. When equation (17) is used as the 
fitness function, the GAs pursue the smallest difference between the gating network’s 
outputs and the target label vector Otarget. The following is a description of the steps used for 
our genetic algorithms. 
Chromosome Representation 
There are an ANN classifier, a KNN classifier in the system. Each classifier’s outputs have 
fourteen nodes. A chromosome is a vector consisting of 28 weights. A chromosome is 
presented as:  
[ w1,0    w1,1         …          w1,13     w1,14   w1,15  …        w1,27    w1,28]   
|--14 weights for ANN--|      |--14 weights for KNN--|      
Population Initialization 
The initial chromosomes P (48 populations), are randomly created (0.0~1.0). 
Selection 
The best 24 chromosomes with minimum fitness values, taken from 48 populations in each 
generation, are chosen to go into the mating pool. 
Fitness Computation 
Equations (17) are used to calculate the fitness function.  
Crossover 
Crossover occurs when information is exchanged between two parent chromosomes and the 
new information is introduced to child chromosomes. A single offspring parameter value, 
wnew, comes from a combination of the two corresponding parent parameter values. The 
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crossover begins by randomly selecting a parameter a in a pair of parents, which is a 
crossover point. The crossover is calculated as follows:  
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where M is the length of the weight vector. The subscripts m and d in the weight parameters 
(wmi,wdi) represent the mother and the father in the mating  pool. Then, the selected 
parameters are combined to form new parameters. Two new weights are calculated as 
follows: 
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where   is a random value between 0.0 and 1.0. The next step is to exchange the right parts 
of two parents, consisting of the crossover point to the end for each parent. 
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Mutation 
In our experiments, the mutation rate is set at 0.01. According to the mutation rate, we 
randomly replace wmi (wdi) with a new weight element, which is produced by multiplying 
the old weight value with a new uniform random number (0.0-1.0).   
Termination Criteria 
Termination occurs when either the number of iterations reaches its defined number or the 
fitness value converges so that the weights in the chromosome pool are stable. 

 
5. Experiments 
 

In order to see how the proposed system can improve system’s reliability, we conducted the 
following three experiments. In all of the experiments, the E13B characters extracted from 
250 personal checks (6250 characters and symbols) are used as training samples; another set 
of 6250 characters and symbols is used as testing samples. The training samples and testing 
samples are separated.  
Experiment One 
In this experiment, two classifiers: ANN classifier and KNN classifier are individually used 
to test the recognition performance on E13B image-based characters. Two hybrid feature sets 
are used to train the two classifiers, respectively. Table I lists the rejection rate, recognition 
rates, and reliability results conducted on ANN classifier. 
 

Feature Set Rejection Rate (%) Recognition Rate (%) Reliability (%) 

Hybrid Feature Set I 0.00 98.50 98.50 

Hybrid Feature Set II 0.00 98.69 98.69 

Table 1. Recognition performance of ANN classifier trained by two hybrid feature sets  

Note: Hybrid Feature Set I: Directional-based Wavelet Feature+20 Geometrical Features 
           Hybrid Feature Set II: MAT-based Gradient Feature + 20 Geometrical Features  
We use the same training samples and testing samples for KNN classifier. The test result is 
shown in Table II. 
 

Feature Set Rejection rate (%) Recognition Rate (%) Reliability (%) 

Hybrid Feature Set I 0.00 98.40 98.40 

Hybrid Feature Set II 0.00 98.59 98.59 

Table 2. Recognition performance of KNN classifier trained by two hybrid feature sets  
 
From above tests, it can be concluded as follows: 
1) There is no rejection rate since an individul classifier sets a threshold to either correctly 
recognize a testing character or mistakenly recognize it; 
2) Two classifiers have a similiar recogntion rate trained by two feature sets; 
3) Reliability is relatively low. 
Experiment Two 
In Experiment Two, a classifier fusion scheme, which consists of an ANN classifier, a KNN 
classifier, and a gating network to congregate the two classifiers, is tested without SVM 
verification module. Different feature sets are applied to train two classifiers. There are four 
options: 
Combo I:  ANN trained by Hybrid Feature Set I+KNN trained by Hybrid Feature Set 
I+gating network 
Combo II: ANN trained by Hybrid Feature Set I+KNN trained by Hybrid Feature Set 
II+gating network 
Combo III: ANN trained by Hybrid Feature Set II+KNN trained by Hybrid Feature Set 
I+gating network 
Combo IV: ANN trained by Hybrid Feature Set II+KNN trained by Hybrid Feature Set 
II+gating network 
The recognition rate, rejection rate, and reliability are conducted on the four fusion schemes. 
The test results are listed in Table III. Since the classifier fusion system introduces a rejection 
option, some characters with a relative low confidence value are rejected. The rule to reject 
characters in the classifier fusion system was described in the last part of  Section 4.5. 
 

Classifier Fusion Scheme Rejection Rate (%) Recognition Rate (%) Reliability (%) 

Combo I 0.69 98.60 99.29 

Combo II 0.72 98.70 99.42 

Combo III 0.80 98.67 99.47 

Combo IV 0.72 98.64 99.36 

Table 3. Recognition performance of classifier fusion system, consisting of ANN, KNN and 
gating network, traned by different hybrid feature sets  
 
It is observed that some checks have been severely folded. As a result, character images are 
deteriorated and noises are added on the check images, which affected recognition rate. 
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where M is the length of the weight vector. The subscripts m and d in the weight parameters 
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where   is a random value between 0.0 and 1.0. The next step is to exchange the right parts 
of two parents, consisting of the crossover point to the end for each parent. 
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Mutation 
In our experiments, the mutation rate is set at 0.01. According to the mutation rate, we 
randomly replace wmi (wdi) with a new weight element, which is produced by multiplying 
the old weight value with a new uniform random number (0.0-1.0).   
Termination Criteria 
Termination occurs when either the number of iterations reaches its defined number or the 
fitness value converges so that the weights in the chromosome pool are stable. 
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recognize a testing character or mistakenly recognize it; 
2) Two classifiers have a similiar recogntion rate trained by two feature sets; 
3) Reliability is relatively low. 
Experiment Two 
In Experiment Two, a classifier fusion scheme, which consists of an ANN classifier, a KNN 
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Although a rejection strategy is  introducted in the tests and the reliability is increased; 
however, some recognition errors still remain.  
For example, in the Combo III experiment, the recognition rate is 98.67%. The rejection rate 
is 0.80% and the reliability is as high as 99.47%. As such, there are still 33 misrecognized 
characters, which is unacceptable in an automatic bank check processing system. 
Experiment Three 
In order to pursue an execellent reliability in the system, we propose a verification module.  
Firstly, SVM classifers are used to recognize the segmented one dimensional MICR 
waveforms. Then, the recognition results are used to verify the recognition results of the 
classifier fusion system. The recognition rate of waveform-based MICR is 99.52%, which 
means that 30 characters out of 6,250 testing samples were misrecognized. The reliability of 
the SVMs is also 99.52%. 
The verification rule is explained as follows: if the classifier fusion system votes a character 
and SVMs also vote the same character, the recognition is confirmed; otherwise, the testing 
sample is rejected. 
 Since two classifications use entirely different input sginals (the classifier fusion system 
uses image-based OCR method, whereas the SVM classifier uses one dimensional MICR 
waveform), the overall reliability is significately incresed. Table VI shows the overall 
recognition rate, rejection rate and reliability of the classifier fusion system with SVM 
verification module. 
 

Classifier Fusion Scheme + 

SVM Verification Module 

Rejection Rate (%) Recognition Rate (%) Reliability (%) 

Combo I+ SVM Module 1.80 98.19 99.99 

Combo II+ SVM Module 1.66 98.34 100 

Combo III+ SVM Module 1.70 98.30 100 

Combo IV+ SVM Module 1.80 98.15 99.95 

Table 4. Recognition performance of classifier fusion system with SVMs verification module 
 
Comparing Table IV with Table III, it can be concluded that the system’s reliability has been 
improved significantly. Both Combo II+SVM Module and Combo III +SVM Module achieve 
100% reliability and have recognition rates over 98.30%. The remaining characters will be 
rejected and will be processed manually. 
There are a few reasons behind the better recognition performance: 
1) ANN classifier and KNN clasifier are trained using different feature sets, which makes 
the two classifiers in the fusion system complementary; 
2) Gating network can enhance recognition rate and reliability; 
3) SVM verification module is trained by different signal input, which ensures that the 
overall system reliability will increase. 
Fig. 9 shows the reliability comparsion between the classifier fusion system and the classifier 
fusion system with SVM verification module.  
Fig. 10 shows the reliability improvement from individul classifier to classifier fusion system 
(including an ANN, a KNN, and a gating network), and to the fusion classifier system with 

a SVM verification module. Experiments demonstrated that the reliability increases from 
98.5% to nearly 100%.    
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Fig. 9. Reliability comparsion  of classifier fusion system and the system with SVM 
verification module 
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Fig. 10. Reliability improvement from individul classifier to classifier fusion system with 
SVM verification module 

 
6. Conclusions 
 

In this paper, we proposed a novel classifier fusion system to congregate the recognition 
results of an ANN classifier and a modified KNN classifier. The recognition results are 
verified by the recognition results of SVM. As two entirely different classification techniques 
(image-based OCR and 1-D digital signal SVM classification) are applied to the system, 
experiments have demonstrated that the proposed classifier fusion system with SVM 
verification module can significantly increase the system’s recognition reliability and can 
suppress misrecognition rate at the same time. 
In the future, the theory foundation of classifier fusion with rejection strategies will be 
further investigated. It is expected that the theory will be employed to solve more complex 
pattern recognition problems.   
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Although a rejection strategy is  introducted in the tests and the reliability is increased; 
however, some recognition errors still remain.  
For example, in the Combo III experiment, the recognition rate is 98.67%. The rejection rate 
is 0.80% and the reliability is as high as 99.47%. As such, there are still 33 misrecognized 
characters, which is unacceptable in an automatic bank check processing system. 
Experiment Three 
In order to pursue an execellent reliability in the system, we propose a verification module.  
Firstly, SVM classifers are used to recognize the segmented one dimensional MICR 
waveforms. Then, the recognition results are used to verify the recognition results of the 
classifier fusion system. The recognition rate of waveform-based MICR is 99.52%, which 
means that 30 characters out of 6,250 testing samples were misrecognized. The reliability of 
the SVMs is also 99.52%. 
The verification rule is explained as follows: if the classifier fusion system votes a character 
and SVMs also vote the same character, the recognition is confirmed; otherwise, the testing 
sample is rejected. 
 Since two classifications use entirely different input sginals (the classifier fusion system 
uses image-based OCR method, whereas the SVM classifier uses one dimensional MICR 
waveform), the overall reliability is significately incresed. Table VI shows the overall 
recognition rate, rejection rate and reliability of the classifier fusion system with SVM 
verification module. 
 

Classifier Fusion Scheme + 

SVM Verification Module 

Rejection Rate (%) Recognition Rate (%) Reliability (%) 

Combo I+ SVM Module 1.80 98.19 99.99 

Combo II+ SVM Module 1.66 98.34 100 

Combo III+ SVM Module 1.70 98.30 100 

Combo IV+ SVM Module 1.80 98.15 99.95 

Table 4. Recognition performance of classifier fusion system with SVMs verification module 
 
Comparing Table IV with Table III, it can be concluded that the system’s reliability has been 
improved significantly. Both Combo II+SVM Module and Combo III +SVM Module achieve 
100% reliability and have recognition rates over 98.30%. The remaining characters will be 
rejected and will be processed manually. 
There are a few reasons behind the better recognition performance: 
1) ANN classifier and KNN clasifier are trained using different feature sets, which makes 
the two classifiers in the fusion system complementary; 
2) Gating network can enhance recognition rate and reliability; 
3) SVM verification module is trained by different signal input, which ensures that the 
overall system reliability will increase. 
Fig. 9 shows the reliability comparsion between the classifier fusion system and the classifier 
fusion system with SVM verification module.  
Fig. 10 shows the reliability improvement from individul classifier to classifier fusion system 
(including an ANN, a KNN, and a gating network), and to the fusion classifier system with 

a SVM verification module. Experiments demonstrated that the reliability increases from 
98.5% to nearly 100%.    
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Fig. 9. Reliability comparsion  of classifier fusion system and the system with SVM 
verification module 
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Fig. 10. Reliability improvement from individul classifier to classifier fusion system with 
SVM verification module 

 
6. Conclusions 
 

In this paper, we proposed a novel classifier fusion system to congregate the recognition 
results of an ANN classifier and a modified KNN classifier. The recognition results are 
verified by the recognition results of SVM. As two entirely different classification techniques 
(image-based OCR and 1-D digital signal SVM classification) are applied to the system, 
experiments have demonstrated that the proposed classifier fusion system with SVM 
verification module can significantly increase the system’s recognition reliability and can 
suppress misrecognition rate at the same time. 
In the future, the theory foundation of classifier fusion with rejection strategies will be 
further investigated. It is expected that the theory will be employed to solve more complex 
pattern recognition problems.   
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1. Introduction     
 

Rapid continual advances in computer and network technologies coupled with the 
availability of relatively cheap high-volume data storage devices have effected the 
production of thousands of digital images everyday. Therefore, many content-based image 
retrieval (CBIR) systems have been proposed to cope with such huge image archives. To 
facilitate image retrieval from the huge volume image repositories, there is a great need to 
search for effective content-based image features. Traditionally, the most straightforward 
way to implement image database management systems is to make use of the conventional 
database-management systems (DBMS) such as relational databases or object-oriented 
databases. Such systems are usually keyword-based, in which the image attributes, usually 
in the form of text annotations, are extracted manually or partially computed and managed 
within the framework of a conventional DBMS, such as Chabot (Ogle and Stonebraker 1995) 
Piction(Srihari 1995), Photobook(Pentland, Picard et al. 1996), WebSeer(Swain, Freankel  et 
al. 1997),etc.. However, the keyword-based approach provides limited capacity for 
retrieving visual information. In most cases, the associated image attributes cannot fully 
describe the contents of the imagery by themselves. Since the image attributes are annotated 
manually or semi-automatically, the process of feature extraction is extremely time-
consuming and labor-intensive.  Current researches on CBIR systems (Belongie, Carson et 
al. 1998; Gupta 1995; Smith and Chang 1996; Tao, Tang et al. 2006) mostly focus on the 
capability of visual search, i.e., images are retrieved based on a certain similarity criterion 
for a user provided sample images or sketch. These systems employ visual information 
indexing scheme and approximate matching instead of the exact matching used in 
conventional DBMS. However, most of these methods involve a high computational 
complexity for its feature extraction. On the other hand, with the rapid development of 
digital multimedia technology, different digital watermarking schemes have been proposed 
to address the issue of multimedia copyright protection. Many of robust watermarking 
schemes are using the frequency domain approach. Most of these approaches are based on 
discrete Fourier transform (DFT) (Pereira, Ruanaidh et al. 1999), cosine transform (DCT) 
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(Cox, Kilian et al. 1997; Hernandez, Amado et al. 2000; Piva, Barni et al. 1997) or  wavelet 
transform (DWT) (Hsieh, Tseng et al. 2001 ; Pun and Kong 2007; Wang and Kuo 1998; Wang 
and Lin 2004 ), and usually have fast watermarking detection.  
In this chapter, a novel approach using watermarking representation for adaptive image 
classification with Radial Basis Function (RBF) network is proposed. The original image is 
decomposed into wavelet coefficients using discrete wavelet packet transform. The energy 
signatures of most dominant sub-bands are extracted adaptively to form a reduced feature 
vector which is to be encoded as a binary watermark. The watermark is embedded by 
quantization into the wavelet coefficients with highest magnitudes except for those in the 
lowest frequency channel. Then the image features can be extracted from the watermarked 
image by a fast discrete wavelet packet transform and de-quantization.  The extracted image 
features are fed to the trained RBF network for image classification.  The outline of this 
chapter is organized as follows. In next section, we briefly introduce and review the 
standard 2-D discrete wavelet packets transform techniques.  In section III, we present our 
proposed algorithm for embedding image features by watermarking and the algorithm for 
extracting the image features from the watermarked image. In section IV, the algorithm for 
adaptive image classification with RBF network is proposed. The experiment results for 
robustness and classification accuracy of our proposed method to various attacks, and the 
efficiency comparison results with other image classification method are presented in 
Section V. Finally, conclusions are drawn in Section VI. 

 
2. Discrete Wavelet Packet Transform 
 

The 2-D discrete wavelet packet transform (DWPT) is a generalization of 2D discrete 
wavelet transform (DWT) that offers a richer range of possibilities for image analysis. In 2D-
DWT analysis, an image is split into an approximation and three detail images. The 
approximation image is then itself split into a second-level approximation and detail 
images, and the process is recursively repeated. So there are n+1 possible ways to 
decompose or encode the image for an n-level decomposition. In 2D-DWPT analysis, the 
three details images as well as the approximation image can also be split. So there are 4n 
different ways to encode the image, which provide a better tool for image analysis.  The 
standard 2D-DWPT can be described by a pair of quadrature mirror filters (QMF) H and G 
(Mallat 1989). The filter H is a low-pass filter with a finite impulse response denoted by 

( )h n . And the high-pass G with a finite impulse response is defined by: 
 

                                   ( ) ( 1) (1 )ng n h n   , for all n                                                 (1) 
 
The low-pass filter is assumed to satisfy the following conditions for orthonormal 
representation: 
 

                                ( ) ( 2 ) 0
n
h n h n j  , for all 0j                                           (2) 

                                                    2( ) 1
n
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                                  ( ) ( 2 ) 0
n
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The 2D discrete wavelet packet decomposition of an M N  discrete image x up to level p+1 
( 2 20 min(log ( ), log ( ))p N M  ) is recursively defined in terms of the coefficients of 
level p as follows: 
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where 0
0,( , ) ( , )i j i jC x  is given by the intensity levels of the image x.  

Since the image x has only a finite number of pixels, different methods such as symmetric, 
periodic or zero padding should be used for the boundary handling. At each step, we 

decompose the image p
kC  into four quarter-size images 1

4
p
kC  , 1

4 1
p
kC 
 , 1

4 2
p
kC 
  and 1

4 3
p
kC 
 .  

The inverse wavelet packet transform of a discrete image x from wavelet coefficients at level 

p+1 can be achieved by applying recursively the following formulae until 0
0,( , )i jC  is 

obtained: 
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Fig.1. Procedure of embedding image features as digital watermark into the original image 
for image analysis. 

 
3. Watermarking Representation of Image Features 
 

3.1 Embedding Image Features as Digital Watermark 
The procedure of embedding image features as digital watermark into the original image for 
image analysis or retrieval is depicted in Fig. 1. The MxN original image is decomposed into 
wavelet coefficients by a 2D discrete wavelet packet transform up to level p. An energy 
signature is computed for each sub-band of wavelet coefficients. However, the number of 
energy signatures for texture classification can be still very large.  As suggested by Chang 
and Kou (Chang and Kuo 1993) the most dominant frequency sub-band provide very useful 
information for discriminating images. Therefore, we sort all energy signatures and choose 
only H most dominant energy signatures (with highest energy values) as feature vector.  
This feature vector is then encoded in binary feature vector, which are embedded back to 
the wavelet sub-bands. In order to have better perceptual invisibility, the feature vector is 

 

embedded into the largest wavelet coefficients in each sub-band except the lowest frequency 
sub-band. To improve the robustness to various attacks, the same feature vector is 
embedded several times in remaining unused sub-bands. Finally, the inverse discrete 
wavelet packet transform is applied to obtain the watermarked image. The details of the 
algorithm are as follows: 
 
Algorithm I: Embedding image features 

Step 1. For a given M N image, apply the p-level discrete wavelet packet 
transform (as described in section 2) to generate 4p sub-bands of wavelet 

coefficients ,( , )
p
k i jC , where 2log ( )p N , {0, , 4 1}pk   and i, j 
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for each sub-band of wavelet coefficients ,( , )
p
k i jC , where 

{0, , 4 1}pk  . 
Step 3. Arrange all energy signatures in descending order according to their 
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Fig.1. Procedure of embedding image features as digital watermark into the original image 
for image analysis. 
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Step 7. Apply the Inverse discrete wavelet packet transform (as described in 

section 2) to obtain the watermarked image. 

 
3.2 Extracting the Image Features 
The procedure of of extracting the image features in a watermarked image is depicted in Fig. 
2. The watermarked MxN image is first decomposed into wavelet coefficients by the 2D 
discrete wavelet packet transform up to level p. The binary feature vector is then extracted 
from the sub-bands of wavelet coefficients. In order to improve the reliability, several 
feature vectors are extracted and combined. Finally, the image feature vector can be 
obtained by de-quantization for content-based image classification. The details of the 
algorithm are as follows: 
 
 Algorithm II: Extracting image features 

Step 1. For a given M N watermarked image, apply the p-level discrete 
wavelet packet transform (as described in section 2) to generate 4p sub-
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Fig. 3. Radial Basis Function (RBF) architecture. 

 
4. Adaptive Image Classification with Radial Basis Function Network 
 

The extracted image feature vector is used as inputs for the Radial Basis Functions (RBF) 
network used in the proposed adaptive classification algorithm. The RBF network involves 
three different layers, namely, input layer, hidden layer, and output layer, as shown in Fig. 
3. The input layer is made up of a number of source / input nodes, one node for one energy 
signature from the reduced feature vector of a given query image. The goal of the hidden 
layer is to cluster the data and to further reduce its dimensionality. The output layer 
supplies the responses of the network to the reduced feature vector applied to the input 
layer during classification. The responses correspond to the distances between the input 
image and the different database image classes.  
The proposed adaptive image classification algorithm can be divided into two stages. The 
first stage is for training, which is done only once. Its main objective is to construct an RBF 
network based on the number of features in the feature vectors and the number of classes 
involved, and to compute the corresponding weights of the hidden layer in the RBF network 
using a number of training images. The inputs to the RBF network include the feature 
vectors of the training image samples and their corresponding image classes. The output of 
the training would be the weights of the hidden layer of the network. The network starts 
with some initial weights which would be adjusted incrementally by the network as each 
feature vector and its class data are input. Therefore, the objective of the training is to 
produce the weights to represent the image classes of the training samples for achieving 
good classification results.  Such weights would be used to classify query images during the 
classification stage. For efficiency sake, the training can be performed offline and the trained 
network information, including the weights, be saved for future use. The second stage is for 
online classification. Its main objective is to find the best match of any given query image to 

 

one of the predefined classes captured in the trained RBF network. The details of the 
algorithm are as follows: 
 
Algorithm III: Adaptive Image Classification Algorithm  
 
Offline Training (for k training samples): 

Step 1. For each training image i, compute a feature vector Ti by applying the 
Algorithm II: Extracting image features; where 1, ,i k  . 

Step 2. Construct a Radial Basis Function (RBF) network, with m input nodes, m-1 
hidden nodes, and the number of output nodes being equal to the number 
of image classes.  

Step 3. For each training image i, input the feature values of Ti and the class Cj of 
image i to the RBF network; use the singular value decomposition (SVD) 
techniques (Bishop 1995) to compute the corresponding weights of the 
hidden layer of the RBF network by mapping the reduced feature vector Ti 
to the class Cj, where 1, ,i k  , and  j =1, …, n. 

Step 4. Store the trained RBF network information to secondary storage. 
 
Online Classification: 

Step 1. Load the trained RBF network information from secondary storage and 
reconstruct the RBF network. 

Step 2. Compute a feature vector S for a query image using the Algorithm II: 
Extracting image features. 

Step 3. Feed the input layer of the RBF network with the reduced feature vector S.  
Step 4. Compute the outputs of the hidden unit i  in the hidden layer by: 
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where  Φi is a radial basis function; ci is a proportionality constant for the 

variance 2
ik  ; sk is the kth component of the input vector 

1 2[ , , ]Ns s s s  , and ik  and 2
ik are the kth components of the mean 

and variance vectors defining the Basis Functions (BF) respectively, and o is 
the overlap factor between BFs.  

Step 5. Compute and output the feature distance Dj between the query texture 
image and class texture image j via output node j as follows:   
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i
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where ijw  is the weight connecting the ith BF node to the jth output node, 

and 0 jw  is the threshold of the jth output node. 
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Fig. 3. Radial Basis Function (RBF) architecture. 
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where ijw  is the weight connecting the ith BF node to the jth output node, 
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Step 6. Assign the query texture image to class i if i jD D  for all j i . 

 

 
Fig. 3. Twenty class textures from Brodatz album. Row 1: D1, D4, D6, D20, D21. Row 2: D22, 
D28, D34, D52, D53. Row 3: D57, D74, D76, D78, D82. Row 4: D84, D102, D103, D105, D110 

 
5. Experimental Results 
 

In order to demonstrate the robustness and effectiveness of our proposed method, several 
experiments have been carried out based on a set of twenty classes of natural texture images 
as shown in Fig. 5,  from the Brodatz’s texture album (Brodatz 1996). Each texture is scanned 
with 150 dpi resolution, and each image, having the size 640640 pixels and 256 gray levels, 
is divided into twenty-five 128128 non-overlapping regions. So, a database of 500 (2025) 
images was created for our testing. 200 of the texture images, with 10 images from each 
class,  were used for training the RBF network, and the remaining 300 texture images  form 
another dataset  used for different watermarking and classification experiments. For 
embedding the image features by Algorithm I,  a 20-tap Daubechies wavelet (Daubechies 
1992) was used for discrete wavelet packet transform up to levels 3. The coefficients of the 
low-pass filter h of the 20-tap Daubechies wavelet transforms are listed in Table 1. For 
classification testing, a simple Euclidean classifier was used. 
 

h(0) 0.01885858 h(10) -0.02082962 

h(1) 0.13306109 h(11) 0.02348491 

h(2) 0.37278754 h(12) 0.00255022 

h(3) 0.48681406 h(13) -0.00758950 

 

h(4) 0.19881887 h(14) 0.00098666 

h(5) -0.17666810 h(15) 0.00140884 

h(6) -0.13855494 h(16) -0.00048497 

h(7) 0.09006372 h(17) -0.00008235 

h(8) 0.06580149 h(18) 0.00006618 

h(9) -0.05048329 h(19) -0.00000938 
Table 1. 20-tap Daubechies wavelet transform filter coefficients. 
 
First, we evaluate the perceptual quality of the watermarked images using the images in our 
database. Fig. 5 shows the original and the watermarked D1 image, which was embedded 
with 15 image features ( 4.27  ) encoded in 5 bits ( 5  ). The two images are visually 
indistinguishable with PSNR is 41.5 dB.  
Second, the experiments for verifying the robustness and classification accuracy of our 
method are carried out. Fig. 5 shows the watermarked D1 image attacked by Gaussian noise, 
JPEG compression and median filter. Table 2 shows the classification accuracy and 
robustness of our method for different attacks and number of dominant energy features. 
From the table, it was shown that the common attacks such as Gaussian noise, JPEG, and 
median filtering has only little effect on the classification performance. Our method has 
strong resistance to noise and JPEG compression with very low quality factor. The best 
performance was obtained using 47 features with 96.8% accuracy. The results also indicate 
that a higher number of dominant energy features does not imply a higher accuracy rate.  
Third, the algorithm efficiency of our method was compared with other image classification 
method. Table 3 shows that our proposed  method achieved the same classification 
accuracy, while having much lower complexity than other texture classification method 
such as wavelet packet signature method (Laine and Fan 1993). 
 

(b)(a)  
Fig. 4. (a) The original D1 image; (b) Watermarked D1 image with  =33 , 4.27  , 

5  ,PSNR=41.5 dB. 
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(a) (b) (c)  
Fig. 5. Watermarked D1 image in Fig 4(b) attacked by (a) Gaussian noise 0.01; (b) JPEG 
quality factor 50; (c) 3x3 median filter. 
 

Attacks 
Number of image features 

15 23 31 47 55 63 

Gaussian Noise (0,0.01) 86.5 90.5 92.6 94.5 93.2 92.8 
JPEG (QF = 50) 85.5 89.6 92.5 94.3 93.3 93.3 

JPEG (QF = 30) 82.6 86.4 90.2 92.1 91.8 90.2 

3x3 median filter 71.5 75.6 76.3 76.3 76.1 75.8 

No attack 89.2 93.8 95.3 96.8 95.6 95.4 

Table 2. Classification accuracy (%) with different attacks and number of image features. 
 

 Proposed WPS 

Accuracy (%) 96.8 95.6 

Complexity ( )O n  
2( )O n  

Table 3. Performance comparison with the wavelet packet signature method. 

 
6. Conclusion 
 

In this chapter, a novel approach using watermarking representation for adaptive image 
classification with Radial Basis Function (RBF) network has been proposed. Experimental 
results show that the proposed method has strong resistance to noise and JPEG compression 
with very low quality factor, and has much better efficiency than the other image 
classification method. However, the performance for median filtering attacks still needs to 
be improved further. For image classification experiments, the best performance was 
obtained using only 47 features with 96.8% accuracy. Future work may focus on embedding 
more useful image features such as invariant features for image analysis. 
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(a) (b) (c)  
Fig. 5. Watermarked D1 image in Fig 4(b) attacked by (a) Gaussian noise 0.01; (b) JPEG 
quality factor 50; (c) 3x3 median filter. 
 

Attacks 
Number of image features 

15 23 31 47 55 63 

Gaussian Noise (0,0.01) 86.5 90.5 92.6 94.5 93.2 92.8 
JPEG (QF = 50) 85.5 89.6 92.5 94.3 93.3 93.3 

JPEG (QF = 30) 82.6 86.4 90.2 92.1 91.8 90.2 

3x3 median filter 71.5 75.6 76.3 76.3 76.1 75.8 

No attack 89.2 93.8 95.3 96.8 95.6 95.4 

Table 2. Classification accuracy (%) with different attacks and number of image features. 
 

 Proposed WPS 

Accuracy (%) 96.8 95.6 

Complexity ( )O n  
2( )O n  

Table 3. Performance comparison with the wavelet packet signature method. 

 
6. Conclusion 
 

In this chapter, a novel approach using watermarking representation for adaptive image 
classification with Radial Basis Function (RBF) network has been proposed. Experimental 
results show that the proposed method has strong resistance to noise and JPEG compression 
with very low quality factor, and has much better efficiency than the other image 
classification method. However, the performance for median filtering attacks still needs to 
be improved further. For image classification experiments, the best performance was 
obtained using only 47 features with 96.8% accuracy. Future work may focus on embedding 
more useful image features such as invariant features for image analysis. 
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Nowadays, neural networks (NNs) are widely applied in the solution of several real world
problems. They have been successfully used in many fields such as chemistry, physics, en-
gineering, and bio-informatics among others. However, their use often relies on some hand-
crafted settings, such as the number of layers and neurons. This chapter will discuss the
Structural Risk Minimization (SRM) problem using some multiobjective optimization con-
cepts. Both are closely related to the classical Tikhonov’s regularization scheme, and, it is also
exploited in this work.
A neural network is a learning machine capable to describe, to the input x, the set of functions
F = { f (x,w) : x ∈ X, w ∈ W}, where W is the space of possible weights. Given a supervisor
which defines an output vector y ∈ Y (desired output), for a given input x, according to the
conditional distribution F(y|x), the ultimate goal in the learning problem is to find w ∈ W that
best approximates the supervisor answer given some measure. To some loss function L(.), the
expected risk (error) can be defined as, Vapnik (1998):

R(w) =
∫

L (y, f (x,w))dF(x,y). (1)

Therefore, the learning problem can be understood as finding f (x,w0) : w0 ∈ W, such that
R(w) is minimal. Nevertheless, the function F(x,y) is unknown, thus, it is impossible to direct
evaluate R(w). The only available information about the supervisor is contained in the train-
ing set T = {(x1, ỹ1), ..., (xt, ỹt)}. Where ỹ is y plus some uncertainty, as noise. For instance,
for regression and prediction problems y ∈ Rt, and for binary classification y ∈ {−1,1}t.
In the early years of NN research, it was believed that decreasing the training error (empirical
risk) was a sufficient condition to approximate the supervisor answer. This problem was
stated as

w∗ = arg min
w∈W

J(T,w) =
1
t

t

∑
i=1

L(ỹi, f (xi,w)). (2)

This approach was considered self-evident for many years and the main milestone was to
find better algorithms to solve (2). However, the non self-evident overfitting phenomenon
has appeared. This would imply that w∗ �= w0. One way to characterize it is by the bias and
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variance dilemma, S. Geman & Doursat (1992). The expected mean-squared error between
f (·) and the expected value of y given x, E[y|x], can be written as:

ET [( f (x;T)− E[y|x])2] = (ET [ f (x;T)]− E[y|x])2

+ET [( f (x;T)− ET [ f (x;T)])2],
(3)

where ET [.] is the expected value given a set T. The first term in the right hand side of (3) is
known as bias, and the second one as variance. The variance term measures the sensibility
of the approximating function given a data set T. To control the variance, models with less
complexity should be generated, i.e., they cannot change too much to a given data T. On the
other hand, some bias is inserted in the problem when the complexity is limited, thus, this
should be controlled.
This chapter is organized as follows. First, the regularization theory from Tikhonov (1963), a
well-known technique to solve linear ill-posed problems, will be introduced together with the
residual method from Phillips (1962) and the quasi-solutions from Ivanov (1962; 1976). It is
shown, using Singular Value Decomposition (SVD), the relationship between these methods
and the Wiener’s filter. After that, the Structural Risk Minimization (SRM), and the multiob-
jective learning will be discussed. These methods are closely related, and, some of their main
aspects will be discussed. Inspired on the Tikhonov’s regularization it will be discussed the
well-known weight decay (WD) method for NNs, Hinton (1989). However, it will be clarified
that this method is not consistent if the functions are not convex, which is usually the case. To
overcome that, it is introduced the generalized Tikhonov’s regularization based on a Q-norm
for Parallel Layers Perceptrons (PLPs). Finally, some results are presented.

1. Linear ill-posed problems

Given the linear mapping A : W �→ Y, the equation

Aw = y, A ∈ Rt×n, w ∈ Rn and y ∈ Rt, (4)

is well-posed provided that: (i) for each y ∈ Y, ∃w ∈ W such that Aw = y (existence); (ii)
Aw1 = Aw2 ⇔ w1 = w2 (uniqueness); (iii) A−1 is continuous (stability). Thus, a problem is
called well-posed if its solution exists, is unique and stable. Unfortunately, inverse problems,
such as the ones to select a model based on the data, are usually ill-posed, i.e., it violates at
least one of the aforementioned conditions. In applied sciences and engineering the right-
hand side vector y can be contaminated by noise, ξ ∈ R, thus, instead of y only ỹ is available
and

‖y − ỹ‖2 � ξ. (5)

The problem is said to be stable if small variations in the right-hand side implies small changes
in the solution

‖w − w̃‖2 � δ(ξ). (6)

The existence can be imposed by considering the minimal Euclidian norm

w∗ = arg min
w∈W

J(w) = ‖Aw − ỹ‖2
2 = (Aw − ỹ)T(Aw − ỹ). (7)

Making ∂J/∂w = 01,
w∗ := (AT A)−1 ATỹ := A† ỹ, (8)

where A† is the pseudo inverse. Considering w0 the desired solution of (4) and w∗ the solution
of (7), due to the error in y and the ill-conditioning in A, the following relation is usually true

‖w∗‖ � ‖w0‖, (9)

which is not a meaningful approximation of w0. In the early 60’s, Tikhonov proposed the reg-
ularization method to solve this problem, Tikhonov (1963). The Tikhonov’s method considers
the solution of the following auxiliary problem:

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λΩ(w), (10)

where λ > 0 is a pre-defined constant known as regularization parameter. The regularization
function Ω(w) is defined as semi-continuous, positive and compact in the space of functions
defined by w, i.e., Ω(w) ≤ c, c > 0. To guarantee the uniqueness of the solution the following
properties are required: (i) Ω(w) is a non-negative convex function; (ii) Ω(0) = 0 holds true;
and (iii) the r(ρ) = Ω(ρw) is strictly growing function. This method is usually written as

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λ‖w‖2

2

= (Aw − ỹ)T(Aw − ỹ) + λxT Ix
. (11)

For each positive parameter λ, considering the complexity Ω = wT Iw = ‖w‖2
2, where I is the

identity matrix, (10) has a unique solution of the following form:

wλ := (AT A + λI)−1 ATỹ. (12)

This result was fundamental to the popularization of the Tikhonov’s technique, since it has a
simple closed-form solution. In statistics it is also known as ridge regression. In fact, Tikhonov
& Arsenin (1977) proved that wλ converges to w0 as ξ → 0 if

lim
ξ→0

λ(ξ) = 0, (13)

lim
ξ→0

ξ2

λ(ξ)
= 0. (14)

Consider the set Wk = {w : Ω(w)≤ ck}, ck > 0. Since Ω defines a compact subset the following
holds true

W1 ⊆ W2 ⊆ ... ⊆ Wi, ... ⇒ c1 < c2 < ... < ci, ... (15)

Define wk∗ as
wk∗ = arg min

w∈Wk
‖Aw − ỹ‖. (16)

1 Using:

∂(ỹTw)

∂w
= ỹ,

∂(wT AT Aw)

∂w
= (AT A + AT A)w
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variance dilemma, S. Geman & Doursat (1992). The expected mean-squared error between
f (·) and the expected value of y given x, E[y|x], can be written as:

ET [( f (x;T)− E[y|x])2] = (ET [ f (x;T)]− E[y|x])2

+ET [( f (x;T)− ET [ f (x;T)])2],
(3)

where ET [.] is the expected value given a set T. The first term in the right hand side of (3) is
known as bias, and the second one as variance. The variance term measures the sensibility
of the approximating function given a data set T. To control the variance, models with less
complexity should be generated, i.e., they cannot change too much to a given data T. On the
other hand, some bias is inserted in the problem when the complexity is limited, thus, this
should be controlled.
This chapter is organized as follows. First, the regularization theory from Tikhonov (1963), a
well-known technique to solve linear ill-posed problems, will be introduced together with the
residual method from Phillips (1962) and the quasi-solutions from Ivanov (1962; 1976). It is
shown, using Singular Value Decomposition (SVD), the relationship between these methods
and the Wiener’s filter. After that, the Structural Risk Minimization (SRM), and the multiob-
jective learning will be discussed. These methods are closely related, and, some of their main
aspects will be discussed. Inspired on the Tikhonov’s regularization it will be discussed the
well-known weight decay (WD) method for NNs, Hinton (1989). However, it will be clarified
that this method is not consistent if the functions are not convex, which is usually the case. To
overcome that, it is introduced the generalized Tikhonov’s regularization based on a Q-norm
for Parallel Layers Perceptrons (PLPs). Finally, some results are presented.

1. Linear ill-posed problems

Given the linear mapping A : W �→ Y, the equation

Aw = y, A ∈ Rt×n, w ∈ Rn and y ∈ Rt, (4)

is well-posed provided that: (i) for each y ∈ Y, ∃w ∈ W such that Aw = y (existence); (ii)
Aw1 = Aw2 ⇔ w1 = w2 (uniqueness); (iii) A−1 is continuous (stability). Thus, a problem is
called well-posed if its solution exists, is unique and stable. Unfortunately, inverse problems,
such as the ones to select a model based on the data, are usually ill-posed, i.e., it violates at
least one of the aforementioned conditions. In applied sciences and engineering the right-
hand side vector y can be contaminated by noise, ξ ∈ R, thus, instead of y only ỹ is available
and

‖y − ỹ‖2 � ξ. (5)

The problem is said to be stable if small variations in the right-hand side implies small changes
in the solution

‖w − w̃‖2 � δ(ξ). (6)

The existence can be imposed by considering the minimal Euclidian norm

w∗ = arg min
w∈W

J(w) = ‖Aw − ỹ‖2
2 = (Aw − ỹ)T(Aw − ỹ). (7)

Making ∂J/∂w = 01,
w∗ := (AT A)−1 ATỹ := A† ỹ, (8)

where A† is the pseudo inverse. Considering w0 the desired solution of (4) and w∗ the solution
of (7), due to the error in y and the ill-conditioning in A, the following relation is usually true

‖w∗‖ � ‖w0‖, (9)

which is not a meaningful approximation of w0. In the early 60’s, Tikhonov proposed the reg-
ularization method to solve this problem, Tikhonov (1963). The Tikhonov’s method considers
the solution of the following auxiliary problem:

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λΩ(w), (10)

where λ > 0 is a pre-defined constant known as regularization parameter. The regularization
function Ω(w) is defined as semi-continuous, positive and compact in the space of functions
defined by w, i.e., Ω(w) ≤ c, c > 0. To guarantee the uniqueness of the solution the following
properties are required: (i) Ω(w) is a non-negative convex function; (ii) Ω(0) = 0 holds true;
and (iii) the r(ρ) = Ω(ρw) is strictly growing function. This method is usually written as

wλ = arg min
w∈W

Jλ = ‖Aw − ỹ‖2
2 + λ‖w‖2

2

= (Aw − ỹ)T(Aw − ỹ) + λxT Ix
. (11)

For each positive parameter λ, considering the complexity Ω = wT Iw = ‖w‖2
2, where I is the

identity matrix, (10) has a unique solution of the following form:

wλ := (AT A + λI)−1 ATỹ. (12)

This result was fundamental to the popularization of the Tikhonov’s technique, since it has a
simple closed-form solution. In statistics it is also known as ridge regression. In fact, Tikhonov
& Arsenin (1977) proved that wλ converges to w0 as ξ → 0 if

lim
ξ→0

λ(ξ) = 0, (13)

lim
ξ→0

ξ2

λ(ξ)
= 0. (14)

Consider the set Wk = {w : Ω(w)≤ ck}, ck > 0. Since Ω defines a compact subset the following
holds true

W1 ⊆ W2 ⊆ ... ⊆ Wi, ... ⇒ c1 < c2 < ... < ci, ... (15)

Define wk∗ as
wk∗ = arg min

w∈Wk
‖Aw − ỹ‖. (16)

1 Using:

∂(ỹTw)

∂w
= ỹ,

∂(wT AT Aw)

∂w
= (AT A + AT A)w
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For some general conditions, Ivanov (1962; 1976) proved that the sequence w1∗, ...,wk∗ con-
verges to w0, the desired solution. This is called quasi-solutions method and can be written,
for some ε > 0, as

wε = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 ≤ ε

(17)

In the same period Phillips (1962) proposed the residual method

wε = arg min
w∈W

‖w‖2
2

subject to: ‖Aw − ỹ‖2
2 ≤ ε

. (18)

In Vasin (1970) it is shown that the Regularization, Residual and Quasi-solutions methods are
equivalent, i.e., they can generate the same set of solutions, given the linear problem stated
in (4), and the distance measured using the Euclidian norm. Consider the problem stated in
Alavetti & Eichel (2004)

w∆ = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 = ∆

. (19)

Assuming that ‖w0‖ > ∆, this constrained minimization problem has a unique solution wλ,∆
of the form (12). The value of λ is positive such that ‖wλ‖ = ∆ Alavetti & Eichel (2004).
Assume that A† ỹ �= 0, the function

ϕ(λ) := ‖w‖2, λ ≥ 0, (20)

can be expressed as
ϕ(λ) := ỹA(AT A + λI)−2 ATỹ, λ > 0, (21)

which shows that ϕ(λ) is strictly decreasing and convex for any λ > 0, and that, ϕ(λ) = ∆ has
a unique solution λ, such that 0 < λ < ∞, for any ∆ that satisfies 0 < ∆ < ‖A† ỹ‖2, Alavetti &
Eichel (2004).
Even though all the results considered so far used the Euclidian norm ‖.‖2 to define the com-
plexity Ω, the more general p-norm

‖w‖p =
n

∑
i=1

|wi|p, (22)

can also be applied. This is the case of the shrinkage method called Lasso, Hastie et al. (2001)

wlasso = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖1 ≤ ε
. (23)

This chapter will concentrate in the Euclidian norm based formulation due to their simplicity,
and the existence of closed form solutions. According to Hastie et al. (2001) it could be used
any p besides 1, or 2, and that, indeed, we could try to estimate it from the data, but there is
no results in this direction so far.

1.1 Wiener’s filter interpretation
Consider the singular value decomposition (SVD) of A as

A = USVT (24)

where U and V are unitary matrices, i.e, U−1 = UT , and S = diag(s1, s2, ..., st) is a diagonal
matrix with s1 ≥ s2 ≥ ... ≥ st ≥ 0, called the singular values of A. Thus, wλ, given in (12), can
be written as:

wλ = (VSTUTUSVT + λVIVT)−1VSTUTỹ
= V(STS + λI)−1STUTỹ

wλ =
t

∑
i=1

s2
i

s2
i + λ

uT
i ỹ
si

vi, (25)

where λ ≥ 0 : s2
i

s2
i +λ

≤ 1 are the Wiener’s filter weights. The SVD of the matrix A is related

to the principal component analysis. Therefore, it implies that it shrinks more the directions
with smaller variance. Next section will introduce the Weight Decay, the realization of the
ideas presented in this section to Neural Networks.

2. Structural Risk Minimization principle

The structural risk minimization (SRM) was introduced by Vapnik and Chervonenkis and a
description of it can be found Vapnik (1992), Vapnik (1998). One of the main achivements of
the SRM is the introduction of the idea of capacity of a set of functions. It is based on some
theoretical results that shows that the upper bound of the learning machine expected risk de-
pends on: (i) the training error and, (ii) the machine capacity, defined as the VC dimension and
its variations, Vapnik (2001). This inductive principle is directly applied in learning machines
as the Support Vector Machines (SVMs). Following these considerations the SRM principle
considers the minimization of two factors: the training error and the VC dimension.
Consider the function J(·, ·) : Z × W �→ R, in which Z and W are arbitrary spaces. Taking
its second argument w ∈ W as a parameter constrained to a set Wk ⊂ W, a set J of functions
J(·,w) : Z �→ R becomes defined for w ∈ Wk. This set can be structured as a sequence of nested
subsets Jk = {J(·,w), w ∈ Wk}, such that

W1 ⊂ W2 ⊂ ... ⊂ Wi... ⇒ J1 ⊆ J2 ⊆ ... ⊆ Ji... (26)

The sequence (26) should fulfill the following conditions: (i) the VC dimension, hk, of each set
Jk is finite, and (ii)

h1 ≤ h2 ≤ ... ≤ hi... . (27)

For any positive integer k, there is a finite positive scalar Bk such that J(z,w) ≤ Bk, ∀ w ∈ Wk
and z ∈ Z. The principle of SRM is oriented to find the values of w and k such that w ∈
Wk, making the function J(·,w) minimize the empirical risk, while the set Wk minimizes the
structural risk.
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For some general conditions, Ivanov (1962; 1976) proved that the sequence w1∗, ...,wk∗ con-
verges to w0, the desired solution. This is called quasi-solutions method and can be written,
for some ε > 0, as

wε = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 ≤ ε

(17)

In the same period Phillips (1962) proposed the residual method

wε = arg min
w∈W

‖w‖2
2

subject to: ‖Aw − ỹ‖2
2 ≤ ε

. (18)

In Vasin (1970) it is shown that the Regularization, Residual and Quasi-solutions methods are
equivalent, i.e., they can generate the same set of solutions, given the linear problem stated
in (4), and the distance measured using the Euclidian norm. Consider the problem stated in
Alavetti & Eichel (2004)

w∆ = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖2
2 = ∆

. (19)

Assuming that ‖w0‖ > ∆, this constrained minimization problem has a unique solution wλ,∆
of the form (12). The value of λ is positive such that ‖wλ‖ = ∆ Alavetti & Eichel (2004).
Assume that A† ỹ �= 0, the function

ϕ(λ) := ‖w‖2, λ ≥ 0, (20)

can be expressed as
ϕ(λ) := ỹA(AT A + λI)−2 ATỹ, λ > 0, (21)

which shows that ϕ(λ) is strictly decreasing and convex for any λ > 0, and that, ϕ(λ) = ∆ has
a unique solution λ, such that 0 < λ < ∞, for any ∆ that satisfies 0 < ∆ < ‖A† ỹ‖2, Alavetti &
Eichel (2004).
Even though all the results considered so far used the Euclidian norm ‖.‖2 to define the com-
plexity Ω, the more general p-norm

‖w‖p =
n

∑
i=1

|wi|p, (22)

can also be applied. This is the case of the shrinkage method called Lasso, Hastie et al. (2001)

wlasso = arg min
w∈W

‖Aw − ỹ‖2
2

subject to: ‖w‖1 ≤ ε
. (23)

This chapter will concentrate in the Euclidian norm based formulation due to their simplicity,
and the existence of closed form solutions. According to Hastie et al. (2001) it could be used
any p besides 1, or 2, and that, indeed, we could try to estimate it from the data, but there is
no results in this direction so far.

1.1 Wiener’s filter interpretation
Consider the singular value decomposition (SVD) of A as

A = USVT (24)

where U and V are unitary matrices, i.e, U−1 = UT , and S = diag(s1, s2, ..., st) is a diagonal
matrix with s1 ≥ s2 ≥ ... ≥ st ≥ 0, called the singular values of A. Thus, wλ, given in (12), can
be written as:

wλ = (VSTUTUSVT + λVIVT)−1VSTUTỹ
= V(STS + λI)−1STUTỹ

wλ =
t

∑
i=1

s2
i

s2
i + λ

uT
i ỹ
si

vi, (25)

where λ ≥ 0 : s2
i

s2
i +λ

≤ 1 are the Wiener’s filter weights. The SVD of the matrix A is related

to the principal component analysis. Therefore, it implies that it shrinks more the directions
with smaller variance. Next section will introduce the Weight Decay, the realization of the
ideas presented in this section to Neural Networks.

2. Structural Risk Minimization principle

The structural risk minimization (SRM) was introduced by Vapnik and Chervonenkis and a
description of it can be found Vapnik (1992), Vapnik (1998). One of the main achivements of
the SRM is the introduction of the idea of capacity of a set of functions. It is based on some
theoretical results that shows that the upper bound of the learning machine expected risk de-
pends on: (i) the training error and, (ii) the machine capacity, defined as the VC dimension and
its variations, Vapnik (2001). This inductive principle is directly applied in learning machines
as the Support Vector Machines (SVMs). Following these considerations the SRM principle
considers the minimization of two factors: the training error and the VC dimension.
Consider the function J(·, ·) : Z × W �→ R, in which Z and W are arbitrary spaces. Taking
its second argument w ∈ W as a parameter constrained to a set Wk ⊂ W, a set J of functions
J(·,w) : Z �→ R becomes defined for w ∈ Wk. This set can be structured as a sequence of nested
subsets Jk = {J(·,w), w ∈ Wk}, such that

W1 ⊂ W2 ⊂ ... ⊂ Wi... ⇒ J1 ⊆ J2 ⊆ ... ⊆ Ji... (26)

The sequence (26) should fulfill the following conditions: (i) the VC dimension, hk, of each set
Jk is finite, and (ii)

h1 ≤ h2 ≤ ... ≤ hi... . (27)

For any positive integer k, there is a finite positive scalar Bk such that J(z,w) ≤ Bk, ∀ w ∈ Wk
and z ∈ Z. The principle of SRM is oriented to find the values of w and k such that w ∈
Wk, making the function J(·,w) minimize the empirical risk, while the set Wk minimizes the
structural risk.
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2.1 Multiobjective Learning
The SRM can be interpreted as a bi-objective optimization problem, which considers the min-
imization of the empirical risk and the machine capacity. Instead of the integer index k, a
straightforward generalization is to consider that the set W is parameterized by a continuous
parameter ζ . Given a training set T, the SRM problem for this set can be written as:

(SRM): min
ζ,w

{
J(ζ,w)
Ω(ζ,w)

. (28)

in which J represents some empirical risk function, and Ω the complexity of the learning
machine, for instance the fat-shattering dimension, Shawe-Taylor & Bartlett (1998).
Usually, it is not possible to minimize J and Ω simultaneously, because the optimum to one
function hardly ever is the optimum to the other one. Thus, there is not a single optimum, but
a set of them, when a multiobjective formulation is considered. In order to state the solutions
of the SRM, the following definitions are required:

(i) Dominance: A pair (ζa,wa) dominates another pair (ζb,wb), which is denoted by (ζa,wa)≺
(ζb,wb), if J((ζa,wa)) ≤ J((ζb,wb)) and Ω((ζa,wa)) ≤ Ω((ζb,wb)), with the strict in-
equality valid for at least one of the functions.

(ii) Pareto optimality: A pair (ζ∗,w∗) is called Pareto-Optimal (PO) if there is no other feasible
pair which dominates it.

By using these definitions, it is possible to generate the set of solutions called PO front, which
have the best trade-off between the error and the machine complexity. All such solutions are
candidate solutions for the SRM problem.
Examining (26) and (27) from the viewpoint of the Pareto Optimality of (44), it can be seen that
in the nested sequence J1 ⊂ J2 ⊂ ... ⊂ Ji... , the minimal empirical error in the set is ordered as
J1∗ ≥ J2∗ ≥ ... ≥ Ji∗, where Jk∗ := J(wk∗) and

wk∗ = argmin
w

J(w)

subject to: w ∈ Wk
(29)

The solutions wk∗ are Pareto-Optimal ones, each one associated to the corresponding sequence
set Jk. These are the solutions of the SRM problem. Any other function J(·,w) that is not
a solution of any minimization problem of this form must be dominated, and cannot be a
solution of the SRM problem. This will be the base of some novel results presented in this
chapter. Defining the complexity as Ω(ζ), it can be associated to some W(ζ) defined by

W(ζ) = {w : ‖w‖ < ζ} (30)

and
Ω(ζ) = ζ. (31)

Given ζ1 < ζ2, this choice of W(ζ) and Ω(ζ) preserves the necessary relations:

• W(ζ1) ⊂ W(ζ2);

• J(·,ζ1) ≥ J(·,ζ2);

• Ω(ζ1) < Ω(ζ2).

As the minimization of the structural risk Ω(ζ) = ζ is equivalent to the minimization of the
norm of w, the structural risk minimization principle becomes, in this case, stated in terms of
w only:

(SRM): min
w

{
J(·,w)
Ω(w) = ‖w‖ . (32)

3. The Weight Decay for MLPs

The Multi-Layer Perceptron (MLPs) is a popular neural network which considers the neurons
(or perceptrons) in cascade. Consider the input vector x, which includes the bias term, i.e., it
is added an extra element equal to 1, the vectorial function Φ, and the weight matrix W

Φ1 = φ1(WT
1 x)

↓
Φq = φq(WT

q Φq−1)
, (33)

then
f (x,w)MLP = Φq(Φq−1(...Φ1(.))) (34)

where q is the number of layers, and φ is an activation function as hyperbolic tangent. For a
weight matrix W and the vector wj

wT
j x =

n

∑
i=0

wjixi. (35)

Therefore, the MLPs implement a nonlinear function of the sum of nonlinear functions. With
one hidden layer, and m neurons, it can be written as:

f (x,w)MLP =
m

∑
i=1

W2iφ(WT
1ix), (36)

where x ∈ Rn+1, x0 = 1 is the bias, W2 is a vector with m elements and W1 is a matrix
((n + 1)× m). The vector w is defined as a vector which contains all the elements of Wi.
Using the ideas from the regularization framework, the Weight Decay (WD) is a direct imple-
mentation of the Tikhonov’s model to MLPs. The WD consists in writing a weighted sum of
the Empirical risk, J(·), and the norm of the weight vector

wλ = argmin
w

JMLP
λ = J(w, x) + λ‖w‖2

2, (37)

where J(·)

J(w, x) =
1
2

t

∑
i=1

( f (xi,w)− ỹi)
2. (38)

In Bartlett (1998) it was shown that the fat-shattering dimension, which is a generalization of
the VC dimension, can be limited by limiting the weights of a given network. Limiting the
fat-shattering dimension leads to a limit in the generalization error, Vapnik (1998; 2001). This
gives support to the use of the norm of the weight vector as the complexity constraint. The
main difference between the problem stated in (10) and (37) is that in the first one the risk is
guaranteed to be convex, while in the second one it can be non-convex and even multi-modal.
Next section will show that the weighted sum approach, which is the base of the WD method,
is not consistent given non-convex problems.
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2.1 Multiobjective Learning
The SRM can be interpreted as a bi-objective optimization problem, which considers the min-
imization of the empirical risk and the machine capacity. Instead of the integer index k, a
straightforward generalization is to consider that the set W is parameterized by a continuous
parameter ζ . Given a training set T, the SRM problem for this set can be written as:

(SRM): min
ζ,w

{
J(ζ,w)
Ω(ζ,w)

. (28)

in which J represents some empirical risk function, and Ω the complexity of the learning
machine, for instance the fat-shattering dimension, Shawe-Taylor & Bartlett (1998).
Usually, it is not possible to minimize J and Ω simultaneously, because the optimum to one
function hardly ever is the optimum to the other one. Thus, there is not a single optimum, but
a set of them, when a multiobjective formulation is considered. In order to state the solutions
of the SRM, the following definitions are required:

(i) Dominance: A pair (ζa,wa) dominates another pair (ζb,wb), which is denoted by (ζa,wa)≺
(ζb,wb), if J((ζa,wa)) ≤ J((ζb,wb)) and Ω((ζa,wa)) ≤ Ω((ζb,wb)), with the strict in-
equality valid for at least one of the functions.

(ii) Pareto optimality: A pair (ζ∗,w∗) is called Pareto-Optimal (PO) if there is no other feasible
pair which dominates it.

By using these definitions, it is possible to generate the set of solutions called PO front, which
have the best trade-off between the error and the machine complexity. All such solutions are
candidate solutions for the SRM problem.
Examining (26) and (27) from the viewpoint of the Pareto Optimality of (44), it can be seen that
in the nested sequence J1 ⊂ J2 ⊂ ... ⊂ Ji... , the minimal empirical error in the set is ordered as
J1∗ ≥ J2∗ ≥ ... ≥ Ji∗, where Jk∗ := J(wk∗) and

wk∗ = argmin
w

J(w)

subject to: w ∈ Wk
(29)

The solutions wk∗ are Pareto-Optimal ones, each one associated to the corresponding sequence
set Jk. These are the solutions of the SRM problem. Any other function J(·,w) that is not
a solution of any minimization problem of this form must be dominated, and cannot be a
solution of the SRM problem. This will be the base of some novel results presented in this
chapter. Defining the complexity as Ω(ζ), it can be associated to some W(ζ) defined by

W(ζ) = {w : ‖w‖ < ζ} (30)

and
Ω(ζ) = ζ. (31)

Given ζ1 < ζ2, this choice of W(ζ) and Ω(ζ) preserves the necessary relations:

• W(ζ1) ⊂ W(ζ2);

• J(·,ζ1) ≥ J(·,ζ2);

• Ω(ζ1) < Ω(ζ2).

As the minimization of the structural risk Ω(ζ) = ζ is equivalent to the minimization of the
norm of w, the structural risk minimization principle becomes, in this case, stated in terms of
w only:

(SRM): min
w

{
J(·,w)
Ω(w) = ‖w‖ . (32)

3. The Weight Decay for MLPs

The Multi-Layer Perceptron (MLPs) is a popular neural network which considers the neurons
(or perceptrons) in cascade. Consider the input vector x, which includes the bias term, i.e., it
is added an extra element equal to 1, the vectorial function Φ, and the weight matrix W

Φ1 = φ1(WT
1 x)

↓
Φq = φq(WT

q Φq−1)
, (33)

then
f (x,w)MLP = Φq(Φq−1(...Φ1(.))) (34)

where q is the number of layers, and φ is an activation function as hyperbolic tangent. For a
weight matrix W and the vector wj

wT
j x =

n

∑
i=0

wjixi. (35)

Therefore, the MLPs implement a nonlinear function of the sum of nonlinear functions. With
one hidden layer, and m neurons, it can be written as:

f (x,w)MLP =
m

∑
i=1

W2iφ(WT
1ix), (36)

where x ∈ Rn+1, x0 = 1 is the bias, W2 is a vector with m elements and W1 is a matrix
((n + 1)× m). The vector w is defined as a vector which contains all the elements of Wi.
Using the ideas from the regularization framework, the Weight Decay (WD) is a direct imple-
mentation of the Tikhonov’s model to MLPs. The WD consists in writing a weighted sum of
the Empirical risk, J(·), and the norm of the weight vector

wλ = argmin
w

JMLP
λ = J(w, x) + λ‖w‖2

2, (37)

where J(·)

J(w, x) =
1
2

t

∑
i=1

( f (xi,w)− ỹi)
2. (38)

In Bartlett (1998) it was shown that the fat-shattering dimension, which is a generalization of
the VC dimension, can be limited by limiting the weights of a given network. Limiting the
fat-shattering dimension leads to a limit in the generalization error, Vapnik (1998; 2001). This
gives support to the use of the norm of the weight vector as the complexity constraint. The
main difference between the problem stated in (10) and (37) is that in the first one the risk is
guaranteed to be convex, while in the second one it can be non-convex and even multi-modal.
Next section will show that the weighted sum approach, which is the base of the WD method,
is not consistent given non-convex problems.
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3.1 The convexity issue
The WD approach is based on the general weighted sum function

Jλ(w) = λJ1 + (1 − λ)J2, (39)

where λ = [0,1] controls the importance of the objectives. Consider the following non-convex
unimodal one-variable functions:

J1(w) = ((w − 1)2 − tanh(40w − 4))2, (40)

J2(w) = 200w2, (41)

where the factor 200 was used only to simplify presentation. Given, λ = 0.3 and λ = 0.6, the
following weighted sum functions can be written

Ja(w) = 0.3J1 + (1 − 0.3)J2, (42)

Jb(w) = 0.6J1 + (1 − 0.6)J2. (43)

The functions J1 and J2 and two possible weighted solutions, Ja and Jb are shown in Fig. 1.
Note that the weighted functions have become multimodal, although the original functions
were unimodal. The PO front for this problem is presented in Fig. 2 and it is composed of
both convex and non-convex parts.
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Fig. 1. The original functions are presented in continuous line(−). Two possible weighted
solutions for this problem, with λ = 0.3 and λ = 0.6 are shown in (−.) and (−−), respectively.

The relevant conclusion here is: if J1 and J2 are not convex functions (what is the case in most
of machine learning problems), the weighed sum approach should not be employed for trying
to find the trade-off front, as it may loose some potential solution.
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Fig. 2. The minima of J1 and J2 are marked with the •, being the PO front everything between
them. The convex part of the PO front is marked using continuous lines (-) and the non-convex
as (–). The WD method can only generate the networks which belong to the convex part.

4. The Parallel Layer Percetron

Instead of assembling the layers in cascade, in Caminhas et al. (2003) it was proposed to use
them in parallel, given birth to the Parallel Layer Percetron (PLP). Consider the input vector
x, which includes the bias term, the vector function Φ, and the weight matrix W

Φ1 = φ1(WT
1 x)

↓
Φq = φq(WT

q x)
, (44)

then

f (x,w)PLP = φ

(
q

∏
i=1

Φi

)
, (45)

where, ∏ represents a point wise product, and w is a vector with all the weights Wi. Hence, the
PLP implements a nonlinear function of the product of nonlinear functions. This configuration
has some computational advantages as discussed in Caminhas et al. (2003). A particular case
of this topology can be written as the sum of the product of a linear layer, LT x, and a nonlinear
layer, Φ = φ(NT x), and it is given by

f (x,w)PLP = xT LΦT =
m

∑
j=1

[
n

∑
i=0

Ljixiφ(
n

∑
i=0

Njixi)

]
. (46)

Since f (x,w)PLP is a linear function of the parameters Lji, the PLP output can be written in a
matrix form. Thus, consider the vector lz = Lji, where z = (n + 1)(j − 1) + i. This vector is a
matrix transformation L to a vector with the same components, where j = 1, ...,m, i = 0, . . . ,n.
By calculating all the outputs of the nonlinear perceptrons, a matrix A, with components akz =
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3.1 The convexity issue
The WD approach is based on the general weighted sum function

Jλ(w) = λJ1 + (1 − λ)J2, (39)

where λ = [0,1] controls the importance of the objectives. Consider the following non-convex
unimodal one-variable functions:

J1(w) = ((w − 1)2 − tanh(40w − 4))2, (40)

J2(w) = 200w2, (41)

where the factor 200 was used only to simplify presentation. Given, λ = 0.3 and λ = 0.6, the
following weighted sum functions can be written

Ja(w) = 0.3J1 + (1 − 0.3)J2, (42)

Jb(w) = 0.6J1 + (1 − 0.6)J2. (43)

The functions J1 and J2 and two possible weighted solutions, Ja and Jb are shown in Fig. 1.
Note that the weighted functions have become multimodal, although the original functions
were unimodal. The PO front for this problem is presented in Fig. 2 and it is composed of
both convex and non-convex parts.
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The relevant conclusion here is: if J1 and J2 are not convex functions (what is the case in most
of machine learning problems), the weighed sum approach should not be employed for trying
to find the trade-off front, as it may loose some potential solution.
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4. The Parallel Layer Percetron

Instead of assembling the layers in cascade, in Caminhas et al. (2003) it was proposed to use
them in parallel, given birth to the Parallel Layer Percetron (PLP). Consider the input vector
x, which includes the bias term, the vector function Φ, and the weight matrix W

Φ1 = φ1(WT
1 x)

↓
Φq = φq(WT

q x)
, (44)

then

f (x,w)PLP = φ

(
q

∏
i=1

Φi

)
, (45)

where, ∏ represents a point wise product, and w is a vector with all the weights Wi. Hence, the
PLP implements a nonlinear function of the product of nonlinear functions. This configuration
has some computational advantages as discussed in Caminhas et al. (2003). A particular case
of this topology can be written as the sum of the product of a linear layer, LT x, and a nonlinear
layer, Φ = φ(NT x), and it is given by

f (x,w)PLP = xT LΦT =
m

∑
j=1

[
n

∑
i=0

Ljixiφ(
n

∑
i=0

Njixi)

]
. (46)

Since f (x,w)PLP is a linear function of the parameters Lji, the PLP output can be written in a
matrix form. Thus, consider the vector lz = Lji, where z = (n + 1)(j − 1) + i. This vector is a
matrix transformation L to a vector with the same components, where j = 1, ...,m, i = 0, . . . ,n.
By calculating all the outputs of the nonlinear perceptrons, a matrix A, with components akz =
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xzkφ(NT
j xi), k = 1, ..., t can be constructed

A =




x01φ(b11) . . . xn1φ(bm1)
... . . .

...
x0tφ(b1t) . . . xntφ(bmt)


 . (47)

Therefore, the output of the PLP network can be written as

f (x,w)PLP = A(x, N)l. (48)

Thus, the empirical risk can be written as:

JPLP(T,w) = (Al − ỹ)T(Al − ỹ). (49)

In this case the error is a quadratic function of the control variables - the vector l - while A
is a nonlinear function of N. The main idea that will follow is to find a formulation, which
resembles the Tikhonov’s least squares solution, for this topology. Even though it is clear how
to use the vector l, the nonlinear weights N brings an additional complication. To solve this
problem it is necessary to find a function Ω(l) which is capable to consider also the complexity
derived from N. For that, a generalized version of the Tikhonov’s regularization, based on a
Q-norm, can be used.

5. Generalized Tikhonov’s regularization using a Q-norm

For any norm and any bijective linear transformation D, a new norm of l can be defined to be
equal to ‖Dl‖. For instance, in 2D, with D a rotation by 45 and a suitable scaling, this changes
the 1-norm into an ∞-norm. Consider the Euclidean norm of the transformed vector

‖Dl‖2 =
√

lT DT Dl =
√

lTQl, (50)

for Q = DT D, w ∈ Rn a vector with finite dimension, and DT D = Q ∈ Rn×n a symmetric
positive definite matrix, i.e., lTQl > 0, ∀l �= 0.. The Q-norm of w is given by

√
lTQw. The

regularization function Ω can be written as a Q-norm, where the matrix Q is a function of the
nonlinear parameters N:

Ω(l, N) = lTQ(N)l. (51)

Therefore, the solution of the linear ill-posed problem can be generalized as

lQ = argmin
l∈W

Jλ = ‖Al − ỹ‖2
Q1

+ λ‖l‖2
Q2

(52)

Thus, it is need to define a matrix Q2 such that it considers the influence of the nonlinear
parameters of the PLP, while only adjusting the linear ones. This will be achieved using the
Minimum Gradient Method (MGM).

5.1 The Minimum Gradient Method
By calculating the derivative of (46) with respect to xk, one obtains, Vieira et al. (2008):

∂ f (x,w)

∂xk
=

m

∑
j=1

[(
∂φ

∂bj
Njk

)(
n

∑
i=0

Ljixi

)
+ φ(bj)Ljk

]
. (53)

where bj = ∑n
i=0 Njixi. For all j and z = (n + 1)(j − 1) + i the following holds true

∂ f (x,w)j

∂xk
=

[(
∂φ

∂bj
Njkxk

)
+ φ(bj)

]
lz, k = i, (54)

∂ f (x,w)j

∂xk
=

[(
∂φ

∂bj
Njkxi

)]
lz, k �= i. (55)

The derivatives in relation to the vector xk = [xk1, ..., xkh, ..., xkt]
T , where t is the number of

samples, can be written in a vector form as follows:

∂ f (x,w)

∂xk
= Dkl. (56)

To exemplify the construction of the matrix Dk, where Dk ∈ Rt×(n+1)m, consider the following
cases when the derivatives in relation to x1 and x2 are computed, for bjh, Nji, xih, where j
represents the neuron, i the input and h the sample number.

D1 =




∂φ

∂b11
N10

∂φ

∂b11
N11x11 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
... . . .

...
∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt




(57)

D2 =




∂φ

∂b11
N10

∂φ

∂b11
N11x11

∂φ

∂b11
N12x21 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
...

... . . .
...

∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t

∂φ

∂b1t
N12x2t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt




(58)

In the matrices Dk, when i = k, the columns related to the weights Ljk = lz are composed by
two terms, as can be noticed in the second column of D1 and in the third one of D2. In the other
columns just one term is used. Remembers that i = 0 represents the bias term. Therefore, the
complexity function Ω can be defined as the minimization of the norm of the output gradient

ΩPLP =
n

∑
k=1

(Dkl)T(Dkl) = lTQl, (59)
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xzkφ(NT
j xi), k = 1, ..., t can be constructed

A =




x01φ(b11) . . . xn1φ(bm1)
... . . .

...
x0tφ(b1t) . . . xntφ(bmt)


 . (47)

Therefore, the output of the PLP network can be written as

f (x,w)PLP = A(x, N)l. (48)

Thus, the empirical risk can be written as:

JPLP(T,w) = (Al − ỹ)T(Al − ỹ). (49)

In this case the error is a quadratic function of the control variables - the vector l - while A
is a nonlinear function of N. The main idea that will follow is to find a formulation, which
resembles the Tikhonov’s least squares solution, for this topology. Even though it is clear how
to use the vector l, the nonlinear weights N brings an additional complication. To solve this
problem it is necessary to find a function Ω(l) which is capable to consider also the complexity
derived from N. For that, a generalized version of the Tikhonov’s regularization, based on a
Q-norm, can be used.

5. Generalized Tikhonov’s regularization using a Q-norm

For any norm and any bijective linear transformation D, a new norm of l can be defined to be
equal to ‖Dl‖. For instance, in 2D, with D a rotation by 45 and a suitable scaling, this changes
the 1-norm into an ∞-norm. Consider the Euclidean norm of the transformed vector

‖Dl‖2 =
√

lT DT Dl =
√

lTQl, (50)

for Q = DT D, w ∈ Rn a vector with finite dimension, and DT D = Q ∈ Rn×n a symmetric
positive definite matrix, i.e., lTQl > 0, ∀l �= 0.. The Q-norm of w is given by

√
lTQw. The

regularization function Ω can be written as a Q-norm, where the matrix Q is a function of the
nonlinear parameters N:

Ω(l, N) = lTQ(N)l. (51)

Therefore, the solution of the linear ill-posed problem can be generalized as

lQ = argmin
l∈W

Jλ = ‖Al − ỹ‖2
Q1

+ λ‖l‖2
Q2

(52)

Thus, it is need to define a matrix Q2 such that it considers the influence of the nonlinear
parameters of the PLP, while only adjusting the linear ones. This will be achieved using the
Minimum Gradient Method (MGM).

5.1 The Minimum Gradient Method
By calculating the derivative of (46) with respect to xk, one obtains, Vieira et al. (2008):

∂ f (x,w)

∂xk
=

m

∑
j=1

[(
∂φ

∂bj
Njk

)(
n

∑
i=0

Ljixi

)
+ φ(bj)Ljk

]
. (53)

where bj = ∑n
i=0 Njixi. For all j and z = (n + 1)(j − 1) + i the following holds true

∂ f (x,w)j

∂xk
=

[(
∂φ

∂bj
Njkxk

)
+ φ(bj)

]
lz, k = i, (54)

∂ f (x,w)j

∂xk
=

[(
∂φ

∂bj
Njkxi

)]
lz, k �= i. (55)

The derivatives in relation to the vector xk = [xk1, ..., xkh, ..., xkt]
T , where t is the number of

samples, can be written in a vector form as follows:

∂ f (x,w)

∂xk
= Dkl. (56)

To exemplify the construction of the matrix Dk, where Dk ∈ Rt×(n+1)m, consider the following
cases when the derivatives in relation to x1 and x2 are computed, for bjh, Nji, xih, where j
represents the neuron, i the input and h the sample number.

D1 =




∂φ

∂b11
N10

∂φ

∂b11
N11x11 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
... . . .

...
∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt




(57)

D2 =




∂φ

∂b11
N10

∂φ

∂b11
N11x11

∂φ

∂b11
N12x21 + φ (b11) . . .

∂φ

∂bm1
Nmnxn1

...
...

... . . .
...

∂φ

∂b1t
N10

∂φ

∂b1t
N11x1t

∂φ

∂b1t
N12x2t + φ (b1t) . . .

∂φ

∂bmt
Nmnxnt




(58)

In the matrices Dk, when i = k, the columns related to the weights Ljk = lz are composed by
two terms, as can be noticed in the second column of D1 and in the third one of D2. In the other
columns just one term is used. Remembers that i = 0 represents the bias term. Therefore, the
complexity function Ω can be defined as the minimization of the norm of the output gradient

ΩPLP =
n

∑
k=1

(Dkl)T(Dkl) = lTQl, (59)
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where Q ∈ R(n+1)m×(n+1)m = ∑n
k=1 DT

k Dk. Clearly, lTQl ≥ 0 ∀l, noticing that the sum of sym-
metric positive-definite matrices are also symmetric positive-definite matrices. The construc-
tion of the matrix DT

k Dk is exemplified taking k = 2:

DT
2 D2 =




t

∑
h=1

(
∂φ

∂b1h
N10

)2 t

∑
h=1

(
∂φ2

∂b1h
N10N11x1h

)

t

∑
h=1

(
∂φ2

∂b1h
N10N11x1h

) t

∑
h=1

(
∂φ

∂b1h
N11x1h

)2

... . . .
t

∑
h=1

(
∂φ

∂b1h

∂φ

∂bmh
N10Nmnxnh

) t

∑
h=1

(
∂φ

∂b1h

∂φ

∂bmh
N11Nmnx1hxnh

)

t

∑
h=1

(
∂φ

∂b1h
N10

)(
∂φ

∂b1h
N12x2h + φ (b1h)

)
. . .

t

∑
h=1

(
∂φ

∂b1h

∂φ

∂bmh
N10Nmnxnh

)

... . . .
...

t

∑
h=1

(
∂φ

∂b1h
N12x2h + φ (b1h)

)2 . . .
...

. . . . . .
t

∑
h=1

(
∂φ

∂bmh
Nmnxnh

)2




(60)

Since JPLP and ΩPLP are convex functions, the regularization based on the least-squares solu-
tion as presented in (52) does not loose any potential solution.

lλ = argmin JPLP
λ = λJPLP + (1 − λ)ΩPLP

= λ(Al − ỹ)T(Al − ỹ) + (1 − λ)lTQl.
(61)

where the optimum l, (i.e., lλ), can be calculated by making the derivative of (61) equal to
zero. The derivative of (61) in relation to l can be calculated as:

dJPLP
λ

dl
= λ(−2ATỹ + 2AT Al) + (1 − λ)2Ql (62)

In order to find lλ, the previous relation should be made equal to zero, as given below:

λ(−2ATỹ + 2AT Al) + (1 − λ)2Ql = 0

− 2λATỹ + 2λAT Al + (1 − λ)2Ql = 0

[λAT A + (1 − λ)Q]l = λATỹ

lλ = [λAT A + (1 − λ)Q]−1λATỹ, (63)
if the matrix [λAT A + (1 − λ)Q] is non-singular. The Pareto-Optimum set can be found by
varying λ between zero and one. This work applied the golden section algorithm in the val-
idation error criteria to define λ∗. The validation error for the given formulation is a convex
function of the linear parameters l.

5.2 Generalized Singular Value Decomposition
Consider the following properties of the Generalized Singular Value Decomposition (GSVD)
Hansen (1998):

GSVD =




A = UASAVT

D = UDSDVT

ST
ASA + ST

DSD = I
, (64)

where U is a unitary matrix, i.e., U−1 = UT , and SA = diag(sA1, . . . , sA(n+1)m), SD =

diag(sD1, . . . , sD(n+1)m) such that sA1 ≥ . . . ≥ sA(n+1)m ≥ 0 and sD(n+1)m ≥ . . . ≥ sD1 ≥ 0. Ap-
plying (64) in (63) the following is obtained:

lλ =
[
λAT A + (1 − λ)Q

]−1
λATỹ

= λ
[
λVS2

AVT + (1 − λ)VS2
DVT

]−1
VSAUT

Aỹ

= λ
[
V(λS2

A + (1 − λ)S2
D)V

T
]−1

VSAUT
Aỹ

= λ
[
(λS2

A + (1 − λ)S2
D)V

T
]−1

V−1VSAUT
Aỹ

= λ(VT)−1
[
λS2

A + (1 − λ)S2
D

]−1
SAUT

Aỹ

(65)

where
[
λS2

A + (1 − λ)S2
D
]

is a diagonal matrix with elements
[
λs2

Ai + (1 − λ)s2
Di
]
. The unfil-

tered solution, disregarding the complexity control, i.e., λ = 1, is equal to

l∗(λ = 1) = (VT)−1S−1
A UT

Aỹ. (66)

The Wiener filter weights are evaluated comparing the unfiltered solution with the general
solution of (65). The following is obtained

Ψi =
λs2

Ai
λs2

Ai + (1 − λ)s2
Di

=
1

1 + λ′ s2
Di

s2
Ai

, (67)

where λ′ = (1 − λ)/λ, λ �= 0 and sAi /sDi are the generalized singular values. Similarly to the
results using the simple SVD, the components with smaller singular values are filtered the
most. Differently from the traditional Wiener filter, which only considers sDi = 1, the MGM
approach computes a general sDi. It is possible to obtain sDi = 1 using a identity matrix in the
Q-norm. The Wiener filter weights define the relevance of each nonlinear neuron, filtering the
unnecessary ones.

6. Results for benchmark problems

This section presents some experimental results in benchmarking problems considering the
proposed ideas. Sigmoidal logistic functions have been used as PLP nonlinear activation
function. Data sets from Intelligent data Analysis (IDA) repository are considered here as
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where Q ∈ R(n+1)m×(n+1)m = ∑n
k=1 DT

k Dk. Clearly, lTQl ≥ 0 ∀l, noticing that the sum of sym-
metric positive-definite matrices are also symmetric positive-definite matrices. The construc-
tion of the matrix DT

k Dk is exemplified taking k = 2:

DT
2 D2 =




t
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(
∂φ2
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)

t
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(
∂φ2
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) t

∑
h=1

(
∂φ
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∂bmh
Nmnxnh

)2




(60)

Since JPLP and ΩPLP are convex functions, the regularization based on the least-squares solu-
tion as presented in (52) does not loose any potential solution.

lλ = argmin JPLP
λ = λJPLP + (1 − λ)ΩPLP

= λ(Al − ỹ)T(Al − ỹ) + (1 − λ)lTQl.
(61)

where the optimum l, (i.e., lλ), can be calculated by making the derivative of (61) equal to
zero. The derivative of (61) in relation to l can be calculated as:

dJPLP
λ

dl
= λ(−2ATỹ + 2AT Al) + (1 − λ)2Ql (62)

In order to find lλ, the previous relation should be made equal to zero, as given below:

λ(−2ATỹ + 2AT Al) + (1 − λ)2Ql = 0

− 2λATỹ + 2λAT Al + (1 − λ)2Ql = 0

[λAT A + (1 − λ)Q]l = λATỹ

lλ = [λAT A + (1 − λ)Q]−1λATỹ, (63)
if the matrix [λAT A + (1 − λ)Q] is non-singular. The Pareto-Optimum set can be found by
varying λ between zero and one. This work applied the golden section algorithm in the val-
idation error criteria to define λ∗. The validation error for the given formulation is a convex
function of the linear parameters l.

5.2 Generalized Singular Value Decomposition
Consider the following properties of the Generalized Singular Value Decomposition (GSVD)
Hansen (1998):

GSVD =




A = UASAVT

D = UDSDVT

ST
ASA + ST

DSD = I
, (64)

where U is a unitary matrix, i.e., U−1 = UT , and SA = diag(sA1, . . . , sA(n+1)m), SD =

diag(sD1, . . . , sD(n+1)m) such that sA1 ≥ . . . ≥ sA(n+1)m ≥ 0 and sD(n+1)m ≥ . . . ≥ sD1 ≥ 0. Ap-
plying (64) in (63) the following is obtained:

lλ =
[
λAT A + (1 − λ)Q

]−1
λATỹ

= λ
[
λVS2

AVT + (1 − λ)VS2
DVT

]−1
VSAUT

Aỹ
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[
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where
[
λS2

A + (1 − λ)S2
D
]

is a diagonal matrix with elements
[
λs2

Ai + (1 − λ)s2
Di
]
. The unfil-

tered solution, disregarding the complexity control, i.e., λ = 1, is equal to

l∗(λ = 1) = (VT)−1S−1
A UT

Aỹ. (66)

The Wiener filter weights are evaluated comparing the unfiltered solution with the general
solution of (65). The following is obtained

Ψi =
λs2

Ai
λs2

Ai + (1 − λ)s2
Di

=
1

1 + λ′ s2
Di

s2
Ai

, (67)

where λ′ = (1 − λ)/λ, λ �= 0 and sAi /sDi are the generalized singular values. Similarly to the
results using the simple SVD, the components with smaller singular values are filtered the
most. Differently from the traditional Wiener filter, which only considers sDi = 1, the MGM
approach computes a general sDi. It is possible to obtain sDi = 1 using a identity matrix in the
Q-norm. The Wiener filter weights define the relevance of each nonlinear neuron, filtering the
unnecessary ones.

6. Results for benchmark problems

This section presents some experimental results in benchmarking problems considering the
proposed ideas. Sigmoidal logistic functions have been used as PLP nonlinear activation
function. Data sets from Intelligent data Analysis (IDA) repository are considered here as
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presented in K. Muller & Scholkopf (2002). Table 1 summarizes the dimensionality of the in-
put space, the number of training and test samples and the number of realizations for each
data set. The results obtained by the PLP-MGM are compared with the results obtained by us-
ing the following machine learning techniques: (i) Support Vector Machine (SVM), (ii) kernel
Fisher Discriminant (KFD), and (iii) Regularized AdaBoost (ABR) extracted from Muller et al.
(2001); (iv)Leave-One-Out KFD (LKFD), and (v) Single objective Parallel Layer Perceptron
(PLP) from Caminhas et al. (2003). The results are presented in Table 2.

Name Dimension Train Test Realizations
Banana 2 400 4900 100
B.Cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 1300 1010 18 20
S. Flare 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 700 100

Table 1. Ida repository data set summary.

SVM KFD ABR LKFD PLP PLP-MGM
Banana 11.5±0.7 10.8±0.5 10.9±0.4 10.4±0.4 10.7±.06 10.7±0.6
B. Cancer 26±5 26±5 27 ± 5 26 ± 4 27 ± 5 25 ± 4
Diabetes 23±2 23±2 24±2 23±2 23±2 23±2
German 24±2 24±2 24±2 24±2 30±3 24±2
Heart 16±3 16±4 17±4 16±4 19±3 16±3
Image 3.0±0.6 3.3±0.6 2.7±0.6 4.0±0.6 5±4 3.3±0.7
S. Flare 32±2 33±2 34±2 34±2 37±2 33±2
Thyr. 5±2 4±2 5±2 5±2 4±2 4±2
Titanic 22±1 23±2 23±1 22±1 23±1 22±1
Twon. 3.0±0.2 2.6±0.2 2.7±0.2 2.7±0.2 2.8±0.3 2.6±0.3

Table 2. Ida repository results.

The first noticeable result of Table 2 is that the PLP-MGM has outperformed the conventional
PLP in most of the tested examples, and that PLP has never outperformed PLP-MGM. It is
clear as well that the PLP-MGM has achieved similar results compared to those produced by
the other approaches used for comparison.

7. Denoising Ground Penetrating Radar data

This section considers denoising Ground Penetrating Radar (GPR) using the PLP-MGM tech-
nique. This noise can be due to environmental conditions, geometric variations, and sen-
sors characteristics. The numerical simulation follows the results described in Travassos et al.
(2008). A block diagram of a typical GPR system to detect underground targets, is given in
Fig. 3.
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Fig. 3. The GPR problem.

The proposed configuration is tested to filter the noise of the scattered wave from a cylindrical
air inclusion buried in a non-homogenous host medium, Vieira et al. (2009). Tables 3 and 4
considers white and colored Gaussian noise respectively. As the noise is stochastic by nature
a statistical evaluation of the results is necessary. The simulations were done considering 20
different noises for each SNR, and a Neural Network trained for each of them. The results
are presented in 3 and 4 they show a considerable improvement in the SNR, showing the
effectiveness of the proposed approach.

SNR in the Filtered Wave (dB)
Noise (dB) Mean Max Min
3 14.16 14.65 13.47
6 14.69 15.07 14.14
9 16.55 17.67 15.65
10 20.47 21.35 18.67

Table 3. SNR considering the GPR processed wave (filtered) by the proposed approach cor-
rupted by White Gaussian Noise.

SNR in the Filtered Wave (dB)
Noise (dB) Mean Max Min
3 12.76 13.22 11.96
6 15.30 16.21 14.17
9 20.36 20.73 19.96
10 20.58 20.93 20.09

Table 4. SNR considering the GPR wave processed (filtered) by the proposed approach cor-
rupted by Colored Gaussian Noise.

8. Final Comments

This chapter described the use of the multiobjective optimization framework to train the Par-
allel Layer Perceptron network. This is based on the general concept that learning depends
on two functions: the empirical risk and the network complexity. A formulation based on
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presented in K. Muller & Scholkopf (2002). Table 1 summarizes the dimensionality of the in-
put space, the number of training and test samples and the number of realizations for each
data set. The results obtained by the PLP-MGM are compared with the results obtained by us-
ing the following machine learning techniques: (i) Support Vector Machine (SVM), (ii) kernel
Fisher Discriminant (KFD), and (iii) Regularized AdaBoost (ABR) extracted from Muller et al.
(2001); (iv)Leave-One-Out KFD (LKFD), and (v) Single objective Parallel Layer Perceptron
(PLP) from Caminhas et al. (2003). The results are presented in Table 2.

Name Dimension Train Test Realizations
Banana 2 400 4900 100
B.Cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 1300 1010 18 20
S. Flare 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 700 100

Table 1. Ida repository data set summary.

SVM KFD ABR LKFD PLP PLP-MGM
Banana 11.5±0.7 10.8±0.5 10.9±0.4 10.4±0.4 10.7±.06 10.7±0.6
B. Cancer 26±5 26±5 27 ± 5 26 ± 4 27 ± 5 25 ± 4
Diabetes 23±2 23±2 24±2 23±2 23±2 23±2
German 24±2 24±2 24±2 24±2 30±3 24±2
Heart 16±3 16±4 17±4 16±4 19±3 16±3
Image 3.0±0.6 3.3±0.6 2.7±0.6 4.0±0.6 5±4 3.3±0.7
S. Flare 32±2 33±2 34±2 34±2 37±2 33±2
Thyr. 5±2 4±2 5±2 5±2 4±2 4±2
Titanic 22±1 23±2 23±1 22±1 23±1 22±1
Twon. 3.0±0.2 2.6±0.2 2.7±0.2 2.7±0.2 2.8±0.3 2.6±0.3

Table 2. Ida repository results.

The first noticeable result of Table 2 is that the PLP-MGM has outperformed the conventional
PLP in most of the tested examples, and that PLP has never outperformed PLP-MGM. It is
clear as well that the PLP-MGM has achieved similar results compared to those produced by
the other approaches used for comparison.

7. Denoising Ground Penetrating Radar data

This section considers denoising Ground Penetrating Radar (GPR) using the PLP-MGM tech-
nique. This noise can be due to environmental conditions, geometric variations, and sen-
sors characteristics. The numerical simulation follows the results described in Travassos et al.
(2008). A block diagram of a typical GPR system to detect underground targets, is given in
Fig. 3.
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The proposed configuration is tested to filter the noise of the scattered wave from a cylindrical
air inclusion buried in a non-homogenous host medium, Vieira et al. (2009). Tables 3 and 4
considers white and colored Gaussian noise respectively. As the noise is stochastic by nature
a statistical evaluation of the results is necessary. The simulations were done considering 20
different noises for each SNR, and a Neural Network trained for each of them. The results
are presented in 3 and 4 they show a considerable improvement in the SNR, showing the
effectiveness of the proposed approach.

SNR in the Filtered Wave (dB)
Noise (dB) Mean Max Min
3 14.16 14.65 13.47
6 14.69 15.07 14.14
9 16.55 17.67 15.65
10 20.47 21.35 18.67

Table 3. SNR considering the GPR processed wave (filtered) by the proposed approach cor-
rupted by White Gaussian Noise.

SNR in the Filtered Wave (dB)
Noise (dB) Mean Max Min
3 12.76 13.22 11.96
6 15.30 16.21 14.17
9 20.36 20.73 19.96
10 20.58 20.93 20.09

Table 4. SNR considering the GPR wave processed (filtered) by the proposed approach cor-
rupted by Colored Gaussian Noise.

8. Final Comments

This chapter described the use of the multiobjective optimization framework to train the Par-
allel Layer Perceptron network. This is based on the general concept that learning depends
on two functions: the empirical risk and the network complexity. A formulation based on
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the Tikhonov’s regularization was proposed using a Q-norm as a complexity measure. This
has a least-squares like closed form solution; therefore, it relies on simple computational al-
gorithms. Moreover, it bores the good aspects of the Tikhonov’s method. It opens discussions
about other possible definitions of the matrix Q, different configurations of the PLP layers
among others.
The results presented proved the effectiveness of the proposed approach. A wide comparison
considering several benchmarking problems and algorithms were presented. Also a complex
engineering problem was successfully solved using the proposed approach.
The relationships between the classical regularization, the structural risk minimization and
the multiobjective formulation were also explored. These help the understanding concerning
the nature of learning and their possibilities. It shows that the convexity is an important issue
to the use of the WD method to MLPs. This is indeed a wide subject, and, due to space
constraints, this chapter discussed a rather biased point-of-view on those subjects.
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the Tikhonov’s regularization was proposed using a Q-norm as a complexity measure. This
has a least-squares like closed form solution; therefore, it relies on simple computational al-
gorithms. Moreover, it bores the good aspects of the Tikhonov’s method. It opens discussions
about other possible definitions of the matrix Q, different configurations of the PLP layers
among others.
The results presented proved the effectiveness of the proposed approach. A wide comparison
considering several benchmarking problems and algorithms were presented. Also a complex
engineering problem was successfully solved using the proposed approach.
The relationships between the classical regularization, the structural risk minimization and
the multiobjective formulation were also explored. These help the understanding concerning
the nature of learning and their possibilities. It shows that the convexity is an important issue
to the use of the WD method to MLPs. This is indeed a wide subject, and, due to space
constraints, this chapter discussed a rather biased point-of-view on those subjects.
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1. Introduction 
 

Learning is the process of constructing a model from complex world. And machine learning 
is concerned with constructing computer programs that automatically improve with 
experience. Machine learning draws on concepts and results from many fields, including 
artificial intelligence, statistics, control theory, cognitive science, information theory, etc. 
Many successful machine learning applications have also been developed in recent years. 
Obviously, no matter what we adopt new analytical method or technical means, we must 
have a distinct recognition of system itself and its complexity, and increase continuously 
analysis, operation and control level.  
In mathematics, nonlinear system represents a system whose behavior is not expressible as a 
linear function of its descriptors. Our world is inherently nonlinear in nature. Generally 
speaking, there have difficulties in solving nonlinear equations. Especially the nonlinear 
system may give rise to some interesting phenomena such as chaos, where simple changes 
in one part of the system will produce complex effects throughout. 
It has been half century since the discovery of inherent randomicity in nonlinear systems 
(Ulam & Von Neumann, 1947). The study of chaotic symbolic sequences is gradually 
developing in theory. However, applied research of stochastic chaotic sequences has not 
been fully carried out, for most of studies focus on controlling or avoiding chaos. Chaos, 
nevertheless, affords inherent randomicity that can be calculated, which is an important 
applied domain. The stochastic symbolic sequences bear the following three features. First, 
computer can generate them iteratively. Second, like false stochastic numbers, they can set 
up a stochastic sequence simulation (in contradiction, they are based on corresponding 
symbolic spaces). Third, they can produce numerous symbolic spaces, which is not 
characteristic of common stochastic numbers. Therefore, the symbolic dynamics (Hao, 1989; 
Hao, 1991; Hao & Zheng, 1998; Collet & Eckmann, 1980; Alekseev & Yakobson, 1981; Xie, 
1993; Xie, 1996; Peng & Luo, 1991; Zhou & Peng, 2000) developed by this means is supposed 
to be very useful.  
Our researches are based on this kind of symbolic sequences, the generic iterative map in n  
symbolic map (Zhou & Cao, 2003) is: 

7
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For random n  symbolic sequences, their corresponding symbolic spaces, symbolic 
expression and kneading sequences are listed in Table 1,  
 

Symbolic Spaces Symbolic Expression Kneading Sequences 

2  .L R  ( , )L RL   

3  . .L M R  ( , )R L   --Kneading plane 

4  . . .L M N R  ( , )L RL   --Kneading space 

      
Table 1. The corresponding symbolic character in symbolic spaces 
 
In this chapter, we will clarify the different kinds of statistic character and complexity in 
nonlinear systems. This chapter includes two parts, the fist part is about unimodal surjective 
map and Lorenz type maps nonlinear systems, which are two kinds of typical nonlinear 
systems. The distributions of frequency, inter-occurrence times, first passage time and 
visitation density in unimodal surjective map and Lorenz type maps are discussed carefully. 
These two kinds of nonlinear systems have same distributions, which will also be explained 
in theory, and the catholicity of the statistic character will be elicited. The second part is 
about the inherent randomicity in 4-symbolic dynamics. The distribution of frequency, inter-
occurrence times and the alignment of two random sequences are amplified in detail. By 
using transfer probability of Markov chain (MC), we will obtain analytic expressions of 
generating functions in four probabilities stochastic wander model, which can be applied to 
all 4-symbolic systems. So, a perfect symbolic platform will be set up for our utilizing 
statistic character. The 4-symbolic sequences have natural relations with bioinformatics 
sequences, in the field of application, we hope to afford this kind of symbolic platform 
which satisfies these stochastic properties and study some properties of DNA sequences, 20 
amino acids symbolic sequences of protein structure, and the time series that can be 
symbolic in finance market et al.  

 
2. The statistic character in Unimodal surjective map 
 

2.1 Symbolic dynamics of Unimodal surjective map 
The generic iterative form in Unimodal surjective map is: 
 

2
1 ( , ) 1 2 ,n n nx F A x x      

 

nx  is defined on interval [ 1,1].  
Let us define an alphabet of 2 numbers, which is corresponding to the likely states of a 
random discrete nonlinear system, or all the likely outcomes of a random experiment:  

 0,1 {" "," "}faillure success    

 
The forward sequence constitutes a space (or a set) composed of the generated outcomes: 
 

  0 1 2, , , : , {0,1, 2, }N
i i          

 
These sequences themselves are iteratively generated (Collet & Eckmann, 1980; Peng & Luo, 

1991), in fact it's a shift map : N N   , which acting on the sequences by 

0 1 2 1 2( , , , ) ( , , ).        Another definition is  , which is the product measure 

(Coelho & Collet, 1994; Coelho, 2000; Peng & Cao, 1996; Billingsley, 1986) on N generated 

by the measure (1 , )p p  on  {0,1} , and will be denoted by (1 , )Np p . 

 
2.2 The distribution of frequency 

Defining : {0,1}Nf     by  0 1 2 0{ , , , } ,f      it is coarse graining in theory, one 
can get: 

( ) ( ),i
iX f    (for 0,1,2,i   ), 

 
which are sequences of independent and identically distributed(i.i.d.) random variables 

defined on the probability space ( , )N    (all the following discussions are based on the 

random variables), that is, the random variables represented by 0 1 2, , ,    are i.i.d., and 

( 0,1,2, )i i   is based on  , 
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The stochastic symbolic sequences in Unimodal surjective map satisfy Binomial distribution: 
 

                                           { : ( ) } (1 )N k k n k
n nY x k C p p                                       (1) 

 
2.3 The inter-occurrence times in Unimodal surjective map 
Now let us make a further study a given word's occurrence times in an independent 
repeated experiment, such as  success  in the alphabet of 2 numbers. Given outcomes of a 
random sequence 
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0 1 2( , , , ) ,N      
 
we are mainly interested in n  such that 1n  , let 
 

1( ) ( ) inf{ 0 : 1}nn        , 
 
and accordingly, for 2j  , 
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then for all 0k  , the result is, for fixed 0,k   and all 1 1jk k   , 
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the inter-occurrence times 1 2 1 3 21 , , ,         are i.i.d. with parameters p . 

 
2.4 The first passage time in Unimodal surjective map 
Using this method similar to study the distribution of first passage time yT of one-

dimensional simple random wander in stochastic processes, one gets j  satisfies Negative 

Binomial distribution ( , )BN j p : 
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3. The statistic character in Lorenz maps 
 

3.1 Symbolic dynamics of Lorenz maps 
Lorenz equation: 
 

( ),
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x y x
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z xy bz
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On the Poincaré section, some geometrical structure of Lorenz flow may be reduced to a 
one-dimensional Lorenz map :[ , ] [ , ]f       , ( , 0, 1)     
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Where   is a constant greater than 1, “h.o.t” represents high-level term. Both of the 

branches Lf  and Rf  are monotone increasing. In order to get iterative sequences in the 
part of chaos, the Lorenz map used in this research is:  
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The symbolic dynamics of Lorenz maps is also simple (Peng & Du, 1999). Following the 
kneading theory, the address ( )A x  of any point x on the interval [ 1,1]  reads 
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0x  is the turning (discontinuous) point, and one can define C and D  as 
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Two infinite or finite symbolic sequences starting from C  and D  are kneading sequences 
which can be ordered lexicographically by ,L C D R  .  For two kneading sequences, 

1 2 1i i       and 1 2 1i i    , with maximal common leading part: 
 

1 2 1 2i i      , 
 

one has， 

1 2 1 1 2 1i i i i           
 

if and only if 1 1i i   .  
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3. The statistic character in Lorenz maps 
 

3.1 Symbolic dynamics of Lorenz maps 
Lorenz equation: 
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x y x
y r z x y
z xy bz

 
   
  





 

On the Poincaré section, some geometrical structure of Lorenz flow may be reduced to a 
one-dimensional Lorenz map :[ , ] [ , ]f       , ( , 0, 1)     
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Where   is a constant greater than 1, “h.o.t” represents high-level term. Both of the 

branches Lf  and Rf  are monotone increasing. In order to get iterative sequences in the 
part of chaos, the Lorenz map used in this research is:  
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The symbolic dynamics of Lorenz maps is also simple (Peng & Du, 1999). Following the 
kneading theory, the address ( )A x  of any point x on the interval [ 1,1]  reads 
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0x  is the turning (discontinuous) point, and one can define C and D  as 
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Two infinite or finite symbolic sequences starting from C  and D  are kneading sequences 
which can be ordered lexicographically by ,L C D R  .  For two kneading sequences, 

1 2 1i i       and 1 2 1i i    , with maximal common leading part: 
 

1 2 1 2i i      , 
 

one has， 

1 2 1 1 2 1i i i i           
 

if and only if 1 1i i   .  
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The shift operator   is defined as， 
 

1 2( )k
k k        for  1 2 1k k        . 

 
For any two sequences， 
 

1 2 1i i          and  1 2 1 ,j j         

 

, { , },i j R L   if ( )k   and ( )k   , for all K  ,then  is called 

maximal, minimal, and ( , )S   is an extremal pair. Let the integers Lk and Rk  be the 

order coordinates of a letter in the sequence such that 1( )Lk L    , and 
1( )Rk R    , the set  Lk and Rk  describe successive sequences of L or R . Then, if 

the pair S further satisfies the following condition: 
 

1( ) ,Lk K   2( ) ,Rk K   { } { } { } ,L Rk k k          

  
' 1( ) ,Lk K  

' 2( ) ,Rk K    ' ' '{ } { } { } .L Rk k k     
 

S  is admissible with respect to the kneading sequences 1K and 2K .  All the admissible 
pairs form an admissible set K and fill up the whole kneading parameter plane of nonlinear 
systems of two letters. 

 
3.2 The distribution of frequency 

See expression (1). 

 
3.3 The inter-occurrence times in Lorenz map 

See expression (2). 

 
3.4 The first passage time in Lorenz map 

See expression (3). 

 
4. Visitation density function of Unimodal surjective maps and Lorenz map 
 

The orbital points’ distribution of the Unimodal surjective maps and Lorenz map is, 
 

                                                           
2

1( )
1

x
x







                                                               (5) 

The concrete resolvent is using Frobenius-Perron operator (Lasota & Mackey, 1985; Yorke & 
Li, 1975; Ding & Li, 1991; Li, 1976). The general form of resolve visitation density problem 
by F-P operator P is,  

1 ( )
( ) ( )

S

dPf x f u du
dx 

  
, 

 
here, ( )S S x  is a given map,  is an interval, ( )f x  is a density function. In fact, it is an 
iterative process, the initial state is 
 

11 0( )
( ) ( )

S
f u du f u du


  

. 

 

0 ( )f x  is an arbitrary initial density and 1( )f x  is a new density transformed by map 

( )S x , that is,  

1 0f Pf , 
 

until, 

*( ) ( )nf x P f x    as    n  . 
 

Of course,  

* *( ) ( )Pf x f x , 
 

the unique limiting density is just the ultimate visitation density function. 
It is mainly in numerical value meaning that getting visitation density functions of higher 
order maps, if the invariable density does exist. Figure 1 is the U-shaped probability density 
based on iterates, corresponding analytic form is just expression (5), 

 
Fig. 1. The visitation density of Unimodal surjective map and Lorenz map based on 1000000 
iterates, the interval [ 1,1]  is divided into 2000 subintervals. X  coordinate axis is 

corresponding interval, Y coordinate axis is the output proportion of each interval. 
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5. The comparability of statistic character in the Unimodal map and Lorenz 
map 
 

The former statistic character in Lorenz map is similar entirely to that in Unimodal 
surjective map. This kind of comparability is determined by the relationship of Unimodal 
surjective map and Lorenz map. (See Figure 2) 

The iterative form of Lorenz map is (4), and Unimodal surjective map is 21 2y x  . 
One can find this characteristic by Figure 2, 
 

,       0
,         0

a b

a b

f f x
f f x
  

  
. 

 
A n -periods orbit of af  corresponds to a couple of n -periods orbits of bf . Both of them 

have the same topological entropy and marker behavior. The fixed point of af  exhibits 

two-periods behavior of bf , which can be found clearly by contrasting their bifurcation 
diagrams. (See Figure 3) 
Compared the right branch of Lorenz map and Unimodal surjective map, the Lorenz map is 
only overturned by x  coordinate axis. As these results reveal that this kind of overturn 
does not influence statistical properties of random sequences. Compared with Unimodal 
map, Lorenz map belongs to a more complex category, which presents more abundant 
dynamics actions. But as above study, these statistical results present regulation as a whole. 
These are randomicity in deterministic systems. 

 
6. The stochastic properties in 4-letters maps 
 

6.1 The distribution of frequency 
Let us define an alphabet of four numbers, which is corresponding to the likely states of a 
random discrete dynamical system, or all the likely outcomes of a random experiment: 
 

     0,1,2,3 , , , , , ,
 {"Spring","Summer","Autumn","Winter"}

L M N R A G C T   


 

The forward sequence constitutes a space (or a set) composed of the generated outcomes: 
 

  0 1 2, , , : , {0,1, 2, }N
i i          

 
These sequences themselves are iteratively generated, in fact it's a shift map 

: N N   , which acting on the sequences by 0 1 2 1 2( , , , ) ( , , ).        

Another definition is , which is the product measure[6] on N generated by the measure 
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1 2 3 4( , , , )p p p p  on  {0,1,2,3}  ( 1 2 3 4 1p p p p    ), and will be denoted by 
Npppp ),,,( 4321 . Defining : {0,1, 2,3}N     by  0 1 2 0{ , , , } ,      it is  

also coarse graining in theory, one can get: 
 

( ) ( ),i
iX      (for  0,1,2,i   ) 

 
Which are sequences of independent and identically distributed (i.i.d.) random variables 

defined on the probability space ( , )N    (all the following discussions are based on the 

random variables), that is, the random variables represented by 0 1 2, , ,    are i.i.d., and 

( 0,1,2, )i i   is based on  . 
The numeric examinations reveal that the stochastic symbolic sequences in 4-letters maps 
satisfy multinomial distribution: 

31 2 4
1 1 2 2 3 3 4 4 1 2 3 4

1 2 3 4
4 4

1 1

!( , , , )
! ! ! !

                               ( 1,   )

nn n n

i i
i i

nT N n N n N n N n p p p p
n n n n

p n n
 

    

  
 

The theoretic foundation of these results is that the topological entropy (Shi et al., 1996; 
Zhang et al., 1996; Cao et al., 1995; Chen et al. 1995; Peng et al., 1994; Chen & Zhou, 2003; 
Chen & Zhou, 2003; Liang & Jiang, 2002) in n  letters surjective maps is ln( )n , which is a 
deduction from chaotic symbolic sequences’ Bernoulli property. 

 
6.2 The inter-occurrence times of 4-letters maps 
Now let us make a further study a given word’s occurrence times in an independent 
repeated experiment, such as" "," " or "Winter"R T  in the alphabet of four numbers. 
Given outcomes of a random sequence 
 

0 1 2( , , , ) ,N      
 

we are mainly interested in n  such that n T  , let 
 

1( ) ( ) inf{ 0 : },      nn T          
 

and accordingly, for 2j  ,  corresponds to  T , 

1( ) inf{ ( ) : }j j nn T        , 

then for all 0k  , the result  is, for fixed 0k   and all 1 1jk k   , 

 

                                          

1 1 1 1 1

1

1 2 3 4

( | , , )

( }
j j j j

j j

a b c

k k k

k

p p p p

   

 

   

 
  


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   





                                    (6) 

                                (
4

1

1i
i

p


 , , , {0,1,2, }, 1a b c a b c k     )                        (7) 

the inter-occurrence times 1 2 1 3 21 , , ,             are i.i.d. with parameters 

1 2 3 4, , ,p p p p . 

Correspondingly, for 2,j   

If   corresponds to A , and 
 

1( ) inf{ ( ) : }j j nn A       
 

Then 
 

 1 2 3 4 1( } a b c
j j k p p p p                                                     (8) 

 
If  corresponds to G , and 
 

}:)(inf{)( 1 Gn njj      

 
Then 
 

24311 }( ppppk cba
jj  
                                             (9)

 
If  corresponds to C , and 

}:)(inf{)( 1 Cn njj      

then 

34211 }( ppppk cba
jj  
                                       (10) 

the conditions of expression (8)–(10) are also expression (7). 
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6.3 Exponential distribution of 4-letters maps 
Suppose there are two random sequences of outcomes corresponding to the repetition of an 
experiment with four likely results. Let 0 1 2( , , , )      and 0 1 2( , , , )      

denote the sequence of outcomes (  independent of  ). There is an alignment at time n  if 

n n  . The alignment at time n  as a success and no alignment is failure. Then note that, 

for all 0n  ,  0 1p   and 1q p  , 
 

0 0( ) ( )n nP P p        
 

Now consider having a successive sequence of alignments. Define : *N N N     by 

( , ) k     if 0 0 1 1 1 1, , , ,k k k k            , namely, 
 

( , ) k    ,  if 0 0 1 1 1 1, , , ,k k k k            , 
 

introduced shift arithmetic operators  , 
 

1 2 3( ) ( , , )      , 

1 2 3( ) ( , , )      , 
then,  
for 1,2,3,  ,i    
 

( ( ), ( )) ,k       if 1 1 1 1, , , ;k k k k          
2 2( ( ), ( )) ,k       if 2 2 1 1 2 2, , , ;k k k k            

                                                      
( ( ), ( )) ,i i k       if 1 1, , ,i i k i k i k i k i              

 
in fact, alignment from i  term is just keeping the former k  terms success and the k i  
term failure. 
Denote random variables 
 

( , )n n
nZ      ,  inf{ 0 : }k nn Z k    . 

 
So, 

   1
1 1( ) ( , , , )n

n n n    
   , 

       1
1 1( ) ( , , , )n

n n n    
    

and 
 

1 1 2 2 1 1, , , ,n n n n n k n k n k n k                    , 
 

therefore, 
1 1

1 ( , )n n
nZ k     
   . 

 
The same way, 

  1 2( ) ( , , , )n
n n n       , 

     1 2( ) ( , , , )n
n n n        

 
and 
 

1 1 2 2 1 1, , , ,n n n n n k n k n k n k                     
 
therefore, 

( , ) 1n n
nZ k        

 
so, 

1( 1| ) 1n nP Z k Z k    , if 1k   
 

for every 0t  , one gets the asymptotic exponential distribution of k : 
 

0lim ( ( ) | 0) t
k kk

P tE Z e  


   , 

( )kE   represents mathematical expectation of k , t  is a time coordinate. Furthermore, if 
 

( , ) 1n n
nZ k        

 
and 1n k A    , then, 

lim ( ( )) At
k A kk

P t E e  


   

 
accordingly, one also gets, 
 

lim ( ( )) Gt
k G kk

P t E e  


  , 

lim ( ( )) Ct
k C kk

P t E e  


  , 
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6.3 Exponential distribution of 4-letters maps 
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in fact, alignment from i  term is just keeping the former k  terms success and the k i  
term failure. 
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1 1( ) ( , , , )n

n n n    
   , 

       1
1 1( ) ( , , , )n

n n n    
    

and 
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therefore, 
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The same way, 
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therefore, 

( , ) 1n n
nZ k        

 
so, 

1( 1| ) 1n nP Z k Z k    , if 1k   
 

for every 0t  , one gets the asymptotic exponential distribution of k : 
 

0lim ( ( ) | 0) t
k kk

P tE Z e  


   , 

( )kE   represents mathematical expectation of k , t  is a time coordinate. Furthermore, if 
 

( , ) 1n n
nZ k        

 
and 1n k A    , then, 

lim ( ( )) At
k A kk

P t E e  
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   

 
accordingly, one also gets, 
 

lim ( ( )) Gt
k G kk

P t E e  
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  , 

lim ( ( )) Ct
k C kk
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
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lim ( ( )) Tt
k T kk

P t E e  


  . 

 

k , k , k  correspond to k  when 1n k G    , 1n k C    , 1n k T    . 
We also get, 
 

( )

lim ( ( ), ( ), ( ), ( ))

A G C T

k A k k G k k C k k T kk
t t t t

P t E t E t E t E

e

       


   

   


 

Fig. 4 represents the alignment of two random sequences.

 
6.4 Transfer probability of Markov chain (MC) in 4-letters maps 
We choose one of these transfer models (Figure. 5), such as Figure. 6. 

If n  fixation, the transfer probability of ( , )i j  is defined ( )n
ijp . The generating function is, 

 

                                                 1 2( ) ( )n nG z qz r pz vz    ,                                            (11) 
 

which is determined by Figure. 3. 
 

                                                ( ) ( )
1( )n n k n j i

k ij
k R j i R

G z p z p z 

  

   .                                       (12) 

 

Hereinto, ( )
1 0( | 1)n
k np P X k X    , ( )

0( | )n
ij np P X j X i   , k j i  , 

( , ,0, , 2 )R n n    , R  represents all coordinates a particle could attain during n  
steps transfer if n  fixation. By using (11) and (12), one gets: 
under restrictive condition of 

3 2 0(2 ),n n n k   : 
 

0 31 2( )
1

0 1 2 3

! ,
! ! ! !

n nn nn
k

np q r p v
n n n n



( 3 2 0 0 1 2 3: 2 ,   k n n n n n n n n        )
 

Fig. 4. The alignment of two random sequences 

Fig. 5. Four probabilities stochastic wander model 

 

Fig. 6. One of these transfer models 

 
Let, 

1 3 0 1 2 32 ,  ,  ,  2 ,  n n n k l n l n m n l k n           , 
 
then, 

( ) ( 2 )
1

(2 )! ,
! !( 2 )! !

n l m l k
k

l m kp q r p v
l m l k

 
 

   


 
   [ , 2 ]k n n  . 

 
The generating function 1 ( )kP s  if k  fixation. During different  n  steps transfer, all the 

probabilities ( )
1

n
kp  are introduced into a generating function 1 ( )kP s , which is defined as 

 

( )
1 1

0

( 2 ) (2 1)
2

0 0

( 2 )
2

0 0

( )

        ( ) ( ) ( ) ( ) (1 )

1        ( ) ( ) ( ) ( )
1 1 1 1 1

n n
k k

n

lk l l l k
l k l k

l

lk l l
l k l k

l

P s p s

ps qs ps vs rs

ps qs ps vs
rs rs rs rs rs

C C

C C

   
 



  
 







 
    

   
 

 


   
 



 


    






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lim ( ( )) Tt
k T kk
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
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
 

Fig. 4 represents the alignment of two random sequences.

 
6.4 Transfer probability of Markov chain (MC) in 4-letters maps 
We choose one of these transfer models (Figure. 5), such as Figure. 6. 

If n  fixation, the transfer probability of ( , )i j  is defined ( )n
ijp . The generating function is, 
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which is determined by Figure. 3. 
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Hereinto, ( )
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0( | )n
ij np P X j X i   , k j i  , 

( , ,0, , 2 )R n n    , R  represents all coordinates a particle could attain during n  
steps transfer if n  fixation. By using (11) and (12), one gets: 
under restrictive condition of 
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Fig. 5. Four probabilities stochastic wander model 
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The generating function 1 ( )kP s  if k  fixation. During different  n  steps transfer, all the 

probabilities ( )
1

n
kp  are introduced into a generating function 1 ( )kP s , which is defined as 
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1 1
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ps qs ps vs rs

ps qs ps vs
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
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let, 

0 2 3,  ,  ;
1 1 1

qs ps vsx x x
rs rs rs

  
  

 

2 2 3
2

0 2 0 32 3,   ;
(1 ) (1 )

qps q vsx x x y x x
rs rs

   
 

 

then, 

1 2
0 0

1( ) ( ) ( )
1 1 !

l kk l k
k l k

l

qs y dP s x
rs rs dx C

 

 
 

 
 
 

 


    . 

So, for 1k  , 

11 2
0 0

1( ) ( )
1 !

l l
l

l

y dP s x
rs dx C

 

 
 

 


 


    

for 2k  , 

1 1
12 2 1

0 0

1( ) ( )
!

l l
l

l

y dP s x
qs dx C

 

 
 

 
 
 

 

    

for 3k  , 

2 2
13 2 2 2 2

0 0

1( ) ( )
!

l l
l

l

rs y dP s x
q s dx C

 

 
 

 
 
 

 


    

 
7. Conclusion and discussion 
 

The statistic character and complexity in nonlinear systems have been clarified in this 
chapter. These stochastic symbolic sequences bear three characters. In two kinds of typical 
nonlinear systems-unimodal surjective map and Lorenz type maps nonlinear systems, the 
distributions of frequency, inter-occurrence times, first passage time and visitation density 
in unimodal surjective map and Lorenz type maps are discussed carefully. These two kinds 
of nonlinear systems have same distributions, which have also been explained in theory, 
and the catholicity of the statistic character has been elicited. In the 4-symbolic dynamics, 
the distribution of frequency, inter-occurrence times and the alignment of two random 
sequences have been amplified in detail. By using transfer probability of Markov chain (MC), 
we have obtained analytic expressions of generating functions in four probabilities 
stochastic wander model, which can be applied to all 4-symbolic systems. So, a perfect 
symbolic platform has been set up for our utilizing statistic character, in fact, it is a 
stochastic signal platform of symbolic simulation. The 4-symbolic sequences have natural 
relations with bioinformatics sequences, in the field of application, we hope to afford a 
symbolic platform which satisfies these statistic character and study some properties of 
DNA sequences (Hao, 2000; Hao et al., 2000; Bershadskii, 2001; Grimm & Rupprecht, 1997; 
Allegrini et al., 1996; Natalia & Avy, 2005; Elena et al., 2005), 20 amino acids symbolic 
sequences of protein structure, and the time series that can be symbolic in finance market et 
al, which are part of our future work. The symbolic platform provides a set of effective 

methods to approach problems of this kind. The establishment of this symbolic platform 
will open up a vast vista. 
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7. Conclusion and discussion 
 

The statistic character and complexity in nonlinear systems have been clarified in this 
chapter. These stochastic symbolic sequences bear three characters. In two kinds of typical 
nonlinear systems-unimodal surjective map and Lorenz type maps nonlinear systems, the 
distributions of frequency, inter-occurrence times, first passage time and visitation density 
in unimodal surjective map and Lorenz type maps are discussed carefully. These two kinds 
of nonlinear systems have same distributions, which have also been explained in theory, 
and the catholicity of the statistic character has been elicited. In the 4-symbolic dynamics, 
the distribution of frequency, inter-occurrence times and the alignment of two random 
sequences have been amplified in detail. By using transfer probability of Markov chain (MC), 
we have obtained analytic expressions of generating functions in four probabilities 
stochastic wander model, which can be applied to all 4-symbolic systems. So, a perfect 
symbolic platform has been set up for our utilizing statistic character, in fact, it is a 
stochastic signal platform of symbolic simulation. The 4-symbolic sequences have natural 
relations with bioinformatics sequences, in the field of application, we hope to afford a 
symbolic platform which satisfies these statistic character and study some properties of 
DNA sequences (Hao, 2000; Hao et al., 2000; Bershadskii, 2001; Grimm & Rupprecht, 1997; 
Allegrini et al., 1996; Natalia & Avy, 2005; Elena et al., 2005), 20 amino acids symbolic 
sequences of protein structure, and the time series that can be symbolic in finance market et 
al, which are part of our future work. The symbolic platform provides a set of effective 

methods to approach problems of this kind. The establishment of this symbolic platform 
will open up a vast vista. 
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1. Introduction 
 

The task of learning useful models from available data is common in virtually all fields of 
science, engineering, and finance. The goal of the learning task is to estimate unknown 
(input, output) dependency (or model) from training data (consisting of a finite number of 
samples) with good prediction (generalization) capabilities for future (test) data 
(Cherkassky & Mulier, 2007; Hastie et al., 2003). One of the specific learning tasks is 
regression – estimating an unknown real-valued function. The process of regression model 
learning is also called regression modelling or regression model building. 
Many practical regression modelling methods use basis function representation – these are 
also called dictionary methods (Friedman, 1994; Cherkassky & Mulier, 2007; Hastie et al., 
2003), where a particular type of chosen basis functions constitutes a “dictionary”. Further 
distinction is then made between non-adaptive methods and adaptive (also called flexible) 
methods. 
The most widely used form of basis function expansions is polynomial of a fixed degree. If a 
model always includes a fixed (predetermined) set of basis functions (i.e. they are not 
adapted to training data), the modelling method is considered non-adaptive (Cherkassky & 
Mulier, 2007; Hastie et al., 2003). Using adaptive modelling methods however the basis 
functions themselves are adapted to data (by employing some kind of search mechanism). 
This includes methods where the restriction of fixed polynomial degree is removed and the 
model’s degree now becomes another parameter to fit. Adaptive methods use a very wide 
dictionary of candidate basis functions and can, in principle, approximate any continuous 
function with a pre-specified accuracy. This is also known as the universal approximation 
property (Kolmogorov & Fomin, 1975, Cherkassky & Mulier, 2007). 
However, in polynomial regression the increase in the model’s degree leads to exponential 
growth of the number of basis functions in the model (Cherkassky & Mulier, 2007; Hastie et 
al., 2003). With finite training data, the number of basis functions along with the number of 
model’s parameters (coefficients) quickly exceeds the number of data samples, making 
model’s parameter estimation impossible. Additionally the model should not be overly 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary 
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with 
the best predictive performance. This is done via combinatorial optimization. However, for 
the subset selection approach still the two issues remain – deficiency of adaptation as well as 
computational inefficiency. 
Searching through all the possible combinations of basis functions takes double-exponential 
runtime as the number of combinations grows exponentially in the number of basis 
functions of the predetermined dictionary while the number of the basis functions in the 
dictionary grows exponentially in the number of input variables and “full” model’s degree 
(Hastie et al., 2003). This makes the exhaustive search through all the combinations 
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al., 
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large 
number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 

 
 
 
 

2. Polynomial regression 
 

In standard regression formulation (Vapnik, 1995; Cherkassky & Mulier, 2007; Hastie et al., 
2003) the goal is to estimate unknown real-valued function in the relationship 
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The basis function representation enables moving beyond pure linearity, by defining 
nonlinear transformations of x while still working with linear models (and employing OLS). 
For example, for d = 1 a polynomial model of fixed degree p can be defined as follows: 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary 
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with 
the best predictive performance. This is done via combinatorial optimization. However, for 
the subset selection approach still the two issues remain – deficiency of adaptation as well as 
computational inefficiency. 
Searching through all the possible combinations of basis functions takes double-exponential 
runtime as the number of combinations grows exponentially in the number of basis 
functions of the predetermined dictionary while the number of the basis functions in the 
dictionary grows exponentially in the number of input variables and “full” model’s degree 
(Hastie et al., 2003). This makes the exhaustive search through all the combinations 
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al., 
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large 
number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 
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3. Subset selection 
 

Models which are too complex (i.e. that fit the training data too well causing overfitting) or 
too simple (i.e. that fit the data poorly causing underfitting) provide poor predictive 
performance for the future data. The most popular approach of controlling model’s 
complexity is subset selection. The goal of subset selection is from a fixed full predetermined 
dictionary of basis functions to find a subset that provides the best predictive performance 
of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of 
model’s parameters, the structure of the model itself needs to be found. 
The total number of possible subsets from a dictionary of size m is m2 . This means that 
searching through all the possible subsets is in most cases impractical. Hence in subset 
selection heuristic search algorithms are used. They efficiently traverse the space of subsets, 
by adding and deleting basis functions of the model, and use model evaluation measure to 
direct the search into areas of increased performance. The typical examples of heuristic 
search algorithms are the greedy hill-climbing algorithms – Forward Selection (also known 
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential 
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also 
more recently developed search strategies, such as Beam Search, Floating Search, Simulated 
Annealing, Genetic Algorithms etc. (Reunanen, 2006; Pudil et al., 1994; Russel & Norvig, 
2002). 
Summarizing (Russel & Norvig, 2002; Molina et al., 2002; Kohavi & John, 1997), in order to 
characterize a heuristic search problem one must define the following: 1) initial state of the 
search; 2) available state-transition operators; 3) search strategy; 4) evaluation measure; 
5) termination condition. Note that in the context of model building the “initial state” is also 
called “initial model” and the “state-transition operators” are also called “model refinement 
operators”. 
In the subset selection approach for polynomial regression, typically the initial state is the 
model that corresponds to the empty subset, the subset with only the intercept term in it, 
full set of all the defined basis functions, or a randomly chosen subset. The typical basic 
state-transition operators are addition and deletion of a basis function. The typical search 
strategy is the hill-climbing (Russel & Norvig, 2002) which, in combination with the empty 
(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in 
combination with the full subset as initial state and the deletion operator, becomes SBS. As 
the evaluation measures classically the statistical significance tests are used (Hastie et al., 2003; 
Dreyfus & Guyon, 2006). However, in model building currently two other strategies 
predominate (Cherkassky & Mulier, 2007; Dreyfus & Guyon, 2006): employment of 
complexity penalization criteria (also known as analytical criteria), e.g., the well-known 
Akaike’s Information Criterion, AIC (Akaike, 1974; Burnham & Anderson, 2002), and the 
resampling techniques, e.g., Hold-Out, Cross-Validation (CV), and Bootstrap (Kohavi, 1995; 
Hastie et al., 2003; Dreyfus & Guyon, 2006). The termination condition typically corresponds 
to finding of a state in that none of the state-transition operators can lead to a better state 
(i.e. a local minimum). 
In polynomial regression, increase in the model’s degree leads to exponential growth of the 
number of basis functions in the dictionary, i.e. )()( pdOmO   (Cherkassky & Mulier, 2007; 
Hastie et al., 2003) and to double-exponential growth of the number of all possible subsets 
(or the number of states in the state space): )2()2(

pdm OO  . When using one or both of the 

two basic state-transition operators, the order of the branching factor of a state in the state 
space in the very first iteration of the search is already equal to the number of basis 
functions in the dictionary, i.e. it also increases exponentially. 
Assuming that the “best” model found in the search process includes a total of k  basis 
functions and that in each iteration the number of basis functions of the current model is 
increased by 1, the total number of evaluated models (subsets) is of order 
 

 )(
1


















kdOdO p
k

i

p . (6) 

 
Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is 
rendered impractical. Additionally, because of the branching factor’s direct dependence on 
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e. 
dictionary of infinite size) is hardly applicable. 
The computational problem could be somewhat reduced by choosing a sufficiently small 
but useful value of p before the actual model building is performed. However, generally the 
required maximal degree is not known beforehand and needs to be either guessed or found 
by additional search loop over the whole model building process, since it will differ from 
one regression task to another, which means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 

 
4. Adaptive Basis Function Construction 
 

This section introduces Adaptive Basis Function Construction – a possible alternative to the 
classical subset selection approach. The goal of the ABFC approach is to overcome some of 
the limitations associated with the subset selection, outlined in the previous section. The 
ABFC approach is developed for sparse polynomial regression model building without 
restrictions on model’s degree, enables model building in polynomial time, and does not 
require repetition of the building process (in contrast to the subset selection approach). The 
required basis functions are automatically adaptively constructed specifically for data at 
hand, without using a restricted fixed finite user-defined dictionary. The dictionary in the 
ABFC is infinite and polynomials of arbitrary complexity can be constructed. 

 
4.1 The models and the basis functions 
Generally, a basis function in a polynomial regression model can be defined as a product of 
original input variables each with an individual exponent: 
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where r is a dk   matrix of nonnegative integer exponents such that rij is the exponent of 
the jth variable in the ith basis function. Note that, when for a particular ith basis function 
rij = 0 for all j, the basis function is the intercept term. 
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3. Subset selection 
 

Models which are too complex (i.e. that fit the training data too well causing overfitting) or 
too simple (i.e. that fit the data poorly causing underfitting) provide poor predictive 
performance for the future data. The most popular approach of controlling model’s 
complexity is subset selection. The goal of subset selection is from a fixed full predetermined 
dictionary of basis functions to find a subset that provides the best predictive performance 
of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of 
model’s parameters, the structure of the model itself needs to be found. 
The total number of possible subsets from a dictionary of size m is m2 . This means that 
searching through all the possible subsets is in most cases impractical. Hence in subset 
selection heuristic search algorithms are used. They efficiently traverse the space of subsets, 
by adding and deleting basis functions of the model, and use model evaluation measure to 
direct the search into areas of increased performance. The typical examples of heuristic 
search algorithms are the greedy hill-climbing algorithms – Forward Selection (also known 
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential 
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also 
more recently developed search strategies, such as Beam Search, Floating Search, Simulated 
Annealing, Genetic Algorithms etc. (Reunanen, 2006; Pudil et al., 1994; Russel & Norvig, 
2002). 
Summarizing (Russel & Norvig, 2002; Molina et al., 2002; Kohavi & John, 1997), in order to 
characterize a heuristic search problem one must define the following: 1) initial state of the 
search; 2) available state-transition operators; 3) search strategy; 4) evaluation measure; 
5) termination condition. Note that in the context of model building the “initial state” is also 
called “initial model” and the “state-transition operators” are also called “model refinement 
operators”. 
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state-transition operators are addition and deletion of a basis function. The typical search 
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(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in 
combination with the full subset as initial state and the deletion operator, becomes SBS. As 
the evaluation measures classically the statistical significance tests are used (Hastie et al., 2003; 
Dreyfus & Guyon, 2006). However, in model building currently two other strategies 
predominate (Cherkassky & Mulier, 2007; Dreyfus & Guyon, 2006): employment of 
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(i.e. a local minimum). 
In polynomial regression, increase in the model’s degree leads to exponential growth of the 
number of basis functions in the dictionary, i.e. )()( pdOmO   (Cherkassky & Mulier, 2007; 
Hastie et al., 2003) and to double-exponential growth of the number of all possible subsets 
(or the number of states in the state space): )2()2(

pdm OO  . When using one or both of the 

two basic state-transition operators, the order of the branching factor of a state in the state 
space in the very first iteration of the search is already equal to the number of basis 
functions in the dictionary, i.e. it also increases exponentially. 
Assuming that the “best” model found in the search process includes a total of k  basis 
functions and that in each iteration the number of basis functions of the current model is 
increased by 1, the total number of evaluated models (subsets) is of order 
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Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is 
rendered impractical. Additionally, because of the branching factor’s direct dependence on 
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e. 
dictionary of infinite size) is hardly applicable. 
The computational problem could be somewhat reduced by choosing a sufficiently small 
but useful value of p before the actual model building is performed. However, generally the 
required maximal degree is not known beforehand and needs to be either guessed or found 
by additional search loop over the whole model building process, since it will differ from 
one regression task to another, which means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
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This section introduces Adaptive Basis Function Construction – a possible alternative to the 
classical subset selection approach. The goal of the ABFC approach is to overcome some of 
the limitations associated with the subset selection, outlined in the previous section. The 
ABFC approach is developed for sparse polynomial regression model building without 
restrictions on model’s degree, enables model building in polynomial time, and does not 
require repetition of the building process (in contrast to the subset selection approach). The 
required basis functions are automatically adaptively constructed specifically for data at 
hand, without using a restricted fixed finite user-defined dictionary. The dictionary in the 
ABFC is infinite and polynomials of arbitrary complexity can be constructed. 

 
4.1 The models and the basis functions 
Generally, a basis function in a polynomial regression model can be defined as a product of 
original input variables each with an individual exponent: 
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where r is a dk   matrix of nonnegative integer exponents such that rij is the exponent of 
the jth variable in the ith basis function. Note that, when for a particular ith basis function 
rij = 0 for all j, the basis function is the intercept term. 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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For example, if d = 3 and k = 4, then the matrix 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 

)()2( dkOkdkdO   that is linear in respect to both d and k. 
Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 
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Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 



Machine Learning136

search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
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where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 
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search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
 

 
1
)1(22)ln(





kn
kkkMSEnAICC , (13) 

 
where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
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Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
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Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and 
“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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where Fi is ith individual model fro the ith CV iteration and Fcomb is the combined model. For 
polynomial regression this simply means summation of all the polynomials and then a 
division of all the parameters of Fcomb (that is also a polynomial) by v. Note that the 
parameter values of Fcomb will not necessarily be optimal in the sense of the least-squares loss 
(in fact they will be optimal only in special cases, e.g., when all Fi’s are identical). 
The employed model combining method is similar to Bagging (bootstrap aggregating 
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision 
trees), and the unweighted average of the resulting models is taken. 
Figure 5 gives an outline of the EF-ABFC model building process when the number of CV 
folds v is three. Note however that for all the practical applications of this study v = 10 is 
used. This is because too small number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the other hand, using too many 
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis 
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield 
unreliable validation MSE estimates for the selection of the individual final best models, as 
then the individual validation sets may be too small. 
 

 
Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best 
model according to AICC using F-ABFC; (b) select the one final best model according to 
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole 
training data; (d) combine the models 
 
In recent literature, there is ever growing confidence that model ensembles often perform 
better than individual models and consistently reduce prediction error (Breiman, 1996; 
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model 
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
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“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
 

   



k

i
ii xfaxFPP

1

)()()1(ln , (16) 

 



Adaptive Basis Function Construction: An Approach 	
for Adaptive Building of Sparse Polynomial Regression Models 143

data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
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where P is the predicted probability of y being equal to 1. It is equivalent to the following 
representation of P: 
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The parameters a of the model are usually estimated by minimizing the deviance: 
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Since there is no closed form solution to this minimization, the standard approach to solving 
it is to use iterative algorithms such as Iteratively Re-weighted Least-Squares (Hastie et al., 
2003; Witten & Frank, 2005). Note that, in order to evaluate a model using AICC, the first 
term of (13) is replaced by the deviance. 
F-ABFC and EF-ABFC for classification problems are implemented in the VariClass software 
tool freely available for non-commercial research and educational purposes at 
http://www.cs.rtu.lv/jekabsons/. 

 
5. Related work 
 

There exist also other polynomial regression modelling methods which use wide, potentially 
infinite, dictionaries of basis functions. In (Sutton & Matheus, 1991) an algorithm is 
proposed which starts model building with a first-degree model, with all the input variables 
already included in the model, and iteratively creates a user-predefined number of products 
of the already included basis functions thereby creating new basis functions. In (Orosz & 
Anderson, 1994) a modification of the algorithm is proposed where the initial model has 
none of the input variables included, however there was no empirical success and it was 
concluded that in practical applications the algorithms have three major disadvantages: 
inability to construct all the necessary basis functions, inability to discard unnecessary basis 
functions, and high sensitivity to noise and to number of samples in data. 
More recently a different method was developed which can be seen also as a special case of 
the ABFC approach – Constrained Induction of Polynomial Equations for Regression, CIPER 
(Todorovski et al., 2004). CIPER was initially developed in the context of differential 
equation discovery, inductive databases, and constraint-based data mining. CIPER uses two 
state-transition operators and a Beam Search strategy. The first state-transition operator 
adds a new linear basis function while the second increases a single exponent of a single 
basis function. In (Jekabsons & Lavendels, 2008a), CIPER was empirically compared to 
F-ABFC and it was concluded that CIPER suffers form the nesting effect (Pudil et al., 1994) 
and has a tendency of getting stuck in local minima too early in the search. This is because 
CIPER is not able to preserve the structure of any of included basis functions (its second 
operator increases an exponent in an existing basis function but does not take into 
consideration the possibility that both versions of the basis function may be required) as 
well as because it is not able to simplify a model – decrease unnecessarily high exponents or 
discard unnecessary basis functions. In F-ABFC these issues are solved using Operator2 and 
the simplification operators. 

Some similar ideas of constructing new features as combinations of original input variables 
are applied also in different other approaches. For example, in (Ritthoff et al., 2002) a feature 
construction method is proposed in which a genetic algorithm constructs linear and 
nonlinear combinations of original input variables further used as inputs for Support Vector 
Machines. In (Bloedorn & Michalski, 1998), on the other hand, the feature construction idea 
is used for data-driven expansion of the input space for induction of decision rules and 
decision trees. 

 
6. Experiments 
 

This section presents the results of comparisons of the proposed ABFC methods to the 
methods of subset selection and to a number of other well known state-of-the-art regression 
modelling methods using a series of synthetic and real-world regression data sets. The goal 
is to gain some understanding of the properties of F-ABFC and EF-ABFC and to evaluate 
their performance in both accuracy and speed. All the experiments were performed on a 
Pentium IV 2.4GHz machine with 1.5GB RAM. 
In all the experiments, predictive performance of a model is measured either using a 
completely independent test data set or using Cross-Validation. In any case the performance 
of a model is measured in terms of Relative Root Mean Squared Error: 
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where nt is the number of samples in the test data set, F(xj) is the predicted value 
corresponding to the value of yj, and y  is the mean of all the y values in the test set. While 
RMSE (Root Mean Square Error) represents model’s deviation from the data, the SD 
(Standard Deviation) captures how irregular the problem is. The lower the value of RRMSE, 
the more accurate is the model. The final RRMSE values stated are the values averaged over 
all evaluations. 
All the employed regression modelling methods, except Regression Trees, Model Trees, 
Support Vector Machines, and Multi-Layer Perceptrons, are implemented in VariReg 
software tool version 0.9.21 freely available for non-commercial research and educational 
purposes at http://www.cs.rtu.lv/jekabsons/. 

 
6.1 Synthetic data sets 
To compare the performance of the proposed ABFC methods against subset selection (as 
well as against “full” polynomials with no subset selection) in different conditions of 
signal-to-noise ratio (SNR) and training data size, here two test functions are used – Synth1 
(4 input variables) and Synth2 (10 input variables): 
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For Synth1 the values of x are uniformly distributed in the interval [-0.25, 0.25]. For Synth2 
they are uniformly distributed in the interval [0, 1]. For each test function three training set 
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where P is the predicted probability of y being equal to 1. It is equivalent to the following 
representation of P: 
 
  ))(exp(11 xFP  . (17) 
 
The parameters a of the model are usually estimated by minimizing the deviance: 
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Since there is no closed form solution to this minimization, the standard approach to solving 
it is to use iterative algorithms such as Iteratively Re-weighted Least-Squares (Hastie et al., 
2003; Witten & Frank, 2005). Note that, in order to evaluate a model using AICC, the first 
term of (13) is replaced by the deviance. 
F-ABFC and EF-ABFC for classification problems are implemented in the VariClass software 
tool freely available for non-commercial research and educational purposes at 
http://www.cs.rtu.lv/jekabsons/. 

 
5. Related work 
 

There exist also other polynomial regression modelling methods which use wide, potentially 
infinite, dictionaries of basis functions. In (Sutton & Matheus, 1991) an algorithm is 
proposed which starts model building with a first-degree model, with all the input variables 
already included in the model, and iteratively creates a user-predefined number of products 
of the already included basis functions thereby creating new basis functions. In (Orosz & 
Anderson, 1994) a modification of the algorithm is proposed where the initial model has 
none of the input variables included, however there was no empirical success and it was 
concluded that in practical applications the algorithms have three major disadvantages: 
inability to construct all the necessary basis functions, inability to discard unnecessary basis 
functions, and high sensitivity to noise and to number of samples in data. 
More recently a different method was developed which can be seen also as a special case of 
the ABFC approach – Constrained Induction of Polynomial Equations for Regression, CIPER 
(Todorovski et al., 2004). CIPER was initially developed in the context of differential 
equation discovery, inductive databases, and constraint-based data mining. CIPER uses two 
state-transition operators and a Beam Search strategy. The first state-transition operator 
adds a new linear basis function while the second increases a single exponent of a single 
basis function. In (Jekabsons & Lavendels, 2008a), CIPER was empirically compared to 
F-ABFC and it was concluded that CIPER suffers form the nesting effect (Pudil et al., 1994) 
and has a tendency of getting stuck in local minima too early in the search. This is because 
CIPER is not able to preserve the structure of any of included basis functions (its second 
operator increases an exponent in an existing basis function but does not take into 
consideration the possibility that both versions of the basis function may be required) as 
well as because it is not able to simplify a model – decrease unnecessarily high exponents or 
discard unnecessary basis functions. In F-ABFC these issues are solved using Operator2 and 
the simplification operators. 

Some similar ideas of constructing new features as combinations of original input variables 
are applied also in different other approaches. For example, in (Ritthoff et al., 2002) a feature 
construction method is proposed in which a genetic algorithm constructs linear and 
nonlinear combinations of original input variables further used as inputs for Support Vector 
Machines. In (Bloedorn & Michalski, 1998), on the other hand, the feature construction idea 
is used for data-driven expansion of the input space for induction of decision rules and 
decision trees. 

 
6. Experiments 
 

This section presents the results of comparisons of the proposed ABFC methods to the 
methods of subset selection and to a number of other well known state-of-the-art regression 
modelling methods using a series of synthetic and real-world regression data sets. The goal 
is to gain some understanding of the properties of F-ABFC and EF-ABFC and to evaluate 
their performance in both accuracy and speed. All the experiments were performed on a 
Pentium IV 2.4GHz machine with 1.5GB RAM. 
In all the experiments, predictive performance of a model is measured either using a 
completely independent test data set or using Cross-Validation. In any case the performance 
of a model is measured in terms of Relative Root Mean Squared Error: 
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where nt is the number of samples in the test data set, F(xj) is the predicted value 
corresponding to the value of yj, and y  is the mean of all the y values in the test set. While 
RMSE (Root Mean Square Error) represents model’s deviation from the data, the SD 
(Standard Deviation) captures how irregular the problem is. The lower the value of RRMSE, 
the more accurate is the model. The final RRMSE values stated are the values averaged over 
all evaluations. 
All the employed regression modelling methods, except Regression Trees, Model Trees, 
Support Vector Machines, and Multi-Layer Perceptrons, are implemented in VariReg 
software tool version 0.9.21 freely available for non-commercial research and educational 
purposes at http://www.cs.rtu.lv/jekabsons/. 

 
6.1 Synthetic data sets 
To compare the performance of the proposed ABFC methods against subset selection (as 
well as against “full” polynomials with no subset selection) in different conditions of 
signal-to-noise ratio (SNR) and training data size, here two test functions are used – Synth1 
(4 input variables) and Synth2 (10 input variables): 
 

 )sin())sin(2exp( 32411 xxxxySynth   , (20) 

     1098765432
3
12 0001))(( xxxxxxxxxxySynth  . (21) 

 

For Synth1 the values of x are uniformly distributed in the interval [-0.25, 0.25]. For Synth2 
they are uniformly distributed in the interval [0, 1]. For each test function three training set 
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sizes (25 samples, 50 samples, and 100 samples) and three signal-to-noise ratios (no noise, 
SNR = 4, and SNR = 2) are used – a total of nine cases for each function. For each case a series 
of 20 training data sets are generated (randomly sampled in the domain of x) so that in each 
case for each regression modelling method the model building task is performed 20 times. 
For each test functions a single test data set is generated containing 5000 samples randomly 
sampled in the domain of x. The test data sets do not contain noise. 
The heuristic search algorithms used for the subset selection are the SFS and the SFFS (the 
same algorithm adaptation of which is used in the ABFC methods). The algorithms are used 
together with the AICC criterion (also the same which is used in the ABFC methods). Note 
that the “recursion depth” hyperparameter of F-ABFC is set equal to 2 for Synth1 and equal 
to 1 (no recursion) for Synth2. 
As for the full polynomials (FP) and the subset selection methods the desirable degree p is 
not known beforehand, the modelling results of these methods are stated in two forms: 
1) average performance of models of a fixed p; 2) average performance when a range of 
values for p are tried and the model of the lowest RRMSE value is picked. However, note 
that this second type of procedure for FP/SFS/SFFS is rather optimistic (in the sense of both 
predictive performance and speed) as for correct and fair evaluations there would be an 
additional validation data set or a Cross-Validation loop required. 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 4] 9.29 (1.88) - 6.74 (0.55) - 0.78 (0.21) - 
SFS, p = 2 7.17 (1.03) < 0.1 6.38 (0.58) < 0.1 5.63 (0.28) < 0.1 
SFS, p = 6 0.77 (2.24) 0.3 0.06 (0.02) 1.4 0.04 (1e-2) 8.0 
SFS, p = 10 3.19 (7.41) 1.8 0.03 (0.04) 16.1 2e-3 (7e-3) 104.3 
SFS, p  [1, 10] 0.77 (2.24) 4.4 0.03 (0.03) 34.1 2e-3 (7e-3) 226.1 
SFFS, p  [1, 10] 0.77 (2.24) 4.5 0.03 (0.03) 30.4 2e-4 (1e-4) 236.9 
F-ABFC 0.11 (0.15) 0.1 0.01 (0.02) 2.0 3e-7 (5e-7) 43.8 
EF-ABFC 0.27 (0.31) 0.8 0.02 (0.02) 11.5 1e-4 (4e-4) 250.6 

SNR = 4  
FP, p  [1, 4] 42.71 (16.31) - 18.36 (2.53) - 12.12 (1.59) - 
SFS, p = 2 24.24 (10.87) < 0.1 15.62 (2.99) < 0.1 10.64 (2.38) < 0.1 
SFS, p = 6 59.37 (28.09) 0.1 41.37 (11.76) 0.3 25.60 (9.49) 0.8 
SFS, p = 10 112.02 (149.28) 0.7 74.10 (40.38) 3.4 39.23 (10.92) 7.9 
SFS, p  [1, 10] 24.24 (10.87) 1.7 15.62 (2.99) 8.7 10.64 (2.38) 19.5 
SFFS, p  [1, 10] 24.24 (10.87) 1.8 15.62 (2.99) 7.6 10.64 (2.38) 21.0 
F-ABFC 39.05 (17.97) < 0.1 33.13 (15.64) 0.1 22.64 (10.73) 0.3 
EF-ABFC 20.24 (6.76) 0.3 13.65 (3.82) 0.8 9.08 (3.16) 2.1 

SNR = 2  
FP, p  [1, 4] 79.40 (37.25) - 35.97 (8.35) - 21.79 (4.29) - 
SFS, p = 2 36.35 (12.40) < 0.1 26.51 (9.87) < 0.1 18.55 (4.35) < 0.1 
SFS, p = 6 88.32 (32.57) 0.1 70.34 (24.81) 0.3 47.11 (16.95) 1.0 
SFS, p = 10 209.98 (213.00) 0.8 99.26 (40.07) 2.8 78.04 (31.78) 8.1 
SFS, p  [1, 10] 36.35 (12.40) 1.7 26.51 (9.87) 5.9 18.55 (4.35) 18.7 
SFFS, p  [1, 10] 36.35 (12.40) 1.7 26.64 (10.08) 6.3 18.55 (4.35) 19.5 
F-ABFC 58.43 (19.72) < 0.1 72.44 (62.43) < 0.1 39.93 (19.91) 0.2 
EF-ABFC 35.23 (11.04) 0.3 24.94 (6.18) 0.7 17.67 (4.45) 1.8 

Table 1. The results of the performed experiments for function Synth1 

The results of the performed experiments are summarized in Table 1 and Table 2 in terms of 
mean RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. 
Note that, due to the space constraints, for fixed degrees only the results of p  {2, 6, 10} (for 
Synth1), p  {2, 5} (for Synth2) are given. Detailed results are available at 
http://www.cs.rtu.lv/jekabsons/. 
Figure 6 and Figure 7 visualizes the performance changes of the methods for different 
training set sizes and SNRs. 
 

 
Fig. 6. Performance of the methods for function Synth1 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 2] 45.40 (4.86) - 38.73 (2.06) - 13.07 (1.37) - 
SFS, p = 2 38.17 (13.99) < 0.1 19.13 (3.20) 0.2 11.27 (1.35) 1.0 
SFS, p = 5 80.25 (23.80) 12.8 29.13 (12.73) 53.6 4.66 (2.79) 542.9 
SFS, p  [1, 5] 38.17 (13.99) 14.7 19.13 (3.20) 57.1 4.64 (0.88) 658.7 
SFFS, p  [1, 5] 37.40 (12.36) 15.9 20.20 (4.03) 82.5 4.01 (2.87) 680.4 
F-ABFC 52.86 (11.46) < 0.1 13.14 (6.96) 0.7 1.59 (1.58) 16.5 
EF-ABFC 56.39 (16.40) 0.3 12.92 (3.08) 4.2 0.95 (0.46) 98.7 

SNR = 4  
FP, p  [1, 2] 51.78 (8.53) - 41.31 (3.25) - 37.38 (1.51) - 
SFS, p = 2 58.85 (15.18) < 0.1 35.44 (7.05) 0.1 23.63 (4.02) 0.3 
SFS, p = 5 180.68 (68.02) 10.7 82.78 (23.99) 66.0 62.00 (10.43) 258.7 
SFS, p  [1, 5] 58.85 (15.18) 13.1 35.44 (7.05) 77.8 23.63 (4.02) 298.8 
SFFS, p  [1, 5] 61.01 (17.19) 14.2 35.88 (8.69) 78.2 24.21 (3.57) 373.5 
F-ABFC 79.07 (35.39) < 0.1 45.59 (9.28) 0.1 28.89 (7.25) 0.5 
EF-ABFC 62.79 (11.47) 0.3 35.57 (7.35) 1.3 20.37 (3.51) 6.3 

SNR = 2  
FP, p  [1, 2] 61.23 (9.17) - 46.61 (4.73) - 40.81 (3.12) - 
SFS, p = 2 73.81 (17.63) < 0.1 51.69 (8.15) 0.1 37.20 (6.57) 0.2 
SFS, p = 5 180.68 (68.02) 11.0 135.99 (37.13) 47.6 115.01 (31.12) 208.9 
SFS, p  [1, 5] 73.81 (17.63) 13.3 47.92 (6.96) 57.4 37.20 (6.57) 253.0 
SFFS, p  [1, 5] 76.43 (11.56) 14.3 50.41 (9.44) 64.3 35.15 (5.16) 369.3 
F-ABFC 82.42 (18.79) < 0.1 68.08 (15.40) 0.1 49.61 (13.73) 0.3 
EF-ABFC 70.84 (9.52) 0.2 51.11 (8.79) 0.8 34.54 (5.93) 3.9 

Table 2. The results of the performed experiments for function Synth2 
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sizes (25 samples, 50 samples, and 100 samples) and three signal-to-noise ratios (no noise, 
SNR = 4, and SNR = 2) are used – a total of nine cases for each function. For each case a series 
of 20 training data sets are generated (randomly sampled in the domain of x) so that in each 
case for each regression modelling method the model building task is performed 20 times. 
For each test functions a single test data set is generated containing 5000 samples randomly 
sampled in the domain of x. The test data sets do not contain noise. 
The heuristic search algorithms used for the subset selection are the SFS and the SFFS (the 
same algorithm adaptation of which is used in the ABFC methods). The algorithms are used 
together with the AICC criterion (also the same which is used in the ABFC methods). Note 
that the “recursion depth” hyperparameter of F-ABFC is set equal to 2 for Synth1 and equal 
to 1 (no recursion) for Synth2. 
As for the full polynomials (FP) and the subset selection methods the desirable degree p is 
not known beforehand, the modelling results of these methods are stated in two forms: 
1) average performance of models of a fixed p; 2) average performance when a range of 
values for p are tried and the model of the lowest RRMSE value is picked. However, note 
that this second type of procedure for FP/SFS/SFFS is rather optimistic (in the sense of both 
predictive performance and speed) as for correct and fair evaluations there would be an 
additional validation data set or a Cross-Validation loop required. 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 4] 9.29 (1.88) - 6.74 (0.55) - 0.78 (0.21) - 
SFS, p = 2 7.17 (1.03) < 0.1 6.38 (0.58) < 0.1 5.63 (0.28) < 0.1 
SFS, p = 6 0.77 (2.24) 0.3 0.06 (0.02) 1.4 0.04 (1e-2) 8.0 
SFS, p = 10 3.19 (7.41) 1.8 0.03 (0.04) 16.1 2e-3 (7e-3) 104.3 
SFS, p  [1, 10] 0.77 (2.24) 4.4 0.03 (0.03) 34.1 2e-3 (7e-3) 226.1 
SFFS, p  [1, 10] 0.77 (2.24) 4.5 0.03 (0.03) 30.4 2e-4 (1e-4) 236.9 
F-ABFC 0.11 (0.15) 0.1 0.01 (0.02) 2.0 3e-7 (5e-7) 43.8 
EF-ABFC 0.27 (0.31) 0.8 0.02 (0.02) 11.5 1e-4 (4e-4) 250.6 

SNR = 4  
FP, p  [1, 4] 42.71 (16.31) - 18.36 (2.53) - 12.12 (1.59) - 
SFS, p = 2 24.24 (10.87) < 0.1 15.62 (2.99) < 0.1 10.64 (2.38) < 0.1 
SFS, p = 6 59.37 (28.09) 0.1 41.37 (11.76) 0.3 25.60 (9.49) 0.8 
SFS, p = 10 112.02 (149.28) 0.7 74.10 (40.38) 3.4 39.23 (10.92) 7.9 
SFS, p  [1, 10] 24.24 (10.87) 1.7 15.62 (2.99) 8.7 10.64 (2.38) 19.5 
SFFS, p  [1, 10] 24.24 (10.87) 1.8 15.62 (2.99) 7.6 10.64 (2.38) 21.0 
F-ABFC 39.05 (17.97) < 0.1 33.13 (15.64) 0.1 22.64 (10.73) 0.3 
EF-ABFC 20.24 (6.76) 0.3 13.65 (3.82) 0.8 9.08 (3.16) 2.1 

SNR = 2  
FP, p  [1, 4] 79.40 (37.25) - 35.97 (8.35) - 21.79 (4.29) - 
SFS, p = 2 36.35 (12.40) < 0.1 26.51 (9.87) < 0.1 18.55 (4.35) < 0.1 
SFS, p = 6 88.32 (32.57) 0.1 70.34 (24.81) 0.3 47.11 (16.95) 1.0 
SFS, p = 10 209.98 (213.00) 0.8 99.26 (40.07) 2.8 78.04 (31.78) 8.1 
SFS, p  [1, 10] 36.35 (12.40) 1.7 26.51 (9.87) 5.9 18.55 (4.35) 18.7 
SFFS, p  [1, 10] 36.35 (12.40) 1.7 26.64 (10.08) 6.3 18.55 (4.35) 19.5 
F-ABFC 58.43 (19.72) < 0.1 72.44 (62.43) < 0.1 39.93 (19.91) 0.2 
EF-ABFC 35.23 (11.04) 0.3 24.94 (6.18) 0.7 17.67 (4.45) 1.8 

Table 1. The results of the performed experiments for function Synth1 

The results of the performed experiments are summarized in Table 1 and Table 2 in terms of 
mean RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. 
Note that, due to the space constraints, for fixed degrees only the results of p  {2, 6, 10} (for 
Synth1), p  {2, 5} (for Synth2) are given. Detailed results are available at 
http://www.cs.rtu.lv/jekabsons/. 
Figure 6 and Figure 7 visualizes the performance changes of the methods for different 
training set sizes and SNRs. 
 

 
Fig. 6. Performance of the methods for function Synth1 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 2] 45.40 (4.86) - 38.73 (2.06) - 13.07 (1.37) - 
SFS, p = 2 38.17 (13.99) < 0.1 19.13 (3.20) 0.2 11.27 (1.35) 1.0 
SFS, p = 5 80.25 (23.80) 12.8 29.13 (12.73) 53.6 4.66 (2.79) 542.9 
SFS, p  [1, 5] 38.17 (13.99) 14.7 19.13 (3.20) 57.1 4.64 (0.88) 658.7 
SFFS, p  [1, 5] 37.40 (12.36) 15.9 20.20 (4.03) 82.5 4.01 (2.87) 680.4 
F-ABFC 52.86 (11.46) < 0.1 13.14 (6.96) 0.7 1.59 (1.58) 16.5 
EF-ABFC 56.39 (16.40) 0.3 12.92 (3.08) 4.2 0.95 (0.46) 98.7 

SNR = 4  
FP, p  [1, 2] 51.78 (8.53) - 41.31 (3.25) - 37.38 (1.51) - 
SFS, p = 2 58.85 (15.18) < 0.1 35.44 (7.05) 0.1 23.63 (4.02) 0.3 
SFS, p = 5 180.68 (68.02) 10.7 82.78 (23.99) 66.0 62.00 (10.43) 258.7 
SFS, p  [1, 5] 58.85 (15.18) 13.1 35.44 (7.05) 77.8 23.63 (4.02) 298.8 
SFFS, p  [1, 5] 61.01 (17.19) 14.2 35.88 (8.69) 78.2 24.21 (3.57) 373.5 
F-ABFC 79.07 (35.39) < 0.1 45.59 (9.28) 0.1 28.89 (7.25) 0.5 
EF-ABFC 62.79 (11.47) 0.3 35.57 (7.35) 1.3 20.37 (3.51) 6.3 

SNR = 2  
FP, p  [1, 2] 61.23 (9.17) - 46.61 (4.73) - 40.81 (3.12) - 
SFS, p = 2 73.81 (17.63) < 0.1 51.69 (8.15) 0.1 37.20 (6.57) 0.2 
SFS, p = 5 180.68 (68.02) 11.0 135.99 (37.13) 47.6 115.01 (31.12) 208.9 
SFS, p  [1, 5] 73.81 (17.63) 13.3 47.92 (6.96) 57.4 37.20 (6.57) 253.0 
SFFS, p  [1, 5] 76.43 (11.56) 14.3 50.41 (9.44) 64.3 35.15 (5.16) 369.3 
F-ABFC 82.42 (18.79) < 0.1 68.08 (15.40) 0.1 49.61 (13.73) 0.3 
EF-ABFC 70.84 (9.52) 0.2 51.11 (8.79) 0.8 34.54 (5.93) 3.9 

Table 2. The results of the performed experiments for function Synth2 
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The results in Table 1 indicate that for noise-free data the F-ABFC outperforms its much 
slower ensembled extension EF-ABFC while for noisy data it is vice versa. When the data 
contains noise, the F-ABFC here can be outperformed even by full polynomials which 
mostly give some of the worst performances. This suggests that for noisy data it is important 
to curb the flexibility of F-ABFC – to use the EF-ABFC even when the data is sparse. 
 

 
Fig. 7. Performance of the methods for function Synth2 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 
The results in Table 2 partially confirm those in Table 1 except that this time the EF-ABFC is 
always more accurate than F-ABFC which may be caused by the three irrelevant input 
variables (pure noise) in the data on which the Synth2 does not depend. Additionally, as 
now in the case of n = 25 the data are very sparse, for this case the ABFC methods are just 
too flexible – they largely overfit the data even when there is no additional noise. 
Overall, the results for both Synth1 and Synth2 indicate the computational advantage of the 
ABFC methods in situations when the required regression model is more complex (of higher 
degree). And this advantage grows with the dimensionality of the problem. 
For noisy data the best choice of p for SFS/SFFS almost always was 2. Then the speed of a 
single SFS/SFFS search can be outperformed only by F-ABFC. However, as the best p value 
is actually unknown and a number of values must be tried, F-ABFC as well as EF-ABFC is 
still faster than the subset selection. 
Finally, it must also be noted that the overall results show evidence that for subset selection 
the choice of the search algorithm (either SFS or SFFS) was of no great importance. Therefore 
further in this study only the SFS algorithm for subset selection is considered. 

 
6.2 Real-world machine learning data sets 
The real-world machine learning regression data sets used are: autoMPG (7 input variables, 
392 samples), AutoPrice (15 input variables, 159 samples), Bodyfat (14 input variables, 252 
samples), Fishcatch (7 input variables, 158 samples), Housing (13 input variables, 506 
samples), HousingNOX (13 input variables, 506 samples), MachineCPU (6 input variables, 
209 samples), Pyrimidines (27 input variables, 73 samples), Servo (4 input variables, 167 
samples), and Stock (9 input variables, 950 samples). The data sets are from UCI Machine 
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), Luis Torgo’s 
data sets repository (http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html), and 

Weka collection of data sets (http://www.cs.waikato.ac.nz/ml/weka/). They are chosen 
because of the relatively low number of samples, which is common in real-world practical 
applications, as well as because of mostly continuous input variables and no missing values. 
Here the performances of the different regression modelling methods are evaluated using 
10-fold Cross-Validation. Note that prior to dividing the data into Cross-Validation folds, 
the order of the samples was randomized. 
The goal of the performed experiments is to compare the proposed ABFC methods to the 
methods of subset selection and to other well known state-of-the-art regression modelling 
methods using a set of real-world regression data sets. The compared methods are the 
following: FP, SFS, F-ABFC, EF-ABFC, Multivariate Adaptive Regression Splines (MARS) 
(Friedman, 1993), M5' Regression Trees (RT) (Witten & Frank, 2005), M5' Model Trees (MT) 
(Witten & Frank, 2005), Support Vector Machines (SVM) (Vapnik, 1995; Smola & Scholkopf, 
2004), and Multi-Layer Perceptrons (Witten & Frank, 2005). Note that for none of the 
methods any of the hyperparameters were manually tuned. MARS was that of 
piecewise-cubic type essentially without special limitation of the number of basis functions 
(i.e. the limit was 500) and with the smoothing parameter (the number of degrees of freedom 
associated with one basis function) either fixed to the default value of 3 or found using an 
additional 10-fold Cross-Validation from the range [1, 5] with step size 0.5. SVM used Radial 
Basis Function kernel and improved Sequential Minimal Optimization algorithm (Shevade 
et al., 1999) for which the complexity parameter and the gamma parameter were found 
using grid search and Cross-Validation from the range {10-1, 100, 101, 102} for the complexity 
parameter and {10-2, 10-1, 100, 101} for the gamma parameter. MLP had one hidden layer 
with the “best” number of neurons determined by 10-fold Cross-Validation from the range 
{10, 20, 30, 40} and the weights were optimized using backpropagation. As implementations 
of RT, MT, SVM, and MLP the Weka software (Witten & Frank, 2005) was employed with its 
default parameters. Also note that for the ABFC methods the recursion of the state-transition 
operators was never used. 
The results of the performed experiments are summarized in Table 3 in terms of mean 
RRMSE value, with the standard deviation reported in parenthesis, and elapsed time. Here 
the modelling results of SFS are stated in the same two forms as in Section 6.1 except that for 
the different data sets (different in size, in number of input variables, and in required model 
complexity) the values of p are tried in different intervals (named “p = automatic”) – the 
search for the best p is started with the first degree and p is increased as long as the RRMSE 
value improves. The results of FP are not stated, as due to matrix singularity in OLS for 
Pyrimidines data set the parameter values of FP models could not be calculated. Also note 
that, due to the space constraints, only the results averaged over all the data sets are given. 
Detailed results are available at http://www.cs.rtu.lv/jekabsons/. 
From the results of the experiments it is concluded that in terms of predictive performance, 
the EF-ABFC outperformed all the other regression modelling methods involving 
polynomials as well as showed high competitiveness against the other “non-polynomial” 
methods. In terms of computational cost, both ABFC methods outperformed subset selection 
but were inferior to some of the “non-polynomial” methods, especially RT, MT, and MARS 
without CV. 
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The results in Table 1 indicate that for noise-free data the F-ABFC outperforms its much 
slower ensembled extension EF-ABFC while for noisy data it is vice versa. When the data 
contains noise, the F-ABFC here can be outperformed even by full polynomials which 
mostly give some of the worst performances. This suggests that for noisy data it is important 
to curb the flexibility of F-ABFC – to use the EF-ABFC even when the data is sparse. 
 

 
Fig. 7. Performance of the methods for function Synth2 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 
The results in Table 2 partially confirm those in Table 1 except that this time the EF-ABFC is 
always more accurate than F-ABFC which may be caused by the three irrelevant input 
variables (pure noise) in the data on which the Synth2 does not depend. Additionally, as 
now in the case of n = 25 the data are very sparse, for this case the ABFC methods are just 
too flexible – they largely overfit the data even when there is no additional noise. 
Overall, the results for both Synth1 and Synth2 indicate the computational advantage of the 
ABFC methods in situations when the required regression model is more complex (of higher 
degree). And this advantage grows with the dimensionality of the problem. 
For noisy data the best choice of p for SFS/SFFS almost always was 2. Then the speed of a 
single SFS/SFFS search can be outperformed only by F-ABFC. However, as the best p value 
is actually unknown and a number of values must be tried, F-ABFC as well as EF-ABFC is 
still faster than the subset selection. 
Finally, it must also be noted that the overall results show evidence that for subset selection 
the choice of the search algorithm (either SFS or SFFS) was of no great importance. Therefore 
further in this study only the SFS algorithm for subset selection is considered. 

 
6.2 Real-world machine learning data sets 
The real-world machine learning regression data sets used are: autoMPG (7 input variables, 
392 samples), AutoPrice (15 input variables, 159 samples), Bodyfat (14 input variables, 252 
samples), Fishcatch (7 input variables, 158 samples), Housing (13 input variables, 506 
samples), HousingNOX (13 input variables, 506 samples), MachineCPU (6 input variables, 
209 samples), Pyrimidines (27 input variables, 73 samples), Servo (4 input variables, 167 
samples), and Stock (9 input variables, 950 samples). The data sets are from UCI Machine 
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), Luis Torgo’s 
data sets repository (http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html), and 

Weka collection of data sets (http://www.cs.waikato.ac.nz/ml/weka/). They are chosen 
because of the relatively low number of samples, which is common in real-world practical 
applications, as well as because of mostly continuous input variables and no missing values. 
Here the performances of the different regression modelling methods are evaluated using 
10-fold Cross-Validation. Note that prior to dividing the data into Cross-Validation folds, 
the order of the samples was randomized. 
The goal of the performed experiments is to compare the proposed ABFC methods to the 
methods of subset selection and to other well known state-of-the-art regression modelling 
methods using a set of real-world regression data sets. The compared methods are the 
following: FP, SFS, F-ABFC, EF-ABFC, Multivariate Adaptive Regression Splines (MARS) 
(Friedman, 1993), M5' Regression Trees (RT) (Witten & Frank, 2005), M5' Model Trees (MT) 
(Witten & Frank, 2005), Support Vector Machines (SVM) (Vapnik, 1995; Smola & Scholkopf, 
2004), and Multi-Layer Perceptrons (Witten & Frank, 2005). Note that for none of the 
methods any of the hyperparameters were manually tuned. MARS was that of 
piecewise-cubic type essentially without special limitation of the number of basis functions 
(i.e. the limit was 500) and with the smoothing parameter (the number of degrees of freedom 
associated with one basis function) either fixed to the default value of 3 or found using an 
additional 10-fold Cross-Validation from the range [1, 5] with step size 0.5. SVM used Radial 
Basis Function kernel and improved Sequential Minimal Optimization algorithm (Shevade 
et al., 1999) for which the complexity parameter and the gamma parameter were found 
using grid search and Cross-Validation from the range {10-1, 100, 101, 102} for the complexity 
parameter and {10-2, 10-1, 100, 101} for the gamma parameter. MLP had one hidden layer 
with the “best” number of neurons determined by 10-fold Cross-Validation from the range 
{10, 20, 30, 40} and the weights were optimized using backpropagation. As implementations 
of RT, MT, SVM, and MLP the Weka software (Witten & Frank, 2005) was employed with its 
default parameters. Also note that for the ABFC methods the recursion of the state-transition 
operators was never used. 
The results of the performed experiments are summarized in Table 3 in terms of mean 
RRMSE value, with the standard deviation reported in parenthesis, and elapsed time. Here 
the modelling results of SFS are stated in the same two forms as in Section 6.1 except that for 
the different data sets (different in size, in number of input variables, and in required model 
complexity) the values of p are tried in different intervals (named “p = automatic”) – the 
search for the best p is started with the first degree and p is increased as long as the RRMSE 
value improves. The results of FP are not stated, as due to matrix singularity in OLS for 
Pyrimidines data set the parameter values of FP models could not be calculated. Also note 
that, due to the space constraints, only the results averaged over all the data sets are given. 
Detailed results are available at http://www.cs.rtu.lv/jekabsons/. 
From the results of the experiments it is concluded that in terms of predictive performance, 
the EF-ABFC outperformed all the other regression modelling methods involving 
polynomials as well as showed high competitiveness against the other “non-polynomial” 
methods. In terms of computational cost, both ABFC methods outperformed subset selection 
but were inferior to some of the “non-polynomial” methods, especially RT, MT, and MARS 
without CV. 
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Method RRMSE Time (s) 
SFS, p = 1 49.64 (12.05) < 0.1
SFS, p = 2 40.89 (15.11) 4.8
SFS, p = 3 37.83 (15.70) 227.4
SFS, p = 4 47.10 (29.17) 2486.8
SFS, p = automatic 34.83 (10.20) 2207.5
F-ABFC 39.61 (16.93) 108.7
EF-ABFC 31.24 (10.86) 607.8
RT 50.76 (9.85) 0.3
MT 34.79 (12.35) 0.4
MARS 40.81 (17.29) 3.2
MARS + CV 39.87 (15.57) 265.8
SVM 31.87 (10.73) 360.5
MLP 41.50 (18.04) 345.2

Table 3. The average results of the performed experiments for the ten machine learning data 
sets 
 

 
Fig. 8. RRMSE values of the six best methods for the ten data sets 
 
For the different data sets, the best found degree p for SFS with “p = automatic” varied in 
range [1, 6] (with the average value of 3.0), meaning that the maximal checked value of p 
was 7 (though for only one of the data sets). However, the average degree of models 
constructed by F-ABFC and EF-ABFC was 6.4 and 7.2 correspondingly. If on average for SFS 
such large values of p would be tried (instead of only 3.0), the SFS would take considerably 
more time (orders of magnitude) to complete. 

 
6.3 Real-world metamodelling data sets 
In many different industrial applications, to cut down the computational cost of complex, 
high fidelity scientific and engineering simulations, regression models (in the context also 
referred to as metamodels or surrogate models) are constructed that mimic the behaviour of 
the simulation models as closely as possible while being computationally much cheaper to 
employ (Myers & Montgomery, 2002; Chen et al., 2006; Martin & Simpson, 2005; Kalnins et 
al., 2008b; Kalnins et al., 2008a, Kalnins et al., 2009a; Kalnins et al., 2009b). The process of 
design optimization involving metamodelling usually comprises three major steps which 
may be interleaved iteratively: 1) selection of samples (known as design of experiments); 
2) construction of metamodel and estimation of its predictive performance; 3) employment 
of the metamodel in design optimization (i.e., finding the best values for input variables 

with which the studied system achieves the optimum response), design space exploration, 
what-if analysis, sensitivity analysis, and other routine tasks. 
The metamodelling problem addressed here is modelling of the behaviour of “I-core” 
all-metal laser-welded sandwich panels under bending load for further design optimization 
and analysis in application as deck panels in a modularised watercraft concept (Kalnins et 
al., 2008a). The problem has six input variables and four output variables. The data are 
generated using finite element simulations and contains 500 samples distributed in the input 
space using sequential experimental design (Auzins, 2004). 
Originally, metamodelling was associated with low-degree (usually quadratic) polynomial 
models. They have been well accepted in engineering practice, as they require only little 
data and are computationally very efficient. However, it is understood that they are loosing 
efficiency when highly nonlinear behaviour should be approximated. 
In this section the compared regression modelling methods are the same as in the Section 6.2 
with an addition of three methods which are rather popular in metamodelling literature: 
Locally-Weighted Polynomials (LWP) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; 
Kalnins et al., 2005), Radial Basis Functions (RBF) (Gutmann, 2001), and Kriging (Martin & 
Simpson, 2005, Lophaven et al., 2002). Note again that for none of the methods any of the 
hyperparameters were manually tuned. LWP used the Gaussian weight function with the 
value of the bandwidth parameter found by Leave-One-Out Cross-Validation. Note that the 
LWP has a similar issue of degree p selection as FP and SFS, so here a number of different 
degrees are tried in the interval [1, 4]. RBF used the multi-quadric basis functions with the 
shape parameter fixed to 1. Kriging used first-degree polynomial as a trend function and 
employed the Gaussian correlation function. Note that the used source code for the Kriging 
technique was developed by (Lophaven et al., 2002). Also note that for the ABFC methods in 
the performed experiments the recursion of the state-transition operators was never used. 
The results of the performed experiments are summarized in Table 4 in terms of mean 
RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. Here 
the performances of the different regression modelling methods are evaluated using 5-fold 
Cross-Validation. The modelling results of FP and SFS are stated in the same two forms as in 
Section 6.1. Note that, due to the space constraints, only the results averaged over all the 
data sets are given. Detailed results (as well as the utilized data sets) are available at 
http://www.cs.rtu.lv/jekabsons/. 
The results in Table 4 indicate that with the four metamodelling data sets (all of which are 
essentially noise-free) the ensembling of F-ABFC models was not necessary – the accuracy 
advantage of EF-ABFC is negligible while it is computationally about ten times slower than 
simple F-ABFC. However, both F-ABFC and EF-ABFC outperformed subset selection in 
terms of predictive performance as well as in terms of speed. In respect to the other methods 
the ABFC approach once again is highly competitive, especially the faster F-ABFC method. 
With the metamodelling data sets, on average the best degree p for SFS was 6.3 while the 
average degree of models constructed by F-ABFC and EF-ABFC was 9.2 and 7.9 
correspondingly. Similarly to the conclusions of the previous section, trying these larger 
values of p for SFS would take orders of magnitude more time to complete. 
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Method RRMSE Time (s) 
FP, p = 1 49.85 (4.82) -
FP, p = 2 23.81 (3.10) -
FP, p = 3 12.81 (1.77) -
FP, p = 4 9.88 (1.46) -
FP, p  [1, 4] 9.17 (1.28) -
SFS, p = 1 49.75 (4.68) < 0.1
SFS, p = 2 23.42 (3.15) 0.2
SFS, p = 3 11.74 (1.84) 4.2
SFS, p = 4 7.31 (1.35) 41.1
SFS, p = 5 5.62 (1.14) 220.3
SFS, p = 6 5.03 (0.78) 959.1
SFS, p = 7 5.05 (1.12) 1828.4
SFS, p  [1, 7] 4.92 (0.75) 3053.4
F-ABFC 4.28 (0.55) 71.9
EF-ABFC 4.19 (0.55) 715.4
RT 60.18 (7.87) 1.0
MT 22.27 (4.97) 4.7
MARS 5.87 (0.96) 0.9
MARS + CV 5.31 (0.84) 77.5
SVM 13.14 (2.57) 414.7
MLP 8.47 (1.03) 331.3
LWP, p = 1 40.22 (4.12) 2.8
LWP, p = 2 20.23 (2.79) 26.2
LWP, p = 3 11.66 (1.68) 210.6
LWP, p = 4 9.76 (1.42) 1576.7
RBF 14.48 (3.42) 1.9
Kriging 7.40 (1.21) 16.3

Table 4. The average results of the performed experiments for the four metamodelling data 
sets 
 
Note that in practice it turns out that the user all too often does model building in a 
“one-shot” manner, without consideration of different settings for a modelling method. 
With FP and SFS (as well as LWP) it could mean that almost any of the results stated in 
Table 4 (as well as in the other tables from previous sections) may be accepted as the final. 
Iterative and adaptive methods like those of ABFC, on the other hand, have the potential of 
relatively rapidly producing accurate models without the configuration burden. 

 
7. Conclusion 
 

This chapter introduced Adaptive Basis Function Construction – an adaptive sparse 
polynomial regression model building approach which can also be viewed as an alternative 
to the classical subset selection approach. In contrast to subset selection, the ABFC approach 
does not require putting restrictions on model’s degree, enables model building in 
polynomial time, and does not require repetition of the model building process. The basis 
functions required for the model are automatically adaptively constructed using heuristic 
search specifically for data at hand without using a restricted fixed finite user-predefined 
dictionary. The dictionary in the ABFC is infinite and polynomials of arbitrary complexity 
can be constructed. 
In most of the performed empirical experiments, the ABFC methods outperformed subset 
selection in terms of predictive performance as well as in terms of the amount of required 

computational resources. Moreover, in respect to the other well-known state-of-the-art 
regression methods, the ABFC approach is also highly competitive. Additionally, the ABFC 
methods have advantages also in their simple application – the underlying algorithms have 
very small number of hyperparameters for the user to tune and result in simple explicit 
equations employable without specialized software. 
Comparing the two specific methods F-ABFC and EF-ABFC, it is concluded that EF-ABFC 
has predictive performance advantage over F-ABFC when the data contains noise, be it in 
terms of signal-to-noise ratio or in terms of irrelevant input variables. On the other hand, 
F-ABFC is much faster than EF-ABFC and can produce more accurate models when the data 
is noise-free. Nevertheless, both methods may require the “recursion depth” 
hyperparameter to be set to a value higher than 1 when the data is of low dimensionality 
(e.g., 4d ) and/or the existing structure in the data requires a very complex model. 
As future work, some of the ideas described in Section 4.7 could be pursued. 
Software (including open source) implementing the ABFC methods, as well as most of the 
other regression methods employed in this chapter, can be downloaded at the author’s 
webpage: http://www.cs.rtu.lv/jekabsons/. 
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1. Introduction 
 

In the last decades, huge amounts of data became omnipresent in diverse areas of 
knowledge, such as business, astronomy, biology, and so on. Machine Learning and 
Knowledge Discovery in Databases (KDD) are fields in Computer Science that focus on the 
task of transforming these data into useful knowledge. In (Fayyad et al., 1996), KDD is 
defined as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately 
understandable patterns in data”. Feature and Instance Selection belong to the practice of data 
preparation (or pre-processing), which is a preliminary process that transforms raw data 
into a format that is convenient to the data mining (or machine learning) algorithm. 
Usually, data is stored in a table-like format: the columns of these tables are the attributes or 
features - they describe the data - and the rows, or lines, are the records or instances - they are 
the examples of the concept stored in the data. Feature and Instance selection processes 
allow applications, such as classification or clusterization, to focus only on the important (or 
relevant) attributes and records to the specific concept that is in study. 
As important machine learning problems, Feature and Instance Selection have been studied 
systematically over the last decades, when several algorithms for solving them individually 
have been proposed. Such selection problems play a fundamental role in the pre-processing 
step of any learning task. By removing noise, irrelevant and redundant features and 
instances, and reducing the overall dimensionality of a dataset, feature and instance 
selection have been demonstrated to improve the performance of most machine learning 
algorithms, speed up the output of models and allow algorithms to deal with datasets 
whose sizes are gigantic. Even though the specialized literature have exhibited remarkable 
results in solving both the feature and instance selection problems individually, little work 
has been done to manage these solutions to work together in order to solve these related 
problems simultaneously or even understand the relationship between features and 
instances. 
This chapter initially discusses the feature and instance selection problems and their 
relevance to machine learning, giving an accurate definition of both problems. Next, it 
surveys different approaches for dealing with feature selection and instance selection 
separately and some works that tried to integrate the solutions for these two problems, 
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demonstrating the unexplored potential of such combination. Following the single and 
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the 
interesting performance of the framework when compared to other standalone and 
combinational approaches over several natural datasets collected in the literature. Some 
conclusions and ideas for future works are given in the end of the chapter. 

 
1.1 Problem´s Definition 
In this chapter we are going to use the following formalization when referring to datasets, 
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on 
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples 
<X, C> where C is the class value of this example. 
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error 
rate of this classifier on this dataset D.  

 
1.2 The Feature Selection Problem 
The Feature Selection problem involves discovering a subset of features such that a classifier 
built only with this subset would have better predictive accuracy than a classifier built from 
the entire set of features. Other benefits of feature selection include a reduction in the 
amount of training data needed to induce an accurate classifier, that is consequently simpler 
and easier to understand, and a reduced execution time. In practice, feature selection 
algorithms will discover and select features of the data that are relevant to the task to be 
learned. 
In addition to irrelevant features, feature selection researchers have identified other 
examples of problematic features which may have a negative impact on the performance of 
learning systems such as redundant features and randomly class-correlated features. 
Irrelevant features are those that do not contribute to the predictive accuracy of a particular 
target concept. Redundant features refer to those that, even when relevant to a target 
concept, provide mostly information already present in another feature and, in fact, do not 
contribute to getting better predictors. Randomly class-correlated features are correlated to 
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and 
randomly class-correlated features are worthless and removing them can improve the 
learning process. In fact, the feature selection process can be seen alternatively as the process 
of identifying and removing as many irrelevant, redundant and randomly class-correlated 
features as possible. 
Then we can formulate the problem of feature selection as: 
 
                                                                           Max G                                                                      (1) 

    Subject to                                                                                  (1) 
|�′| �� � 

 
A multiobjective version of it can seen as 
 
                                                                   Max G , Min |F|                                                             (2) 

    Subject to                                                                                  (2) 
|�′| �� � 

Clearly a classifier built with a set of features F’  F which is more accurate than one built 
with the whole set F is more interesting to use. Additionally the smaller it is the less 
computationally expensive it is. This characteristic is very important due to the datasets 
with high number of features found nowadays. 

 
1.3 The Instance Selection Problem 
The Instance Selection problem is basically the orthogonal version of the Feature Selection 
problem, as it involves discovering a subset of instances such that a classifier built only with 
this subset would have better predictive accuracy than a classifier built from the entire set of 
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to 
achieve the original purpose of a data mining application as if the whole data is used”. Clearly, 
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well 
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to 
improve computational efficiency, since the learning algorithm will consider only a subset 
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).  
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given 
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset 
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the 
problem of instance selection as 
 

                                                                      Max G                                                                   . 
                Subject to                                                                                                                 (3) 

�� �  �� ������′� �� �  Δ �  ������� ��  �  ������′� �� �  Δ  
|�′|  � � 

 

A multiobjective version of it can seen as 
 

Max G , Min |I|                                                               
                Subject to                                                                                                                 (4) 

�� �  �� ������′� �� �  � �  ������� ��  �  �������� �� �  �  
|��|  � � 

 
Like in the feature selection problem, a classifier built with a set of instances I’  I which is 
more accurate than one built with the whole set I is more interesting to use. Additionally the 
smaller it is the less computationally expensive it is. 
 
2. Related Works 
 

Up to this date, several solutions have been proposed to deal with the feature and instance 
selection problems. In this section we briefly describe some important algorithms that work 
on each problem separately and show some approaches that handle both problems in a 
simultaneous way. 

 
2.1 On Feature Selection 
Well known feature selection algorithms perform very differently in identifying and 
removing irrelevant, redundant and randomly class-correlated features. Feature weighting 
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demonstrating the unexplored potential of such combination. Following the single and 
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the 
interesting performance of the framework when compared to other standalone and 
combinational approaches over several natural datasets collected in the literature. Some 
conclusions and ideas for future works are given in the end of the chapter. 

 
1.1 Problem´s Definition 
In this chapter we are going to use the following formalization when referring to datasets, 
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on 
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples 
<X, C> where C is the class value of this example. 
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error 
rate of this classifier on this dataset D.  

 
1.2 The Feature Selection Problem 
The Feature Selection problem involves discovering a subset of features such that a classifier 
built only with this subset would have better predictive accuracy than a classifier built from 
the entire set of features. Other benefits of feature selection include a reduction in the 
amount of training data needed to induce an accurate classifier, that is consequently simpler 
and easier to understand, and a reduced execution time. In practice, feature selection 
algorithms will discover and select features of the data that are relevant to the task to be 
learned. 
In addition to irrelevant features, feature selection researchers have identified other 
examples of problematic features which may have a negative impact on the performance of 
learning systems such as redundant features and randomly class-correlated features. 
Irrelevant features are those that do not contribute to the predictive accuracy of a particular 
target concept. Redundant features refer to those that, even when relevant to a target 
concept, provide mostly information already present in another feature and, in fact, do not 
contribute to getting better predictors. Randomly class-correlated features are correlated to 
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and 
randomly class-correlated features are worthless and removing them can improve the 
learning process. In fact, the feature selection process can be seen alternatively as the process 
of identifying and removing as many irrelevant, redundant and randomly class-correlated 
features as possible. 
Then we can formulate the problem of feature selection as: 
 
                                                                           Max G                                                                      (1) 

    Subject to                                                                                  (1) 
|�′| �� � 

 
A multiobjective version of it can seen as 
 
                                                                   Max G , Min |F|                                                             (2) 

    Subject to                                                                                  (2) 
|�′| �� � 

Clearly a classifier built with a set of features F’  F which is more accurate than one built 
with the whole set F is more interesting to use. Additionally the smaller it is the less 
computationally expensive it is. This characteristic is very important due to the datasets 
with high number of features found nowadays. 

 
1.3 The Instance Selection Problem 
The Instance Selection problem is basically the orthogonal version of the Feature Selection 
problem, as it involves discovering a subset of instances such that a classifier built only with 
this subset would have better predictive accuracy than a classifier built from the entire set of 
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to 
achieve the original purpose of a data mining application as if the whole data is used”. Clearly, 
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well 
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to 
improve computational efficiency, since the learning algorithm will consider only a subset 
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).  
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given 
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset 
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the 
problem of instance selection as 
 

                                                                      Max G                                                                   . 
                Subject to                                                                                                                 (3) 
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Like in the feature selection problem, a classifier built with a set of instances I’  I which is 
more accurate than one built with the whole set I is more interesting to use. Additionally the 
smaller it is the less computationally expensive it is. 
 
2. Related Works 
 

Up to this date, several solutions have been proposed to deal with the feature and instance 
selection problems. In this section we briefly describe some important algorithms that work 
on each problem separately and show some approaches that handle both problems in a 
simultaneous way. 

 
2.1 On Feature Selection 
Well known feature selection algorithms perform very differently in identifying and 
removing irrelevant, redundant and randomly class-correlated features. Feature weighting 
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algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify 
redundant features since they evaluate features individually, not in sets of features like 
other feature selection algorithms. However, they are often very efficient in estimating 
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash & 
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant 
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other 
hand, deals really well with irrelevant, redundant and class-correlated features since it looks 
for subsets that generate no inconsistency. Unless the redundant or class-correlated features 
perfectly duplicate their pairs (another feature or class label, respectively), they will be 
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar 
behavior, since it will search for more consistent subsets. For small datasets or given enough 
time, LVF tends to get rid of undesirable features. Other results regarding the ability of 
feature selection algorithms in dealing with these problematic features can be found in 
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection 
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together 
irrelevant, redundant and randomly class-correlated features. 
As for the use of metaheuristics for the Feature Selection problem, authors have tried 
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie 
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of 
features. Other examples of applications of genetic algorithms for feature selection can be 
found in (Beritelli  et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report 
the use of Tabu Search to select attributes to improve the classification of prostate needle 
biopsies. The paper reports a reduction of 50% in the classification error rate due to the 
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al., 
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good 
experimental results were reported when using several datasets, including two 
bioinformatics datasets. 
In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms 
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several 
algorithms according to their generation procedure and evaluation criterion. All these 
algorithms can be classified into three broad categories: filters, wrappers and hybrid 
approaches. Filters are those algorithms which perform the selection of features using an 
evaluation measure that classify the “quality“ of these elements to differentiate classes 
without making use of any machine learning algorithm. Wrappers explicitly make use of 
machine learning algorithms in order to perform this measurement. Usually, filters are much 
less computationally expensive than wrappers but they produce subsets with less quality 
than those produced by wrappers. Hybrid approaches combine the best characteristics of both 
approaches, trying to produce very good subsets efficiently. 

 
2.2 On Instance Selection 
Most of the works on instance selection have been based on Nearest Neighbor classification.  
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which 
finds a subset such that every member of the original dataset is closer to a member of the 
subset of the same class than to a member of the subset of a different class. This approach 
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where 
every member of the original dataset must be closer to a member of the dataset of the same 

class than to any member of the original dataset of a different class. The Reduced Nearest 
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a 
removal does not cause any other instances to be misclassified by the instances remaining.  
In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches, 
including genetic algorithms, for the instance selection problem and report better data 
reduction percentages and higher classification accuracy in the experimental evaluation 
when using these approaches. Another application of genetic algorithms can be found in 
(Ramirez-Cruz et al., 2006). A description and comparison of several instance selection 
algorithms can be found in (Jankowski & Grochowski, 2004). 
Like feature selection algorithms, instance selection algorithms can be classified in those 
three broad categories. 

 
2.3 On the Combination of Feature and Instance Selection 
The most natural and straight-forward way to combine feature and instance selection is to 
perform one process after the other. In practice, that has been the way the two problems 
have been integrated. Let's consider as FSIS, the application of a feature selection process 
followed by an instance selection process, and ISFS the opposite. Since these approaches are 
general, in the sense that they can be applied to any domain, we will use them as 
comparison base in our experiments. 
Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and 
Instance Selection) algorithm, which targets both problems simultaneously in the context of 
text classification. It considers a set of documents, classified in one of two classes C and C', 
which contain a group of words each and operates in two steps. In the first step, it searches 
for a subset of the original vocabulary that contains the words that are the best predictors of 
the given class C. Next, only the documents which contain at least one word from this 
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of 
words that are the best predictors of class C'. The output of the algorithm FIS contain the 
two subsets of features over the resulting documents from the first step. The authors 
reported a great decrease in the number of feature and training instances. It terms of 
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally 
or more accurate them SVM. 
Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the 
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve 
each problem separately but use the actual solution of each process to calculate the quality 
of both of them. There has been made a lot of work using genetic and evolutionary 
algorithms. It is quite natural to design the solution to these two problems as a chromosome 
which is the vector of all feature and all instances and then run a genetic algorithm to solve 
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome 
in two areas, the one of features which are coded as real values in [0..1] to weight the 
features, and the area of instances which are coded as boolean values to select the instances 
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select 
feature and instances. The objective function used is the composition of the precision of 1-nn 
plus a value that penalizes the cardinality of each set.  In (Sierra et al., 2001) the authors 
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm 
(EDA),  to select instances and features in the problem of estimating the likelihood of 
cirrhotic patients to die in at most 6 months after the interventional treatment called 
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Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a 
study using an explicit multi-objective design to the problems of feature and instance 
selection, in which the goal is to maximize the performance of the 1-nn classifier and 
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model 
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm. 
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to 
decrease the number of features selected, by giving a bigger probability to the changing that 
exclude features from the solutions. 

 
3. A Framework for Simultaneous and Independent Feature and Instance 
Selection 
 

A deeper look into the related works on the combination of feature and instance selection 
shows some points already addressed by these solutions and new questions. The first point 
is that the majority of the approaches which try to solve these problems in a broad generic 
formulation solve them by using specialized versions of genetic algorithms, trying to 
separate the chromosome into two different areas, one for features and one for instances, 
and applying separate operators to each area. These approaches arise from the natural 
easiness of modeling the solutions to these problems as chromosomes and the need to cope 
with these two different problems separately. The other point addressed is that either these 
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a 
specific classifier (e.g. kNN). The reader may question “How can we use other 
metaheuristics beyond genetic algorithms to solve these two problems?“ or “How could we 
build a general framework to with them simultaneously?“. This section tries to give answers 
to these questions. 
Here we describe an extension of the work presented in (Souza et al., 2008) as a general 
metaheuristics-based framework for simultaneous and independent feature and instance 
selection. This framework is an effort to build an algorithm that can deal with both problems 
simultaneously, since these problems are clearly related to one another and the work made 
to select a subset of features can also be reused to select instances (and vice-versa) but they 
are also independent, meaning that the algorithms that solve one of these problems do not 
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation, 
in which the quality of a subset of features depends on the quality of a subset of instances 
(and vice-versa). This means that although the search processes are independent, they are 
guided by this joint evaluation function, which gives what we call a “power of influence” of 
each solution of the separate problems over the other. 

 
3.1 The Framework for Feature and Instance Selection 
In order to make definitions clear, we must explain that this framework works with two 
different solutions for each problem: the best and the actual solution. The best solution is, as 
the name itself explains, the solution which achieved the best evaluation value so far in the 
search process. The actual solution is the solution generated at every iteration to be tested to 
see whether it is better than the best solution so far. In some metaheuristics, like Simulated 
Annealing, the process of search does not depend on the best solution, although this solution 
is stored, but in others like VNS (Mladenović & Hansen, 1997) the best solution is the one 
which guides the search. 

When applied to feature and instance selection, search metaheuristics can be seen as 
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test 
whether they are good solutions or not and guide the search process by this evaluation 
value achieved by each solution. This version of the framework works basically controlling 
this evaluation process of each subset generated by the search. The framework can be 
described as follows in figure 1 
 

 
Fig. 1. The Framework
 
In this framework, the relationship between these entities, features and instances, is treated 
as something related to their quality to a supervised learning task. This means that the 
quality of features used in the supervised learning task is intrinsically related to the 
examples that represent the concept to be learned, and vice-versa. Examples are only 
considered “good” ones if they are described by attributes that represent the concept to be 
learned clearly, and features are only important if they capture this concept present in these 
examples. This is the justification to the presented approach. 
A textual description of the framework can be seen as: Initially the complete sets of features 
and instances are set as initial solutions. There are two separated processes for selecting 
features and instances. The main loop started in the line number 1 controls the search 
processes. Starting in line number 3 (4) the new solution is generated using the 
metaheuristic for feature (instance) selection. New solutions are generated only when the 
Has Iterations test has true value, otherwise the Next Solution function must return the best 
solution found in the search process. In line 5 the new solutions are evaluated. This step is 
the joint evaluation function that works by getting the actual solutions from the feature 
selection and instance selection processes, then creating a subset from the initial dataset by 
using these two subsets and then evaluate then using k-fold cross validation, for example. 
Finally the search processes are updated. This update is basically the exchange of solutions 
if the new one achieved a better evaluation than the old one and any other process needed 
by the metaheuristic like for example in Simulated Annealing, when even if the actual 
solution is worse than the best one, it can be the next which guides the following steps of the 
search. In line 9 the whole procedure is ended, and the subset generated by the two 
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a 

Framework for Mono-Objective Simultaneous and Independent Feature and Instance 
Selection 
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef 
Output: Dataset ndt 
1. While(Has Iterations(fs) || Has Iterations(is)) 
2. Do
3. fsss = Next Solution(fs, dt) 
4. isss = Next Solution(is, dt) 
5. eval = Evaluation(ef, dt, fsss, isss)
6. Update(fs, eval, fsss)
7. Update(is, eval, isss)
8. Done
9. ndt = Create Subset(dt, Best Subset(fs), Best Subset(is)) 
10. Return ndt 



On The Combination of Feature and Instance Selection 163

Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a 
study using an explicit multi-objective design to the problems of feature and instance 
selection, in which the goal is to maximize the performance of the 1-nn classifier and 
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model 
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm. 
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to 
decrease the number of features selected, by giving a bigger probability to the changing that 
exclude features from the solutions. 

 
3. A Framework for Simultaneous and Independent Feature and Instance 
Selection 
 

A deeper look into the related works on the combination of feature and instance selection 
shows some points already addressed by these solutions and new questions. The first point 
is that the majority of the approaches which try to solve these problems in a broad generic 
formulation solve them by using specialized versions of genetic algorithms, trying to 
separate the chromosome into two different areas, one for features and one for instances, 
and applying separate operators to each area. These approaches arise from the natural 
easiness of modeling the solutions to these problems as chromosomes and the need to cope 
with these two different problems separately. The other point addressed is that either these 
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a 
specific classifier (e.g. kNN). The reader may question “How can we use other 
metaheuristics beyond genetic algorithms to solve these two problems?“ or “How could we 
build a general framework to with them simultaneously?“. This section tries to give answers 
to these questions. 
Here we describe an extension of the work presented in (Souza et al., 2008) as a general 
metaheuristics-based framework for simultaneous and independent feature and instance 
selection. This framework is an effort to build an algorithm that can deal with both problems 
simultaneously, since these problems are clearly related to one another and the work made 
to select a subset of features can also be reused to select instances (and vice-versa) but they 
are also independent, meaning that the algorithms that solve one of these problems do not 
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation, 
in which the quality of a subset of features depends on the quality of a subset of instances 
(and vice-versa). This means that although the search processes are independent, they are 
guided by this joint evaluation function, which gives what we call a “power of influence” of 
each solution of the separate problems over the other. 

 
3.1 The Framework for Feature and Instance Selection 
In order to make definitions clear, we must explain that this framework works with two 
different solutions for each problem: the best and the actual solution. The best solution is, as 
the name itself explains, the solution which achieved the best evaluation value so far in the 
search process. The actual solution is the solution generated at every iteration to be tested to 
see whether it is better than the best solution so far. In some metaheuristics, like Simulated 
Annealing, the process of search does not depend on the best solution, although this solution 
is stored, but in others like VNS (Mladenović & Hansen, 1997) the best solution is the one 
which guides the search. 

When applied to feature and instance selection, search metaheuristics can be seen as 
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test 
whether they are good solutions or not and guide the search process by this evaluation 
value achieved by each solution. This version of the framework works basically controlling 
this evaluation process of each subset generated by the search. The framework can be 
described as follows in figure 1 
 

 
Fig. 1. The Framework
 
In this framework, the relationship between these entities, features and instances, is treated 
as something related to their quality to a supervised learning task. This means that the 
quality of features used in the supervised learning task is intrinsically related to the 
examples that represent the concept to be learned, and vice-versa. Examples are only 
considered “good” ones if they are described by attributes that represent the concept to be 
learned clearly, and features are only important if they capture this concept present in these 
examples. This is the justification to the presented approach. 
A textual description of the framework can be seen as: Initially the complete sets of features 
and instances are set as initial solutions. There are two separated processes for selecting 
features and instances. The main loop started in the line number 1 controls the search 
processes. Starting in line number 3 (4) the new solution is generated using the 
metaheuristic for feature (instance) selection. New solutions are generated only when the 
Has Iterations test has true value, otherwise the Next Solution function must return the best 
solution found in the search process. In line 5 the new solutions are evaluated. This step is 
the joint evaluation function that works by getting the actual solutions from the feature 
selection and instance selection processes, then creating a subset from the initial dataset by 
using these two subsets and then evaluate then using k-fold cross validation, for example. 
Finally the search processes are updated. This update is basically the exchange of solutions 
if the new one achieved a better evaluation than the old one and any other process needed 
by the metaheuristic like for example in Simulated Annealing, when even if the actual 
solution is worse than the best one, it can be the next which guides the following steps of the 
search. In line 9 the whole procedure is ended, and the subset generated by the two 
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a 

Framework for Mono-Objective Simultaneous and Independent Feature and Instance 
Selection 
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef 
Output: Dataset ndt 
1. While(Has Iterations(fs) || Has Iterations(is)) 
2. Do
3. fsss = Next Solution(fs, dt) 
4. isss = Next Solution(is, dt) 
5. eval = Evaluation(ef, dt, fsss, isss)
6. Update(fs, eval, fsss)
7. Update(is, eval, isss)
8. Done
9. ndt = Create Subset(dt, Best Subset(fs), Best Subset(is)) 
10. Return ndt 



Machine Learning164

graphical representation of the framework. The blue boxes are the best solutions in a given 
iteration of the processes. The red boxes are the actual solutions in them and as it can be seen, 
they are evaluated together using the function G. In some iteration they replace the best 
solution but in other ones they do not have better evaluation so the best solutions remain the 
same. 
 

 
Fig. 2. A graphical view of the framework (Blue box – best solution; Red box – actual solution) 

 
3.2 Extension to the Framework 
The framework described in the last section is a basic view of it. An interesting extension 
can be made for handling populational metaheuristics. 
Populational metaheuristics create, at each iteration, a set of new actual solutions. Then the 
evaluation of each new solution is calculated and operators of intensification and 
diversification are applied. If we remember the fact that in this framework the evaluation of 
a solution does not depend on itself solely, this fact adds the question of “Which solution 
from the other process should I use in the joint evaluation function?” or “How can I calculate 
the best actual solution in this given set of solutions?”. 
Our answers to these questions are quite simple. The answer to the first question is “the best 
actual solution from the last iteration”. In the first iteration the whole set of features or 
instances is used to evaluate the new solutions and the search continues always reusing the 
best actual solution of the last iteration. By doing this, the searches are still guided by both 
solutions and only good solutions will guide this process. Nevertheless, the operators of 
intensification and diversification will work normally, without any loss to the search process. 

The answer to the second question is “by using the best actual solution from the last 
iteration” as showed in the previous explanation. 
Figure 3 gives a graphical explanation to the idea presented here. The reader must pay 
attention to the green arrows. They show that the best actual solution (the yellow one) is 
being used to evaluate the subsets of features (or instances) of the next generation. Besides, 
there are separate evaluation procedures to the searches. These are the biggest differences to 
the initial framework. Although there are these two separated procedures, the evaluations of 
the actual solutions still depend on the other search process. Once more as in the initial 
framework, in some iterations one of the solutions present in the actual population might 
replace the best solution found so far but in other ones they do not have better evaluation so 
the best solutions remains the same. 
 

 
Fig. 3. A graphical view of the framework (Blue box – best solution; Red box – actual solution; 
Yellow box – best actual solution. Green arrow – The best actual solution is being used to 
evaluate the next generation of solutions) 

 
4. Framework Evaluation 
 

In this section we present and discuss the results obtained in several simulations executed in 
order to test the effectiveness of the proposed framework. This section tries to make clear 
the answer to the question “Is it worth using this framework?”. 
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To make these simulations we have chosen some well-known datasets used for machine 
learning tasks found at the UCI Machine Learning Repository (Asuncion and Newman, 
2007). These datasets are the Audiology (70 attributes, 226 instances), Autos (26, 205), Colic 
(23, 368), Credit (16, 690), Ionosphere (35, 351), Labor (17, 57), Lymph (19, 148), Primary-
Tumor (18, 339), Sonar (61, 208), Soybean (36, 683) and Vote (17, 435). 
We implemented seven different strategies to tackle with the feature and instance selection 
problems. The first one, here called ind, consists in making two separate selection processes 
and then joining the subsets generated by these processes in the end. The solution generated 
by the feature selection process and the other generated by the instance selection one are 
joined to create the subset only when the search processes are ended. The fsis is a sequential 
approach in which it is run a feature selection process followed by an instance selection 
process. The dataset used in the feature selection is the whole initial dataset, but in the 
dataset used by the instance selection process, only the best set of features found is used to 
represent the examples. The isfs approach follows the same idea, but now the first process is 
an instance selection and the second is a feature selection. Finally comb is the name given to 
the approach presented in the framework. 
Some pieces of different software were used to make these simulations. From the Weka Data 
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets, 
attributes and examples and to create and evaluate models. From jMetal Metaheuristics 
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these 
problems and also some classes of metaheuristics. The Evaluation method chosen to be used 
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive 
Bayes and kNN. 

 
4.1 Simulation Using the Simulated Annealing Metaheuristic 
The results presented in this section are the same presented in the former work of (Souza et 
al., 2008). The architecture implemented in that work is the same of this general framework 
but it was implemented using the Simulated Annealing metaheuristic. 
For this simulation we implemented the Simulated Annealing metaheuristic to use it in both 
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized 
local search, which simulates the process of physical annealing. This physical process 
consists in heating a material to a desired temperature, followed by a slow cooling process. 
The first step gives energy to the atoms and they move randomly through states of high 
energy, changing the material's structure fast. The second step, which is performed slowly, 
gives them the chance to arrange themselves into a configuration of lower energy. 
In analogy with the physical process, Simulated Annealing changes the actual solution to a 
neighbor solution, depending on the quality of this neighbor solution or the value of a 
function that is calculated in accordance with the temperature parameter, which decreases 
during the process. 
The coding of solutions to this problem is basically an array of boolean values which has 
length equal to the number of features or instances. Using this coding, we defined that two 
solutions are considered neighbors only and if only they have at most 10% of bits set to 
different values, i.e., when applied a XOR operator to these to problems, the result contains 
only 10% of bits set to true. 
 
 

 < 0.001 < 0.005 < 0.01 
Comb vs IND 8 x 0 1 x 0 1 x 0 
Comb vs FSIS 0 x 0 0 x 0 0 x 0 
Comb vs ISFS 0 x 0 0 x 0 2 x 0 

Table 1. Pairwise comparison between comb and other approaches 
 
We have run all seven approaches described earlier in two different scenarios. In the first 
one, each approach was given an unlimited time to run and generate a solution. After two 
executions of each approach in every dataset, there were twenty Error Rate values available.  
 

 
Fig. 4. The sum of execution times – Unlimited Time Scenario 
 
Table 1 summarizes the results of a pairwise comparison between comb and the other 
approaches that solve both problems. The results represent the number of times each 
strategy outperformed the other, in terms of the accuracy of the final classifier, using the 
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01). 
Clearly the performance of comb is much better than the ind and slightly better than the 
other two approaches. So when talking about performance it is not clear why to use this 
approach. But looking at figure 3 we see that the comb approach usually requires less time 
to reach the best error rate in the datasets. This figure shows the sum of time of all tests 
executed by each approach. 
In the second scenario we defined a limit to the execution time of every run. Figure 4 shows 
that when this constraint is added to the problem and this time is not enough to complete 
the search, the comb approach converges to low values of error rate faster than the other 
two approaches. 
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an instance selection and the second is a feature selection. Finally comb is the name given to 
the approach presented in the framework. 
Some pieces of different software were used to make these simulations. From the Weka Data 
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets, 
attributes and examples and to create and evaluate models. From jMetal Metaheuristics 
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these 
problems and also some classes of metaheuristics. The Evaluation method chosen to be used 
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive 
Bayes and kNN. 

 
4.1 Simulation Using the Simulated Annealing Metaheuristic 
The results presented in this section are the same presented in the former work of (Souza et 
al., 2008). The architecture implemented in that work is the same of this general framework 
but it was implemented using the Simulated Annealing metaheuristic. 
For this simulation we implemented the Simulated Annealing metaheuristic to use it in both 
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized 
local search, which simulates the process of physical annealing. This physical process 
consists in heating a material to a desired temperature, followed by a slow cooling process. 
The first step gives energy to the atoms and they move randomly through states of high 
energy, changing the material's structure fast. The second step, which is performed slowly, 
gives them the chance to arrange themselves into a configuration of lower energy. 
In analogy with the physical process, Simulated Annealing changes the actual solution to a 
neighbor solution, depending on the quality of this neighbor solution or the value of a 
function that is calculated in accordance with the temperature parameter, which decreases 
during the process. 
The coding of solutions to this problem is basically an array of boolean values which has 
length equal to the number of features or instances. Using this coding, we defined that two 
solutions are considered neighbors only and if only they have at most 10% of bits set to 
different values, i.e., when applied a XOR operator to these to problems, the result contains 
only 10% of bits set to true. 
 
 

 < 0.001 < 0.005 < 0.01 
Comb vs IND 8 x 0 1 x 0 1 x 0 
Comb vs FSIS 0 x 0 0 x 0 0 x 0 
Comb vs ISFS 0 x 0 0 x 0 2 x 0 

Table 1. Pairwise comparison between comb and other approaches 
 
We have run all seven approaches described earlier in two different scenarios. In the first 
one, each approach was given an unlimited time to run and generate a solution. After two 
executions of each approach in every dataset, there were twenty Error Rate values available.  
 

 
Fig. 4. The sum of execution times – Unlimited Time Scenario 
 
Table 1 summarizes the results of a pairwise comparison between comb and the other 
approaches that solve both problems. The results represent the number of times each 
strategy outperformed the other, in terms of the accuracy of the final classifier, using the 
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01). 
Clearly the performance of comb is much better than the ind and slightly better than the 
other two approaches. So when talking about performance it is not clear why to use this 
approach. But looking at figure 3 we see that the comb approach usually requires less time 
to reach the best error rate in the datasets. This figure shows the sum of time of all tests 
executed by each approach. 
In the second scenario we defined a limit to the execution time of every run. Figure 4 shows 
that when this constraint is added to the problem and this time is not enough to complete 
the search, the comb approach converges to low values of error rate faster than the other 
two approaches. 
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Fig. 5. The sum of error rates – Limited Time Scenario 

 
5. Conclusion 
 

In this chapter we discussed two important problems in the pre-processing step of many 
supervised learning tasks. A list of well-known algorithms were presented and discussed. A 
new framework was proposed, extending the concept proposed by the authors in a previous 
work. This framework was validated by some simulations using the metaheuristic 
Simulated Annealing and NSGA-II. These simulations show that although the quality of 
solutions generated by this framework is quite similar to those obtained by sequential 
executions, this approach reaches the better solutions faster than the other approaches. 
The frameworks is based on what we called “power of influence”, i.e. the quality of features in 
a given supervised learning task is intrinsically related to the quality of instances used in 
this task, and vice-versa. Based on this we created the framework that work with two 
separated wrappers for these two problems, jointing them in a single evaluation procedure. 

 
5.1 Future Work - The Framework for Multi-Objective Feature and Instance Selection  
An important characteristic we want to add to this framework in the future is the possibility 
to handle the multi-objective versions of the two selection problems. The usage of multi 
objectives brings new power but also new problems to the search processes. In these 
formulations, the characteristic of total ordering is replaced by partial ordering, using the 
concept of Pareto optimality. The ideas of better and worse are replaced by dominance, non-
dominance. Given two solutions a, b and a set of functions F to be minimized (or maximized, 
but in this explanation we suppose they are to be minimized), we say that a weakly 
dominates b if and only if  

 and                                    (5) 
 
The concept of strong dominance requires that 
 

.                                                       (6) 
 
When there is a set of solutions in which none of them dominate or are dominated by the 
others, we say these solutions are in the Pareto front, i.e., they are solutions equally good, in a 
way that one cannot say à priori which one of them is the best one without making any other 
assumption.  
This usage adds the same questions generated by populational metaheuristics, such as 
“Which solution from the other process should I use in the joint evaluation function?” or 
“How can I calculate the best actual solution in this given set of solutions if there will be 
some ‘equally good’ ones?”. 
The answers related to the multi-objective approaches seem to be similar to the ones given 
to populational metaheuristics but they weren’t tested yet. Given that it is needed to 
evaluate all the subsets of features (and vice-versa), the algorithm can use any of the subsets 
of instances from the last iteration which are in the Pareto front since all of them are equally 
good. A reasonable solution would be to pick a random solution from the Pareto front of the 
instance selection process every time the algorithm has to evaluate a subset of features. This 
approach increases diversification because several different solutions are used to guide the 
search and there is no loss in intensification as only good solutions are used in this process. 
In the end of the search processes there will be two Pareto fronts: one of features and one of 
instances. At this moment the user have several alternatives like choosing one solution of 
each search or generating all combinations of solutions and picking the one which is the 
best. How to deal with these two Pareto fronts is an open question so far. 
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1. Introduction   
 

A typical rule in the rule base of a traditional fuzzy system contains only positive rules 
(weight is positive). In this case, mining algorithms only search for positive associations like 
“IF A Then do B”, while negative associations such as “IF A Then do not do B” are ignored.  
The concept of fuzzy sets was introduced by Zadeh in 1965 as a mathematical tool able to 
model the partial memberships. Since then, fuzzy set theory (Zadeh, 1973) has found a 
promising field of application in the domain of image processing, as fuzziness is an intrinsic 
property of images and the natural outcome of many image processing techniques. The 
interest in using fuzzy rule-based models arises from the fact that they provide a good 
platform to deal with noisy, imprecise or incomplete information which is often handled 
exquisitely by the human-cognition system. 
In a fuzzy system, we can generate fuzzy rule-bases of one of the following three types: 
(a) Fuzzy rules with a class in the consequent (Abe & Thawonmas, 1997; Gonzalez & 
Perez, 1998). This kind of rule has the following structure: 

(1)  
Where, x=(x1,…,xN) is an N-dimensional pattern. Arn, n=(1,2,…,N), is an antecedent fuzzy set, 
and y is the class Cm to which the pattern belongs. 
(b) Fuzzy rules with a class and a rule weight in the consequent (Ishibuchi et al., 1992; 
Ishibuchi & Nakashima, 2001): 

(2)  
Where, Wr is the rule weight which is a real number in the unit interval [0,1]. 
(c) Fuzzy rules with rule weight for all classes in the consequent (Pal & Mandai, 1992; 

Mandai & Murthy, 1992; Ishibuchi & Yamamoto, 2005): 
 

(3)  
 
Where, Wrm, m=(1,2,…,M), is a rule weight for class Cm. 
From Eq.(1), Eq.(2) and Eq.(3), we can see that a typical rule in the rule-base of a fuzzy 
system contains only positive rules (weight is positive). This is one of the limitations of a 

Rule :  IF  is  and ... and  is  Then  is class 1 1r x A x A y Cmr N rN

Rule :  IF  is  and ... and  is  Then  is class  with 1 1r x A x A y C Wm rr N rN

Rule :  IF  is  and ... and  is   1 1
                Then  is class  with  and ... and  is class  with  1 1

r x A x Ar N rN
y C W y C Wr M rM
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traditional association mining algorithm (Han, 2006). In this case, mining algorithms only 
search for positive associations like “IF A Then do B”, while negative associations such as 
“IF A Then do not do B” are ignored. In addition to the positive rules, negative rules (weight 
is negative) can provide valuable information. For example, the negative rule can guide the 
system away from situations to be avoided, and after avoiding these areas, the positive rules 
once again take over and direct the process. Interestingly, very few papers have focused on 
negative association rules due to the difficulty in discovering these rules. Although some 
researchers point out the importance of negative associations (Brin & Silverstein, 1997), only 
few groups (Savasere et al., 1998; Wu et al., 2002; Teng et al., 2002) have proposed a system 
to mine these types of associations. This not only indicates the novelty in the usage of 
negative association rules, but also the challenges in discovering them. 
In this chapter, we propose a new fuzzy rule-based system for application in image 
classification problems. A significant advantage of the proposed system is that each fuzzy 
rule can be represented by more than one class. Moreover, while traditional fuzzy systems 
consider positive fuzzy rules only, in this chapter, we focus on combining negative fuzzy 
rules with traditional positive ones, leading to fuzzy inference systems. This new approach 
has been tested on image classification problems with promising results. 

 
2. Positive and Negative Association Rules  
 

Fuzzy systems can be broadly categorized into two families. The first includes linguistic 
models based on a collection of fuzzy rules, whose antecedents and consequents utilize 
fuzzy values. The Mamdani model (Mamdani et al., 1975) falls into this group. The second 
category, based on Sugeno-type systems (Takagi & Sugeno, 1985), uses a rule structure that 
has fuzzy antecedents and functional consequent parts. A typical rule in the rule-base of a 
fuzzy system is of the “IF-Then” type, i.e., “IF A then do B”, where A is the premise of the 
rule and B is the consequent of the rule. This type of rule is called positive rule (weight is 
positive) because the consequent prescribes something that should be done, or an action to 
be taken. Another type of reasoning that has not been exploited much, involves negative rules 
(weight is negative), which prescribe actions to be avoided. Thus, in addition to the positive 
rules, it is possible to augment the rule-base with rules of the form, “IF A, Then do not do 
B”. Let us consider the following two fuzzy IF-Then rules: 
 

(4)  
 
In the example above, the negative rule (rule 1) guides the system away from situations to 
be avoided, after which, the positive rules (rule 2) take over and direct the process. 
Depending on the probability of such an association, marketing personnel can develop 
better planning of the shelf space in the store, or can base their discount strategies on 
correlations that can be found in the data itself. In some situations (Branson & Lilly, 1999; 
Branson & Lilly, 2001; Lilly, 2007), a combination of positive and negative rules can form a 
more efficient fuzzy system. 
One of the limitations of fuzzy IF-Then rules in Eq.(4) is that the two classes (Coke, bottled 
water) appearing in the consequent parts of the above rules have the same degree of 
importance. Clearly, to help the marketing personnel develop better planning of different 
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products (Coke, bottled water) for different customers (child, adult), we should assign 
different assign different weights to different classes appearing in the consequent parts of 
the rules. 
Based on these considerations, we propose a new adaptive fuzzy system that applies to the 
image classification problem (Thanh & Jonathan, 2008). The main advantage of this fuzzy 
model is that every fuzzy rule in its rule-base can describe more than one class. Moreover, it 
combines both positive and negative rules in its structure. This approach is expressed by: 
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Where, Wrm, r=(1,2,…,R), m=(1,2,…,M) is the weight of each class belonging to the rule r. We 
use the rule weight of the form below: 
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given by: 
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traditional association mining algorithm (Han, 2006). In this case, mining algorithms only 
search for positive associations like “IF A Then do B”, while negative associations such as 
“IF A Then do not do B” are ignored. In addition to the positive rules, negative rules (weight 
is negative) can provide valuable information. For example, the negative rule can guide the 
system away from situations to be avoided, and after avoiding these areas, the positive rules 
once again take over and direct the process. Interestingly, very few papers have focused on 
negative association rules due to the difficulty in discovering these rules. Although some 
researchers point out the importance of negative associations (Brin & Silverstein, 1997), only 
few groups (Savasere et al., 1998; Wu et al., 2002; Teng et al., 2002) have proposed a system 
to mine these types of associations. This not only indicates the novelty in the usage of 
negative association rules, but also the challenges in discovering them. 
In this chapter, we propose a new fuzzy rule-based system for application in image 
classification problems. A significant advantage of the proposed system is that each fuzzy 
rule can be represented by more than one class. Moreover, while traditional fuzzy systems 
consider positive fuzzy rules only, in this chapter, we focus on combining negative fuzzy 
rules with traditional positive ones, leading to fuzzy inference systems. This new approach 
has been tested on image classification problems with promising results. 
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products (Coke, bottled water) for different customers (child, adult), we should assign 
different assign different weights to different classes appearing in the consequent parts of 
the rules. 
Based on these considerations, we propose a new adaptive fuzzy system that applies to the 
image classification problem (Thanh & Jonathan, 2008). The main advantage of this fuzzy 
model is that every fuzzy rule in its rule-base can describe more than one class. Moreover, it 
combines both positive and negative rules in its structure. This approach is expressed by: 
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3. Structure of the proposed fuzzy system  
 

So far, our discussion has focused on class estimation in Eq.(9) to which class the pattern xk 
should be assigned. In this section, we suggest a new adaptive fuzzy system that can 
automatically adjust the values of fuzzy set Arn(xnk) and rule weight Wrm. After training the 
fuzzy system, we can determine which class the pattern xk should be assigned to. 
The proposed structure consists of two visible layers (input and output layer) and three 
hidden layers as shown in Fig. 1. This fuzzy system can be expressed as a directed graph 
corresponding to Eq.(7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Proposed fuzzy system with 2 inputs (N=2), 2 classes (M=2) and 4 rules (R=4). 
 

Layer 1 (Input layer): each node in this layer only transmits input xnk, n=(1,2,…,N), 
k=(1,2,…,K) directly to the next layer. No computation is performed in this layer. There are a 
total of N nodes in this layer, where the output of each node is O1n = xnk. 
Layer 2: The number of nodes in this layer is equal to the number of fuzzy rules. Each node 
in this layer has N inputs from N nodes of the input layer, and feeds its output to the 
corresponding node of layer 3.  
One of the major disadvantages of Anfis (Jang et al., 1997) model is, that an explosion in the 
number of inference rules limits the number of possible inputs. Thus, grid partitioning is not 
advised when the input dimension is more than six (Nayak et al., 2004). To overcome this 
problem, a fuzzy scatter partition is used in this layer. Therefore, our system can work well, 
even when the dimension of pattern ( N ) is high. 
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We use the bell type distribution defined over an N-dimensional pattern xk for each node in 
this layer. The degree of activation of the r-th rule βr(xk) with the antecedent part 
Ar=(Ar1,…,ArN) is expressed as follows: 
 

(10)  
 
 
 
Where, parameters arn, brn, crn, r=(1,2,…,R), n=(1,2,…,N) are constants that characterize the 
value of βr(xk). The optimal values of these parameters are determined by training, which is 
discussed in the next section. There are R distribution nodes in this layer, where each node 
has 3xN parameters. The output of each node in this layer is O2r = βr(xk). 
Layer 3: This layer performs the normalization operation. The output of each node in this 
layer is represented by: 
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Layer 4: Each node of this layer represents the rule weight in Eq.(6), Wrm=wrm0+ wrm1x1k+…+ 
wrmNxNk. Where, parameters wrml, r=(1,2,…,R) , m=(1,2,…,M), l=(0,1,…,N) are determined by 
least squares estimator, which is discussed in the next section. 
In the proposed model, for pattern xk, the output of the classifier is determined by the 
winner-take-all strategy. Therefore, when the rule weight Wrm has a negative value, it will 
narrow the choices for class Cm (the higher the negative value of Wrm, the smaller the value 
of ykm in Eq.(13)). In other words, negative rule weight prescribes actions to be avoided 
rather than performed. The output of each node in this layer is: 
 

(12)  
 
There are MxR nodes in this layer, where each node has (1+N) parameters. 
Layer 5 (Output layer): Each node in the output layer determines the value of ykm in Eq.(7). 
 

(13)  
 
There are M nodes in the output layer. 

 
4. Parameter Learning 
 

The goal of the work presented here is perform the parameterized learning to minimize the 
sum-squared error with respect to the parameters Θ = [arn, brn, crn, wrml]. The objective 
function E(Θ) for all the training data-sets is defined as: 
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3. Structure of the proposed fuzzy system  
 

So far, our discussion has focused on class estimation in Eq.(9) to which class the pattern xk 
should be assigned. In this section, we suggest a new adaptive fuzzy system that can 
automatically adjust the values of fuzzy set Arn(xnk) and rule weight Wrm. After training the 
fuzzy system, we can determine which class the pattern xk should be assigned to. 
The proposed structure consists of two visible layers (input and output layer) and three 
hidden layers as shown in Fig. 1. This fuzzy system can be expressed as a directed graph 
corresponding to Eq.(7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Proposed fuzzy system with 2 inputs (N=2), 2 classes (M=2) and 4 rules (R=4). 
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k=(1,2,…,K) directly to the next layer. No computation is performed in this layer. There are a 
total of N nodes in this layer, where the output of each node is O1n = xnk. 
Layer 2: The number of nodes in this layer is equal to the number of fuzzy rules. Each node 
in this layer has N inputs from N nodes of the input layer, and feeds its output to the 
corresponding node of layer 3.  
One of the major disadvantages of Anfis (Jang et al., 1997) model is, that an explosion in the 
number of inference rules limits the number of possible inputs. Thus, grid partitioning is not 
advised when the input dimension is more than six (Nayak et al., 2004). To overcome this 
problem, a fuzzy scatter partition is used in this layer. Therefore, our system can work well, 
even when the dimension of pattern ( N ) is high. 
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We use the bell type distribution defined over an N-dimensional pattern xk for each node in 
this layer. The degree of activation of the r-th rule βr(xk) with the antecedent part 
Ar=(Ar1,…,ArN) is expressed as follows: 
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There are MxR nodes in this layer, where each node has (1+N) parameters. 
Layer 5 (Output layer): Each node in the output layer determines the value of ykm in Eq.(7). 
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(14)  
 
Where, ykm is the output of class m obtained from Eq.(7). 
For a training data pair, {xk,ydk}, the input is xk=(x1k,x2k,…,xNk), k = (1,2,…,K), and the desired 
output ydk is of the form: 
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When the initial structure has been identified with N inputs, R rules and M classes, the 
fuzzy system then performs the parameter identification to tune the parameters of the 
existing structure. To minimize the sum-squared error E(Θ), a two-phased hybrid parameter 
learning algorithm (Jang et al., 1997; Wang et al., 1999; Wang & George Lee, 2002; Lee & Lin, 
2004) is applied with a given network structure. In hybrid learning, each iteration is 
composed of a forward and backward pass. In the forward pass, after the input pattern is 
presented, we calculate the node outputs in the network layers. In this step, the parameters 
arn, brn, and crn in layer 2 are fixed. The parameters wrml in layer 4 are identified by least 
squares estimator. In the backward pass, the error signal propagates from the output 
towards the input nodes. In this step, the wrml are fixed, and the error signals are propagated 
backward to update the arn, brn and crn by steepest descent method. This process is repeated 
many times until the system converges. 
Next, optimization of the parameters wrml in layer 4 is performed using least-squares 
algorithm in the forward step. To minimize the error E(Θ) in Eq.(14) , we have to minimize 
each output-error (m-th output): 
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When the training pattern xk is fed into the fuzzy system, Eq.(13) can be written as: 
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Where, Wm, Ym, and A are matrices of ((N+1)*R)x1, Kx1, and Kx((N+1)*R) respectively. 
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(21)  
Next, we apply linear least-squares algorithm (Jang et al., 1997) for each output (m-th 
output) to tune the parameters wrml. 
 

(22)  
 
After the forward pass in the learning, error signals are propagated backward to update the 
premise parameters arn, brn and crn by gradient decent with the error function E(Θ) in Eq.(14). 
The learning rule is given by: 

(23)  
 
 
Where, η is the learning rate.  The formulae used to update the parameters arn, brn and crn are 
given in the Appendix. 

 
5. Simulation Results  
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Where, ykm is the output of class m obtained from Eq.(7). 
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backward to update the arn, brn and crn by steepest descent method. This process is repeated 
many times until the system converges. 
Next, optimization of the parameters wrml in layer 4 is performed using least-squares 
algorithm in the forward step. To minimize the error E(Θ) in Eq.(14) , we have to minimize 
each output-error (m-th output): 
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When the training pattern xk is fed into the fuzzy system, Eq.(13) can be written as: 
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For all training patterns, we have K equations of Eq.(17). Thus, Eq.(16) can be expressed: 
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Where, Wm, Ym, and A are matrices of ((N+1)*R)x1, Kx1, and Kx((N+1)*R) respectively. 
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(21)  
Next, we apply linear least-squares algorithm (Jang et al., 1997) for each output (m-th 
output) to tune the parameters wrml. 
 

(22)  
 
After the forward pass in the learning, error signals are propagated backward to update the 
premise parameters arn, brn and crn by gradient decent with the error function E(Θ) in Eq.(14). 
The learning rule is given by: 

(23)  
 
 
Where, η is the learning rate.  The formulae used to update the parameters arn, brn and crn are 
given in the Appendix. 

 
5. Simulation Results  
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5.1. SAR Image Classification  
The JPL L-band polarimetric SAR image (size: 1024x900 pixels) of San Francisco Bay (Tzeng 
& Chen, 1998; Khan & Yang, 2005; Khan et al., 2007) as shown in Fig. 2(a) is used for this 
simulation. The goal is to train the fuzzy system to classify three different terrains in this 
image, namely water, park and urban areas. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. SAR Image Classification, (a): original Image, (b): training data with 3 classes 
 

The training patterns are shown enclosed in red boxes in Fig. 2(b). The proposed system was 
trained using these features to estimate the parameters. The algorithm was run with 100 
training iterations. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. SAR image classification results, (a): K-Means clustering method, (b): Fuzzy C-Means 
methods, (c): Anfis method, (d): proposed method. 
 

In this example, the proposed system was used to indicate three distinct classes (M=3), with 
3 inputs corresponding to 3 polarimetric channels: hh, vv, and vh (Tan et al., 2007), 4 rules 

 

(R=4). The desired outputs for urban, park and water classes were chosen to be [0 0 1], [0 1 0], 
and [1 0 0], respectively. After training with the patterns, the system was used to classify the 
whole image. Fig. 3(d) shows the classification results of the proposed method. A 
comparison of the proposed classifier with the K-Means classifier and Fuzzy C-Means 
classifier is shown in Fig. 3(a) and Fig. 3(b), respectively. These two methods were executed 
using MATLAB with the same 3 inputs (hh, vv, and vh), 3 outputs and default values for 
auxiliary parameters. As can be seen from Fig. 3, the classification accuracy of K-Means and 
Fuzzy C-Means methods was lower in water and park regions, as compared to the proposed 
method. 
Fig. 3(c) shows the simulation result of Anfis. In this example, the same training areas in red 
boxes as shown in Fig. 2(b) were used to train the Anfis system. Anfis system with 3 inputs 
and 8 rules was run for 100 training iterations. The desired outputs for urban, park and 
water classes were chosen to be 1, 2, and 3, respectively. Compared with the Anfis method, 
clearly, our classifier accuracy is higher and the effect of noise on the performance of the 
detector is much less. 

 
5.2. Natural Image Classification 
In this experiment, the proposed system is compared to other classification algorithms by 
testing them on natural image taken from the Berkeley Dataset (Berkeley Dataset, 2001), as 
shown in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
Fig. 4. Natural Image Classification. 
 
Fig. 5(a) shows the image corrupted by Gaussian noise (0 mean, 0.1 variance) that we want 
to segment into 3 classes (snow, wolf, and tree). This input image is scanned left-to-right by 
taking a square window of size 5x5 pixels around a centre pixel, which is then feed into the 
trained fuzzy system for classification into snow, wolf or tree.  
To train our proposed system, the training patterns are generated as shown by red boxes in 
Fig. 5(a). For this experiment, we have chosen a fuzzy system with 25 inputs (corresponding 
to the 5x5 window), 8 rules (R=8) and 3 distinct classes (M=3) with the desired outputs for 
snow, wolf and tree classes as [0 0 1], [0 1 0], and [1 0 0], respectively. Fig. 5(b) shows the 
clustering results of Fuzzy C-Means classifier with 25 inputs, and 3 outputs. 
The image shown in Fig. 5(c) is the result obtained using Feedforward Backpropagation 
networks. In this example, the networks is established with the structure of 25-8-8-8-3, five 
layer network with 3 hidden layers, 8 neurons in each hidden layer and 3 neurons in the 
output layer. We use tansig for hidden layers and purelin for the output layer. Both Fuzzy C-
Means and Feedforward Backpropagation networks in this example were executed using 
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5.1. SAR Image Classification  
The JPL L-band polarimetric SAR image (size: 1024x900 pixels) of San Francisco Bay (Tzeng 
& Chen, 1998; Khan & Yang, 2005; Khan et al., 2007) as shown in Fig. 2(a) is used for this 
simulation. The goal is to train the fuzzy system to classify three different terrains in this 
image, namely water, park and urban areas. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. SAR Image Classification, (a): original Image, (b): training data with 3 classes 
 

The training patterns are shown enclosed in red boxes in Fig. 2(b). The proposed system was 
trained using these features to estimate the parameters. The algorithm was run with 100 
training iterations. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. SAR image classification results, (a): K-Means clustering method, (b): Fuzzy C-Means 
methods, (c): Anfis method, (d): proposed method. 
 

In this example, the proposed system was used to indicate three distinct classes (M=3), with 
3 inputs corresponding to 3 polarimetric channels: hh, vv, and vh (Tan et al., 2007), 4 rules 

 

(R=4). The desired outputs for urban, park and water classes were chosen to be [0 0 1], [0 1 0], 
and [1 0 0], respectively. After training with the patterns, the system was used to classify the 
whole image. Fig. 3(d) shows the classification results of the proposed method. A 
comparison of the proposed classifier with the K-Means classifier and Fuzzy C-Means 
classifier is shown in Fig. 3(a) and Fig. 3(b), respectively. These two methods were executed 
using MATLAB with the same 3 inputs (hh, vv, and vh), 3 outputs and default values for 
auxiliary parameters. As can be seen from Fig. 3, the classification accuracy of K-Means and 
Fuzzy C-Means methods was lower in water and park regions, as compared to the proposed 
method. 
Fig. 3(c) shows the simulation result of Anfis. In this example, the same training areas in red 
boxes as shown in Fig. 2(b) were used to train the Anfis system. Anfis system with 3 inputs 
and 8 rules was run for 100 training iterations. The desired outputs for urban, park and 
water classes were chosen to be 1, 2, and 3, respectively. Compared with the Anfis method, 
clearly, our classifier accuracy is higher and the effect of noise on the performance of the 
detector is much less. 

 
5.2. Natural Image Classification 
In this experiment, the proposed system is compared to other classification algorithms by 
testing them on natural image taken from the Berkeley Dataset (Berkeley Dataset, 2001), as 
shown in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
Fig. 4. Natural Image Classification. 
 
Fig. 5(a) shows the image corrupted by Gaussian noise (0 mean, 0.1 variance) that we want 
to segment into 3 classes (snow, wolf, and tree). This input image is scanned left-to-right by 
taking a square window of size 5x5 pixels around a centre pixel, which is then feed into the 
trained fuzzy system for classification into snow, wolf or tree.  
To train our proposed system, the training patterns are generated as shown by red boxes in 
Fig. 5(a). For this experiment, we have chosen a fuzzy system with 25 inputs (corresponding 
to the 5x5 window), 8 rules (R=8) and 3 distinct classes (M=3) with the desired outputs for 
snow, wolf and tree classes as [0 0 1], [0 1 0], and [1 0 0], respectively. Fig. 5(b) shows the 
clustering results of Fuzzy C-Means classifier with 25 inputs, and 3 outputs. 
The image shown in Fig. 5(c) is the result obtained using Feedforward Backpropagation 
networks. In this example, the networks is established with the structure of 25-8-8-8-3, five 
layer network with 3 hidden layers, 8 neurons in each hidden layer and 3 neurons in the 
output layer. We use tansig for hidden layers and purelin for the output layer. Both Fuzzy C-
Means and Feedforward Backpropagation networks in this example were executed using 
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MATLAB with default values for auxiliary parameters. As can be seen, compared to other 
methods, the proposed system as shown in Fig. 5(d) could not only successfully segment the 
image when it is significantly degraded by high noise, but also reduces the effect of noise on 
the final segmented image. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Natural image classification results, (a): Noisy image, (b): Fuzzy C-Means methods, 
(c): Feedforward Backpropagation Network, (d): proposed method. 

 
5.3. Edge Detection in Noisy Images 
 

 
 
 
 
 
 
 
 
Fig. 6. Edge detection training data, (a) Original image, (b) Corrupted original image with 
40% salt and pepper noise, (c) Target image. 
 
In principle, edge detection is a two-class image classification problem where each pixel in 
the image is classified as either a part of the background or an edge. For this reason, a fuzzy 
system consisting of 2 output nodes corresponding to the 2 classes (edge, background) is 
chosen. In this experiment, a window of size 3x3 is scanned left-to-right across an image 
taken from the training set, and a determination is made as to whether the centre pixel 
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Canny Method
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within the square neighbourhood window belongs to an edge (desired output classification 
[0,1]) or the background (desired output classification [1,0]). The the fuzzy model is 
structured with 9 inputs (N=9) corresponding to the 3x3 window, 16 rules (R=16), and 300 
training epochs, to predict the binary decision class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The first natural image for checking (a) Original image, (b) Corrupted with 20% salt-
and-pepper noise, (c) Prewitt method, (d) Roberts method, (e) LoG method, (f) Sobel 
method, (g) Canny method, (h) proposed method. 
 
To train the proposed system, simple images (see Fig. 6) of size 128x128 pixels are utilized 
(Yksel, 2007). Fig. 6(a) shows the original image, where each square box of size 4x4 pixels 
has the same random luminance value. The input to the fuzzy system consists of the 
corrupted original image with 40% salt and pepper noise, as shown in Fig. 6(b). The target 
image shown in Fig. 6(c) is a black and white image, with black pixels indicating the 
locations of true edges in the input training image. 
Once trained, the model is tested by applying it to a set of natural images taken from the 
Berkeley Dataset (Berkeley Dataset, 2001) as shown in Fig. 7(a). Images are corrupted with 
20% of “salt” (with value 1) and “pepper” (with value 0) noise with equal probability, as 
shown in Fig. 7(b). The proposed detector is then compared to the existing methods - 
Prewitt, Roberts, LoG, Sobel and Canny detector. It is not an easy task to select good 
threshold values for these methods. In this case, all these methods are executed using 
MATLAB and with default values for auxiliary parameters. It can be easily seen that most of 
the edge structures of the noisy image cannot be detected by Prewitt in Fig. 7(c), Roberts in 
Fig. 7(d), LoG in Fig. 7(e), Sobel in Fig. 7(f) and Canny in Fig. 7(g). Besides, the effect of noise 
is still clearly visible as real edges are significantly distorted by the noise, and many noise 
pixels are incorrectly detected as edges. Comparing the results with these operators, the 
proposed method’s classification accuracy as shown in Fig. 7(h) is quite high, the effect of 
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MATLAB with default values for auxiliary parameters. As can be seen, compared to other 
methods, the proposed system as shown in Fig. 5(d) could not only successfully segment the 
image when it is significantly degraded by high noise, but also reduces the effect of noise on 
the final segmented image. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Natural image classification results, (a): Noisy image, (b): Fuzzy C-Means methods, 
(c): Feedforward Backpropagation Network, (d): proposed method. 

 
5.3. Edge Detection in Noisy Images 
 

 
 
 
 
 
 
 
 
Fig. 6. Edge detection training data, (a) Original image, (b) Corrupted original image with 
40% salt and pepper noise, (c) Target image. 
 
In principle, edge detection is a two-class image classification problem where each pixel in 
the image is classified as either a part of the background or an edge. For this reason, a fuzzy 
system consisting of 2 output nodes corresponding to the 2 classes (edge, background) is 
chosen. In this experiment, a window of size 3x3 is scanned left-to-right across an image 
taken from the training set, and a determination is made as to whether the centre pixel 
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within the square neighbourhood window belongs to an edge (desired output classification 
[0,1]) or the background (desired output classification [1,0]). The the fuzzy model is 
structured with 9 inputs (N=9) corresponding to the 3x3 window, 16 rules (R=16), and 300 
training epochs, to predict the binary decision class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The first natural image for checking (a) Original image, (b) Corrupted with 20% salt-
and-pepper noise, (c) Prewitt method, (d) Roberts method, (e) LoG method, (f) Sobel 
method, (g) Canny method, (h) proposed method. 
 
To train the proposed system, simple images (see Fig. 6) of size 128x128 pixels are utilized 
(Yksel, 2007). Fig. 6(a) shows the original image, where each square box of size 4x4 pixels 
has the same random luminance value. The input to the fuzzy system consists of the 
corrupted original image with 40% salt and pepper noise, as shown in Fig. 6(b). The target 
image shown in Fig. 6(c) is a black and white image, with black pixels indicating the 
locations of true edges in the input training image. 
Once trained, the model is tested by applying it to a set of natural images taken from the 
Berkeley Dataset (Berkeley Dataset, 2001) as shown in Fig. 7(a). Images are corrupted with 
20% of “salt” (with value 1) and “pepper” (with value 0) noise with equal probability, as 
shown in Fig. 7(b). The proposed detector is then compared to the existing methods - 
Prewitt, Roberts, LoG, Sobel and Canny detector. It is not an easy task to select good 
threshold values for these methods. In this case, all these methods are executed using 
MATLAB and with default values for auxiliary parameters. It can be easily seen that most of 
the edge structures of the noisy image cannot be detected by Prewitt in Fig. 7(c), Roberts in 
Fig. 7(d), LoG in Fig. 7(e), Sobel in Fig. 7(f) and Canny in Fig. 7(g). Besides, the effect of noise 
is still clearly visible as real edges are significantly distorted by the noise, and many noise 
pixels are incorrectly detected as edges. Comparing the results with these operators, the 
proposed method’s classification accuracy as shown in Fig. 7(h) is quite high, the effect of 
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noise on the performance of the detector is much less, and the edges in the input images are 
successfully classified. These results indicate that the proposed system performs well when 
the even when image quality is significantly degraded by high noise. 
Error! Reference source not found. shows the edge images which have been detected by 
our proposed system with different percentages of salt and pepper noise as applied to 
various natural images. The proposed fuzzy model consists of 16 rules (R=16) and 250 
training epochs. The 1-st, 2-nd and 4-th column show the original images, images corrupted 
by 10%, and 20% salt and pepper noise, respectively. The final edge images corresponding 
to these noisy images as detected by the proposed system have been shown in 3-rd and 5-th 
columns. It can be easily seen that the proposed fuzzy system is highly robust with respect 
to noise in the natural images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. The edge images which have been detected by proposed system with difference salt 
and pepper noise of difference natural images. 

Original Image Image with 10% noise Proposed Method Image with 20% noise Proposed Method

Original Image Image with 10% noise Proposed Method Image with 20% noise Proposed Method

Original Image Image with 10% noise Image with 20% noise Proposed Method

Original Image Image with 10% noise Proposed Method Image with 20% noise Proposed Method

Proposed Method

 

6. Conclusions 
 

In this chapter, we have introduced a fuzzy rule-based system that combines both positive 
and negative association rules in its structure. A major advantage of this system is that each 
rule can represent more than one class. Through experimental tests and comparisons with 
existing algorithms on a number of natural images, it is found that the proposed system is a 
powerful tool for image classification. 
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1. Introduction 
 

Knowledge-based system (KBS) is a problem solving approach that makes use of human 
knowledge in possible ways. Usually, the knowledge used in KBS may be obtained directly 
from domain expert or through some kind of machine learning based on available data. The 
quality of knowledge used has an important impact on the performance of KBS. The success 
of development and application of an intelligent system requires the availability of two 
groups of people: AI experts who hold the techniques and tools for problem solving, and 
domain experts who know well the problem to be solved and hold domain knowledge 
leading to a necessity of the development of intelligent system. However, in reality, it is 
often a challenge to get the both groups working together to derive the inherent synergies. 
Knowware System (KWS) is a framework proposed as development tool for design and 
development of KBS. KWS offers classes of knowledge-based processing unit to support 
developer in modelling their KBS, and generates the target KBS based on the definition from 
developer. A typical KBS generated by KWS is a hybrid intelligent system that contains a 
knowledge hierarchy and an inference engine. The knowledge hierarchy consisting of 
multiple components forms a static inference structure in KBS while the inference engine 
controls the dynamic inference flow through managing execution of components. 
The inference in a hybrid KBS constructed by KWS is a truth value flow inference, with 
knowledge-based processing handled locally in each individual components and a truth 
value flow throughout the entire KBS. As a uniformed format, interval-valued confidence 
defined as fuzzy number has been proposed to represent the imprecision and uncertainty 
during inference. The KWS inference engine realizes control of inference through three 
aspects: the management of protocol between components, the control of execution order of 
components, and the confidence transfer. 

 
2. Knowware System 
 

The Knowware System (KWS) has been proposed for the development of knowledge-based 
systems. It can accept from user knowledge sources represented in varied formats and select 
appropriate intelligent techniques to construct desired knowledge-based processing units of 
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hybrid KBS, therefore allow the KBS developer more easily and conveniently model and 
develop a customized intelligent system. 

 
2.1. Hierarchical Modeling of KBS 
In a typical application, the mapping relation between inputs and output of the problem 
may be complex, and description of such a mapping relation using a global knowledge can 
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to 
multiple units, with each of the units described by a corresponding local knowledge base, 
and the type of knowledge and the inference mechanism in each of the units varied upon 
the specific problem solving and the availability of knowledge. Following this sprit, 
hierarchical problem representation represents a domain problem with a hierarchy and uses 
multiple AI techniques for problem solving. 

 
2.2. Construction of KBS using KWS 
The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L. 
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which 
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not 
only allows developers to easily design their system, but also realizes an automatic 
construction of the target KBS based on the developers’ design. 
As a typical development process, KWS receives the description of KBS from developer and 
then automatically constructs the target KBS. Therefore a Knowledge Description Language 
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use 
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS 
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details 
of implementation. 

 
Fig. 1. Structure of KBS constructed by KWS 

 
2.2.1. Sub-Systems of KWS for KBS Construction 
There are three subsystems of KWS supporting the automatic construction of customized 
KBS. 
Intelligent Editor – It provides a friendly GUI for the developer to design a KBS. Developers 
use the graphic description to describe their KBS. Editor also does error checking for the 

 

process of developing KBS. Once design is confirmed, Editor will construct the internal 
inference structure of target KBS based on the graphic description, and generate the 
corresponding KDL text. 
KDL Processor – It receives the KDL description of a target KBS, and compiles it to a 
corresponding knowledge hierarchy as the internal inference structure, using suitable 
intelligent components stored in the warehouse with possible customization. The KDL text 
can be either from the interactive editor or user’s input. In the latter case, it also checks the 
syntax of KDL text inputted. 
Installer – It saves the internal knowledge hierarchy in a suitable data format when a user’s 
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy 
with the KWS inference engine as well as the installer itself to a stand-alone target 
application. The embedded installer will be responsible to reload the saved KBS upon user’s 
calling of the application. 

 
2.2.2. Work Flow of KWS 
In order to develop a desired intelligent system, the developer can choose any of the 
knowware that fits into his/her need, via two possible ways. One is to define his/her target 
system in KDL text and then call the KDL processor for compilation to generate the internal 
inference structure. The other alternative is to use the intelligent editor to design the target 
system step-by-step and get the target knowledge hierarchy constructed after confirmation. 
In the latter case, the editor also generates a corresponding KDL text so the developer can 
make modification conveniently later on. For a KBS successfully constructed, the installer 
will save the internal inference structure to a suitable format and reconstruct it later upon 
request. Figure 2 shows the work flow of KWS. 
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inference structure. The other alternative is to use the intelligent editor to design the target 
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2.2.3. Knowledge Description Language 
The Knowledge Description Language makes it possible for developers to describe their 
target KBS in a text format. The knowledge-based processing units offered by KWS will be 
used as building blocks to make up the KBS. The input/output of each intelligent 
component (IC) called field must be specified, this information indicates the linking between 
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts: 
1) declaration of fields, each including name and data type; 2) declaration of intelligent 
components, each including name, component class and type, knowledge source, fields of 
input(s) and output linked with. The details of intelligent component and field will be 
presented in Sections 2.3. An example of KDL text is shown in Figure 3. 
 

Support-Field-Name = ( Field1 ) , Support-Field-Data { Char ( 2 ) } 
Result-Field-Name = ( Field2 ) , Result-Field-Data { Char ( 2 ) } 
InCom-Name = ( Filter-01 ) , InCom-Body {  
 Filter Dictionary 
 NoCondition 
 Standard { Program = ( Standard Dictionary ) ,  

Knowledge-Source = ( Filter01_Knowledge ) } 
 Input = ( Field = ( Field1 ) ) , Output = ( Field = ( Field2 ) ) 
} 

Fig. 3. An example of KDL 

 
2.2.4. Generation of Target KBS 
The last process of developing KBS using KWS is the generation of target KBS. The 
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with 
hierarchy record, corresponding components, knowledge sources, inference engine, and 
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing 
and reloading of KBS is done by the Installer which also provides a GUI to the end-user 
based on the input/output of target KBS. 
 

 
Fig. 4. Packing the KBS using Installer 
 
Upon call to the target KBS received the installer will be started first to reload the KBS with 
all the necessary components, knowledge sources, and inference engine. 
 

 

 
Fig. 5. Reloading the KBS using Installer 

 
2.3. Components and Fields 
The KWS warehouse stores pre-defined knowledge-based processing units that are the basic 
building blocks of KBS. Intelligent components are further classified by the nature of 
processing, in terms of the corresponding input and output. A KWS offers a set of k classes 
of intelligent components defined as 
 

COM = {com1, …, comk},  
and 
 

comi = < cli ti, si, ci >,  
 

where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈ 

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci 

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there 
is a mapping function fCL: 
 

fCL: ICL K  OCL  
 

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K 
represents the corresponding knowledge-based processing. The features and properties of 
intelligent components under different classes are determined by their mapping function fCL. 
It is an important feature of the KWS that an intelligent component under certain class 
always follows the same syntax for the interface with other intelligent components no 
matter which specific intelligent approach is adopted for the knowledge-based processing 
inside it. At the same time, intelligent components under the same class may behave 
differently when different approaches of knowledge-based processing are applied in 
problem solving. For instances, a decision-making may be done by applying traditional 
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural 
networks; a knowledge discovery may be achieved by data mining applying different 
approaches; a prediction may be made by statistical methods or by using neural networks. 
When an intelligent component is defined as ‘conditional component’, it chooses suitable 
knowledge source to be applied among the alternatives provided according to run-time 
conditions detected. We have designed ten classes of intelligent components under two 
different categories: processing components and learning components, with each category 
including several classes based on the nature of function.  
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2.2.3. Knowledge Description Language 
The Knowledge Description Language makes it possible for developers to describe their 
target KBS in a text format. The knowledge-based processing units offered by KWS will be 
used as building blocks to make up the KBS. The input/output of each intelligent 
component (IC) called field must be specified, this information indicates the linking between 
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts: 
1) declaration of fields, each including name and data type; 2) declaration of intelligent 
components, each including name, component class and type, knowledge source, fields of 
input(s) and output linked with. The details of intelligent component and field will be 
presented in Sections 2.3. An example of KDL text is shown in Figure 3. 
 

Support-Field-Name = ( Field1 ) , Support-Field-Data { Char ( 2 ) } 
Result-Field-Name = ( Field2 ) , Result-Field-Data { Char ( 2 ) } 
InCom-Name = ( Filter-01 ) , InCom-Body {  
 Filter Dictionary 
 NoCondition 
 Standard { Program = ( Standard Dictionary ) ,  

Knowledge-Source = ( Filter01_Knowledge ) } 
 Input = ( Field = ( Field1 ) ) , Output = ( Field = ( Field2 ) ) 
} 

Fig. 3. An example of KDL 
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knowledge hierarchy will be recorded in a data-file. By packing the target KBS with 
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installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing 
and reloading of KBS is done by the Installer which also provides a GUI to the end-user 
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where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈ 

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci 

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there 
is a mapping function fCL: 
 

fCL: ICL K  OCL  
 

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K 
represents the corresponding knowledge-based processing. The features and properties of 
intelligent components under different classes are determined by their mapping function fCL. 
It is an important feature of the KWS that an intelligent component under certain class 
always follows the same syntax for the interface with other intelligent components no 
matter which specific intelligent approach is adopted for the knowledge-based processing 
inside it. At the same time, intelligent components under the same class may behave 
differently when different approaches of knowledge-based processing are applied in 
problem solving. For instances, a decision-making may be done by applying traditional 
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural 
networks; a knowledge discovery may be achieved by data mining applying different 
approaches; a prediction may be made by statistical methods or by using neural networks. 
When an intelligent component is defined as ‘conditional component’, it chooses suitable 
knowledge source to be applied among the alternatives provided according to run-time 
conditions detected. We have designed ten classes of intelligent components under two 
different categories: processing components and learning components, with each category 
including several classes based on the nature of function.  
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KWS also provides a possibility for the developers to include their own mathematical 
formulas or algorithms as user-defined procedures and make them intelligent components. 
Once such a procedure is defined, it becomes a special knowledge-based processing unit for 
possible use in other intelligent components in the same KBS under development. 
Each of the input(s) and output of component is linked with a Field; fields are the basic data 
units indicated for input and output of processing intelligent components. They provide a 
pipeline for the data flow between components. An intelligent component can have multiple 
inputs, but only one output. 
There are seven classes of processing component and three classes of learning component 
supported by KWS, as listed in Table 1. 
 

Processing Component 
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad” 
members. 

Filtering
K

FilteringFiltering OIf :  

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering  
OFiltering; 

2. The input and output share the same type of data structure; 
3. The length of output should not be longer than that of input; 

Recognition class applies its knowledge to “read out” the meaning of a single input pattern. 
Lpf K

cognition :Re
 

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each 
of li(1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output usually have different types of data structure; 
3. The processing establishes one-to-one relation between an input pattern and an output label. 

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly 
summarized meaning. 

Ppf K
ionSummarizat :  

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization 
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or 
explanation; 

3. The degree or the level of abstraction of the output is determined by the knowledge applied and 
the inference mechanism adopted. 

Confirmation checks the input, and gives “Yes/No” to each of the candidates. 
YNDf K

conConfirmati :  

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii 
(1 ≤ i ≤ k) {Yes, No}; 

2. It can be used as a conditional checker to support other intelligent components; 
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided. 

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic 
terms or values, such as high, expensive, going-up, or so. 

JPDf K
JPJudgement :  

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list 
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined 
linguistic terms; 

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply 
represented as Yes/No; 

3. Changing the LT may change the behaviour of intelligent component. 
Projection projects an input data set with k features to an output data set with j ≤ k features. 

 

j
K

kojection DDf :Pr
 

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj 
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >}  is an n-entry data set with j ( j ≤ k) features, and 
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk 
under the projection defined; 

2. The process does not remove any data entry, but “remove” some of its features; 
3. After projection, the data set will remain the entries but each of them appears in a space of 

probably lower dimension. 
Decision checks the input as a situation and recommends a possible decision. 

ADsf K
Decision :  

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision 
with possible confidence value associated; 

2. This class of intelligent components is usually used at a late or final stage of intelligent systems, 
but not at the beginning; 

3. For a complicated problem, multiple techniques and approaches may be required to form the 
inference strategy used in the component. 

Learning Component 
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for 
input and gives output as the knowledge discovered. 

D
K

DeryDis KDf :cov
 

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected 
form, such as rules, relations, or other types; 

2. Its output result can be applied as knowledge source to support other intelligent components; 
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing. 

Training can train some rule on it based on the user input’s data. 
Post-Processing  support Learning Component for post-processing. 

Table 1. Intelligent component 

 
2.4. KWS Inference Engine 
The inference structure of a KBS constructed by KWS is represented as a knowledge 
hierarchy with multiple intelligent components connected. The task of construction can be 
done either by the intelligent editor or the KDL processor. 
The knowledge hierarchy forms a static inference structure of the target KBS. A single 
intelligent component realizes the mapping from its input to its output with the support of 
its local knowledge base. The entire mapping of the KBS is achieved through the integration 
of intelligent components. There is no direct mapping relation from the input to the output 
of the KBS, but each intelligent component contributes to part of the mapping. 
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in 
individual intelligent components, and also to connect the inference of individual 
components to the inference flow of the entire KBS. 
One of the main challenges facing KWS for the construction of intelligent system is the 
complexity associated to inference mechanism having multi-level, and multi-modal 
knowledge integration. Each single intelligent component is actually a smaller KBS for a 
sub-problem of the target application, and its input and output can be directly linked to 
problem domain or the result from different stages of processing. How to assemble 
intelligent components to get a meaningful and unified data/information flow in the entire 
intelligent system constitutes a key task. Inference engine is necessary to control the 
execution which is realized through three aspects: 1) The management of protocol between 
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KWS also provides a possibility for the developers to include their own mathematical 
formulas or algorithms as user-defined procedures and make them intelligent components. 
Once such a procedure is defined, it becomes a special knowledge-based processing unit for 
possible use in other intelligent components in the same KBS under development. 
Each of the input(s) and output of component is linked with a Field; fields are the basic data 
units indicated for input and output of processing intelligent components. They provide a 
pipeline for the data flow between components. An intelligent component can have multiple 
inputs, but only one output. 
There are seven classes of processing component and three classes of learning component 
supported by KWS, as listed in Table 1. 
 

Processing Component 
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad” 
members. 

Filtering
K

FilteringFiltering OIf :  

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering  
OFiltering; 

2. The input and output share the same type of data structure; 
3. The length of output should not be longer than that of input; 

Recognition class applies its knowledge to “read out” the meaning of a single input pattern. 
Lpf K

cognition :Re
 

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each 
of li(1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output usually have different types of data structure; 
3. The processing establishes one-to-one relation between an input pattern and an output label. 

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly 
summarized meaning. 

Ppf K
ionSummarizat :  

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization 
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or 
explanation; 

3. The degree or the level of abstraction of the output is determined by the knowledge applied and 
the inference mechanism adopted. 

Confirmation checks the input, and gives “Yes/No” to each of the candidates. 
YNDf K

conConfirmati :  

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii 
(1 ≤ i ≤ k) {Yes, No}; 

2. It can be used as a conditional checker to support other intelligent components; 
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided. 

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic 
terms or values, such as high, expensive, going-up, or so. 

JPDf K
JPJudgement :  

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list 
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined 
linguistic terms; 

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply 
represented as Yes/No; 

3. Changing the LT may change the behaviour of intelligent component. 
Projection projects an input data set with k features to an output data set with j ≤ k features. 

 

j
K

kojection DDf :Pr
 

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj 
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >}  is an n-entry data set with j ( j ≤ k) features, and 
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk 
under the projection defined; 

2. The process does not remove any data entry, but “remove” some of its features; 
3. After projection, the data set will remain the entries but each of them appears in a space of 

probably lower dimension. 
Decision checks the input as a situation and recommends a possible decision. 

ADsf K
Decision :  

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision 
with possible confidence value associated; 

2. This class of intelligent components is usually used at a late or final stage of intelligent systems, 
but not at the beginning; 

3. For a complicated problem, multiple techniques and approaches may be required to form the 
inference strategy used in the component. 

Learning Component 
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for 
input and gives output as the knowledge discovered. 

D
K

DeryDis KDf :cov
 

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected 
form, such as rules, relations, or other types; 

2. Its output result can be applied as knowledge source to support other intelligent components; 
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing. 

Training can train some rule on it based on the user input’s data. 
Post-Processing  support Learning Component for post-processing. 

Table 1. Intelligent component 

 
2.4. KWS Inference Engine 
The inference structure of a KBS constructed by KWS is represented as a knowledge 
hierarchy with multiple intelligent components connected. The task of construction can be 
done either by the intelligent editor or the KDL processor. 
The knowledge hierarchy forms a static inference structure of the target KBS. A single 
intelligent component realizes the mapping from its input to its output with the support of 
its local knowledge base. The entire mapping of the KBS is achieved through the integration 
of intelligent components. There is no direct mapping relation from the input to the output 
of the KBS, but each intelligent component contributes to part of the mapping. 
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in 
individual intelligent components, and also to connect the inference of individual 
components to the inference flow of the entire KBS. 
One of the main challenges facing KWS for the construction of intelligent system is the 
complexity associated to inference mechanism having multi-level, and multi-modal 
knowledge integration. Each single intelligent component is actually a smaller KBS for a 
sub-problem of the target application, and its input and output can be directly linked to 
problem domain or the result from different stages of processing. How to assemble 
intelligent components to get a meaningful and unified data/information flow in the entire 
intelligent system constitutes a key task. Inference engine is necessary to control the 
execution which is realized through three aspects: 1) The management of protocol between 
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components; 2) The control of execution order of components; and 3) The confidence 
transfer. 

 
3. Truth Value Flow Inference 
 

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z. 
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a 
network structure (L. Ding et al, 1996) and finds rationality in connection to the description 
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with 
TVFI, where CP and CQ are the confidence of P and Q respectively; w is the weight of rule (L. 
Ding and Z. Shen, 1994) controlling the channel of transferring the truth of P to the truth of 
Q. 

 
Fig. 6. Truth value flow inference 
 
Based on the concepts of truth value flow inference and symbolical-numerical duality, we 
can construct a fuzzy inference with a static structure of nodes representing the relationship 
between propositions symbolically, and with a dynamic flow implementing the truth (or 
confidence) transfer among the individual nodes. This idea can be extended to KBS 
represented in network structure, with each intelligent component be treated as an extended 
node realizing a mapping relation between its input and output, and the entire KBS be an 
inference network (L. Ding and H.C. Lui, 1999). 

 
3.1. Data Flow and Truth Value Flow in a Component 
In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the 
inference into a content level as well as a truth (confidence) level and handle them 
simultaneously. In this way, the content level of inference relies only on the knowledge 
sources stored “locally” in individual intelligent components whereas the truth (confidence) 
level of inference contributes to the flow of truth (confidence) throughout the entire system. 
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the 
knowledge hierarchy. 
In each intelligent component, two kinds of processing will be executed when receiving data 
in its inputs: content (or data) processing, and truth value (or confidence value) processing. 
These two types of processing are handled in intelligent component simultaneously to 
obtain the final result of the component that is the content of processing result associated 
with its corresponding confidence value. This concept can be shown as in Figure 7. 
 

 

 
Fig. 7. An example of separated inputs in two levels 

 
3.2. Interval-Valued Confidence 
We adopted interval-valued confidence to represent the truth of fact and knowledge, and 
the confidence of inference. Here, the term “interval” is used in some different way from its 
usual meaning. Our motivation comes from several points. 
1) A given truth value t  [0, 1] with some possible uncertainty or imprecision can 

always be understood as a fuzzy number defined on the closed interval [0, 1]. In an 
extreme case, t can be represented as a special fuzzy number with left, middle and 
right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum. 

2) With more accurate information available, the range between the left and right 
parameters of such a fuzzy truth can be reduced. In another extreme case, we may 
have all the three parameters be t, if no uncertainty is considered, and it then comes 
back to usual case of single point of truth. 

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to 
allow more tolerance of imprecision in inference in terms of truth (confidence) 
calculation. 

Three-parametric triangular truth value has some good features of easy representation and 
processing, intuitive interpretation consistent with common sense, convenient conversion 
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets. 
 

Definition 1 (general definition): A confidence value C of inference result is represented in 
the following general format: 
 

C = (a, m, b), (1) 
 

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a 
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0, 
1] (Figure 8-a). 
 

Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact 
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t, 
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be 
understood as a special case (t, t, t) of Definition 1. 
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components; 2) The control of execution order of components; and 3) The confidence 
transfer. 

 
3. Truth Value Flow Inference 
 

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z. 
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a 
network structure (L. Ding et al, 1996) and finds rationality in connection to the description 
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with 
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represented in network structure, with each intelligent component be treated as an extended 
node realizing a mapping relation between its input and output, and the entire KBS be an 
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In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the 
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simultaneously. In this way, the content level of inference relies only on the knowledge 
sources stored “locally” in individual intelligent components whereas the truth (confidence) 
level of inference contributes to the flow of truth (confidence) throughout the entire system. 
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the 
knowledge hierarchy. 
In each intelligent component, two kinds of processing will be executed when receiving data 
in its inputs: content (or data) processing, and truth value (or confidence value) processing. 
These two types of processing are handled in intelligent component simultaneously to 
obtain the final result of the component that is the content of processing result associated 
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always be understood as a fuzzy number defined on the closed interval [0, 1]. In an 
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right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum. 

2) With more accurate information available, the range between the left and right 
parameters of such a fuzzy truth can be reduced. In another extreme case, we may 
have all the three parameters be t, if no uncertainty is considered, and it then comes 
back to usual case of single point of truth. 

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to 
allow more tolerance of imprecision in inference in terms of truth (confidence) 
calculation. 

Three-parametric triangular truth value has some good features of easy representation and 
processing, intuitive interpretation consistent with common sense, convenient conversion 
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets. 
 

Definition 1 (general definition): A confidence value C of inference result is represented in 
the following general format: 
 

C = (a, m, b), (1) 
 

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a 
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0, 
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Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact 
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t, 
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be 
understood as a special case (t, t, t) of Definition 1. 
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Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b  
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c): 
 

m = (a + b) / 2, (2) 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Interval-Valued Confidence 
 

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A. 
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and 
false = (0, 0, 1). 

 
Fig. 9. Linguistic truth value true and false 
 
Definition 4 (AND operation): The operation of AND on two interval-valued confidences 
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ANDIVC (C1, C2) = (Ca, Cm, Cb)                        
= [min(a1, a2), min(m1, m2), max(m1, m2)]. 

(3) 

 
Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 = 
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ORIVC (C1, C2) = (Ca, Cm, Cb)                            
= [min(m1, m2), max (m1, m2), max(b1, b2)]. 

(4) 

 
Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C = 
(a, m, b), represented as in (1) is defined as 
 

NOTIVC (C) = (Ca, Cm, Cb)                                
= (1  b, 1  m, 1  a).                                    

(5) 

 
Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and 
false, we have: 
 

 

ORIVC(true, false)                                               
= [min(1, 0), max(1, 0), max(1, 1)] = true, 

(6) 

ANDIVC(true, false)                                            
     = [min(0, 0), min(1, 0), max(1, 0)] = false, 

(7) 

NOTIVC(true)                                                     
    = (1  1, 1  1, 1  0) = (0, 0, 1) = false,       

(8) 

NOTIVC(false)                                                     
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.       

(9) 

 
The results of (6) ~ (9) are consistent with conventional definitions. However, we can also 
find that our operations provide interesting results when applying OR to both true, or AND 
to both false: 
 

ORIVC(true, true)                                                
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1), 

(10) 

ANDIVC(false, false)                                            
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0). 

(11) 

 
We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for 
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible 
room for “not-false”. These two represent the extreme cases of IVC. 
In order to have a further clear view of the properties of IVC with the corresponding 
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false, 
strong-true and strong-false, represented in IVC format. The highlighted parts show that the 
results well meet commonsense interpretation. 
 
Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued 
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12) 
 
with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …, 
mk, and Cb the second smallest value among the m1, …, mk. 
 

(a) AND 

ANDIVC F T s-F s-T 
F F F s-F F 
T F T F T 

s-F s-F F s-F F 
s-T F T F s-T 

ORIVC F T s-F s-T 
F F T F T 
T T T T s-T 

s-F F T s-F T 
s-T T s-T T s-T 

(b) OR 

NOTIVC  
F T 
T F 

s-F s-T 
s-T s-F 
(C) NOT 

Table 2. Logical operations on true, false, strong-true, string-false 
 
Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences 
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13) 
 



Automatic Construction of Knowledge-Based System using Knowware System 199

 

Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b  
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c): 
 

m = (a + b) / 2, (2) 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Interval-Valued Confidence 
 

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A. 
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and 
false = (0, 0, 1). 

 
Fig. 9. Linguistic truth value true and false 
 
Definition 4 (AND operation): The operation of AND on two interval-valued confidences 
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ANDIVC (C1, C2) = (Ca, Cm, Cb)                        
= [min(a1, a2), min(m1, m2), max(m1, m2)]. 

(3) 

 
Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 = 
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ORIVC (C1, C2) = (Ca, Cm, Cb)                            
= [min(m1, m2), max (m1, m2), max(b1, b2)]. 

(4) 

 
Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C = 
(a, m, b), represented as in (1) is defined as 
 

NOTIVC (C) = (Ca, Cm, Cb)                                
= (1  b, 1  m, 1  a).                                    

(5) 

 
Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and 
false, we have: 
 

 

ORIVC(true, false)                                               
= [min(1, 0), max(1, 0), max(1, 1)] = true, 

(6) 

ANDIVC(true, false)                                            
     = [min(0, 0), min(1, 0), max(1, 0)] = false, 

(7) 

NOTIVC(true)                                                     
    = (1  1, 1  1, 1  0) = (0, 0, 1) = false,       

(8) 

NOTIVC(false)                                                     
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.       

(9) 

 
The results of (6) ~ (9) are consistent with conventional definitions. However, we can also 
find that our operations provide interesting results when applying OR to both true, or AND 
to both false: 
 

ORIVC(true, true)                                                
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1), 

(10) 

ANDIVC(false, false)                                            
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0). 

(11) 

 
We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for 
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible 
room for “not-false”. These two represent the extreme cases of IVC. 
In order to have a further clear view of the properties of IVC with the corresponding 
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false, 
strong-true and strong-false, represented in IVC format. The highlighted parts show that the 
results well meet commonsense interpretation. 
 
Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued 
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12) 
 
with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …, 
mk, and Cb the second smallest value among the m1, …, mk. 
 

(a) AND 

ANDIVC F T s-F s-T 
F F F s-F F 
T F T F T 

s-F s-F F s-F F 
s-T F T F s-T 

ORIVC F T s-F s-T 
F F T F T 
T T T T s-T 

s-F F T s-F T 
s-T T s-T T s-T 

(b) OR 

NOTIVC  
F T 
T F 

s-F s-T 
s-T s-F 
(C) NOT 

Table 2. Logical operations on true, false, strong-true, string-false 
 
Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences 
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13) 
 



Machine Learning200

 

with Ca being the second largest value among the m1, …, mk, Cm the largest value among the 
m1, …, mk, and Cb the largest value among the b1, …, bk. 
It is necessary to notice that in general the OR(g)IVC and AND(g)IVC operations do not satisfy 
connective laws as usual logic OR and AND. This can be seen from the following examples. 
 
Example 1: Generalized OR(g)IVC and generalized AND(g)IVC operations do not satisfy 
connective laws. 
Suppose C1 = (0.7, 0.9, 0.9), C2 = (0.6, 0.6, 1), and C3 = (0.4, 0.4, 1), with Definition 7 we have: 
 

AND(g)IVC (C1, C2, C3) = (0.4, 0.4, 0.6).        (14) 
 
However, we also have 
 

ANDIVC [ANDIVC (C1, C2), C3]                     
= ANDIVC [(0.6, 0.6, 0.9), (0.4, 0.4, 1)] = (0.4, 0.4, 0.6),  

(15) 

ANDIVC [C1, ANDIVC (C2, C3)]                    
=ANDIVC [(0.7, 0.9, 0.9), (0.4, 0.4, 0.6)]= (0.4, 0.4, 0.9). 

(16) 

 
Similarly with Definition 8, we have 
 

OR(g)IVC (C1, C2, C3) = (0.6, 0.9, 1).              (17) 
ORIVC [ORIVC (C1, C2), C3]                           

= ORIVC [(0.6, 0.9, 1), (0.4, 0.4, 1)] = (0.4, 0.9, 1), 
(18) 

ORIVC [C1, ORIVC (C2, C3)]                           
= ORIVC [(0.7, 0.9, 0.9), (0.4, 0.6, 1)] = (0.6, 0.9, 1). 

(19) 

 
The highlighted parts show the difference between (15) and (16), and between (18) and (19). 
This feature can be interpreted by the truth value flow inference adopted in KWS. It is 
understood that the corresponding structures of TVFI for (14), (15) and (16) are different 
(Figure 10), and the same applies to (17), (18) and (19). Figure 10 gives three structures of 
TVFI. The nodes of the structures are representing intelligent components for knowledge-
based processing, and handling truth value flow from the input side to the output side. So 
the (a), (b), and (c) actually represent different internal inference flows, though they have the 
same input interface A1, A2 and A3, and output interface B for the entire structure. 
 

A1

A2

A3

B

A1, A2, A3→B

 
  

(a) AND(g)IVC (A1, A2, A3) (b) ANDIVC [ANDIVC (A1, A2), A3] (c) ANDIVC [A1, ANDIVC (A2, A3)] 
Fig. 10. TVFI structures 
 
When a single-valued confidence of conclusion is desired, we need to consider 
defuzzification in the last stage of inference in hybrid KBS. As defuzzification is considered 
a matter of application-specific, we here propose two simplified calculations based on the 

 

idea of conventional center of gravity approach (J.-S.R. Jang et al, 1997; R.R. Yager and D.P. 
Filev, 1994) with the reference to the left, middle and right points of IVC. 
 
Definition 9 (compromised defuzzification): The compromised defuzzification Defcom(C) of 
IVC C = (a, m, b), 0  a  m  b  1, is defined as the center of gravity of α-cut with α= 0.5 
(Figure 11-a). 
Since the IVC is a fuzzy number defined as a piece-wise linear function with the 
corresponding left, middle, and right points, we have the following calculation: 
 

Defcom(C) = [(a + m)/2 + (m + b)/2] / 2. (20) 
 
Definition 10 (simple defuzzification): The simple defuzzification Defsim(C) of IVC C = (a, m, 
b), 0  a  m  b  1, is defined as the middle point m (Figure 11-b): 
 

Defsim (C) = m. (21) 

 
(a) Compromised defuzzification with IVC 

 
(b) Simple defuzzification with IVC 

Fig. 11. Defuzzification with IVC 
 
Example 2: Single-valued confidence and interval-valued confidence with corresponding 
AND/OR operators. 
 
A. Single-Valued Confidence using Min/Max for AND/OR operation 
Consider the following rule and facts given: 
 

rule 1:  if the topic is interesting, 
and the weather is good, 
then I will attend the seminar; 

fact 1:  the topic is interesting; 
fact 2:  the weather is good. 

The most common way of handling and is to use min as t-norm to calculate the overall truth 
of the premise from the two subpremises, and when both facts are 0.5 true, for instance, we 
get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic: 
 

fact 1’:  the topic is interesting (0.9 true). 
 

With min, we will still get the same truth 0.5 for the premise, i.e., the influence of interesting 
topic has been buried by the fact of weather as long as its truth is not lower than the other 
fact. However, we tend to agree that a more interesting topic (0.9) makes a person more 
willing to go to the seminar than a moderately interesting topic (0.5) given the same weather 
condition (0.5). The following example shows a similar problem with or operation. 
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AND/OR operators. 
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get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic: 
 

fact 1’:  the topic is interesting (0.9 true). 
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rule 2:  if Mr. A and Mr. B are first cousin, 
or second cousin, 
then they have a close relationship; 

fact 3: Mr. A and Mr. B are first cousin; 
fact 4:  Mr. A and Mr. B are second cousin. 

 
With max, the most common way of calculating t-conorm, when either fact 3 or fact 4 is 0.5 
true and the other is 0 true, we can obtain the overall truth of premise to be max(0.5, 0) = 0.5. 
However, it is also possible that Mr. A and Mr. B have both first cousin and second cousin 
relationship when one’s parents being first cousin. Assume both subpremises with 0.5 
confidence, we will still have the same 0.5 for the truth of premise using max calculation. 
Conventionally, two persons that are in both first cousin and second cousin relation should 
more likely to have a close relationship than only being one kind of cousin having their 
double connections of relative. Obviously, max does not well reflect this situation. 
From the above examples, we can see that a single-valued truth (confidence) does not 
provide sufficient room for the description of imprecise knowledge, especially in decision 
making applications, where subjective knowledge and experience play an important role 
and the truth of subjective knowledge is hardly to be measurable in absolute sense. It is also 
very often that in real applications, a single-valued truth (confidence) does not necessarily 
mean in the explicit way as it seems. For instance, when a user inputs 0.8 as the truth of 
good weather, it should not be simply treated as a precise value 0.8 but some thing around 
0.8. 
 
B. Interval-Valued Confidence using ANDIVC/ORIVC  
We apply the IVC and corresponding operations to the previous examples. For fact 1 and 
fact 2, we have 
 

ANDIVC [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]  
= [min(0.5, 0.5), min(0.5, 0.5), max(0.5, 0.5)] 
= (0.5, 0.5, 0.5), 
 

and for fact 1’ and fact 2, we have 
 

ANDIVC[(0.9, 0.9, 0.9), (0.5, 0.5, 0.5)] (13) 
= [min(0.9, 0.5), min(0.9, 0.5), max(0.9, 0.5)] 
= (0.5, 0.5, 0.9). 

It shows that fact 1’ together with fact 2 gives more potential to have a truth higher than 0.5 
(Figure 12). 
For fact 3 (0.5 true) or fact 4 (0 true), we have 
 

ORIVC[(0.5, 0.5, 0.5), (0, 0, 0)] 
= [min(0.5, 0), max(0.5, 0), max(0.5, 0)] 
= (0, 0.5, 0.5), 
 

and for fact 3 (0.5 true) or fact 4’ (0.5 true), we have 
 

 

ORIVC[(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)] 
= [min(0.5, 0.5), max(0.5, 0.5), max(0.5, 0.5)] 
= (0.5, 0.5, 0.5). 
 

It shows that fact 3 together with fact 4’ has a stronger belief for truth 0.5 (Figure 13). 

 
Fig. 12. An example of ANDIVC 
 

 
Fig. 13. An example of ORIVC 

 
From above discussion, we can see that using IVC and the corresponding operations defined 
for confidence calculation, partial conclusion with a relatively stronger confidence about 
true or false will not easily make the influence of other parts be totally ignored in inference. 

 
3.3.  Confidence Transfer and Interpretability 
The processing in intelligent component can be further classified in several categories 
according to the description of mapping relation. 

 
3.3.1. Component with Interpretable Mapping Relation 
When mapping relation between input and output of intelligent components can be 
interpreted by a mathematic formula or an algorithm described by procedure. The mapping 
relation is considered interpretable, and precise in the sense that the processing does not 
affect uncertainty and imprecision. In this type of intelligent components, the confidence of 
output remains the same as that of input. 
 
Example 3: A component performs some simple data processing, such as sorting. The 
output of component is the sorted result based on certain condition specified with 
knowledge source. In this case, the mapping relation between input and output can be 
determined by algorithm, and the corresponding output truth value remains the same as the 
input truth value. 
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true or false will not easily make the influence of other parts be totally ignored in inference. 

 
3.3.  Confidence Transfer and Interpretability 
The processing in intelligent component can be further classified in several categories 
according to the description of mapping relation. 

 
3.3.1. Component with Interpretable Mapping Relation 
When mapping relation between input and output of intelligent components can be 
interpreted by a mathematic formula or an algorithm described by procedure. The mapping 
relation is considered interpretable, and precise in the sense that the processing does not 
affect uncertainty and imprecision. In this type of intelligent components, the confidence of 
output remains the same as that of input. 
 
Example 3: A component performs some simple data processing, such as sorting. The 
output of component is the sorted result based on certain condition specified with 
knowledge source. In this case, the mapping relation between input and output can be 
determined by algorithm, and the corresponding output truth value remains the same as the 
input truth value. 



Machine Learning204

 

If a component uses rule-based knowledge (fuzzy or precise) that can be approximately 
interpreted by AND, OR, and NOT relations, the mapping relation is also a kind of 
interpretable, but the truth of output may be affected by the knowledge-based processing. 
The corresponding truth value of output can be determined by the logic relations used in 
the rules. 

 
3.3.2. Component with Less Interpretable Mapping Relation 
When an IC uses less interpretable knowledge representation, e.g., neural networks, or case-
based reasoning, the mapping relationship realized by the IC may not be interpreted in 
composition of logic operations and therefore the input confidence of the IC cannot be 
simply transferred to its output side to obtain the output confidence through its internal 
inference structure (L. Ding and S.L. Lo, 2008). A further extension of the framework of truth 
value flow inference using IVC (L. Ding, 2008) is needed to cope with this problem. It is 
achieved by two steps: 
1) First carry out the internal inference of such an IC by assuming that the input is 

completely true (i.e. with full confidence); 
2) Combine the input confidence with the result confidence as one unified output 

confidence at the output side of an IC after its processing. 
We adopt the concept of truth base introduced with the exponential form of fuzzy logic (Z. 
Shen and L. Ding, 1994) for the interpretation of confidence transfer. 
 
A. Truth base and confidence representation 
The exponential form of fuzzy logic (EF) was proposed for confidence comparison and high 
order fuzziness simplification (Z. Shen and L. Ding, 1994). It provides a possible way for 
confidence transfer in intelligent components that use less interpretable representation of 
knowledge. An important concept introduced with EF is the truth base. For instance, saying 
“P is 0.8 true” may be understood in two ways: “P has complete truth (1) with 0.8 confidence”, 
or “P has 0.8 truth with full confidence (1)”. The difference is from the use of different truth 
bases: in the former, we put our truth base at 1, whereas in the latter, we put our truth base 
at 0.8. Obviously, it is reasonable to make these two ways of understanding be exchangeable 
from one to the other equivalently. 
Usually by default we take completely true as the basis of our discussion about confidence, 
e.g.: 1 in fuzzy valued logic, or true in fuzzy linguistic valued logic, but it is also useful to 
have a different truth base for the convenience of discussion and have confidences of 
different truth bases be convertible from one to other. 
The EF is originally defined with both truth-I and truth-II of fuzzy valued logic and fuzzy 
linguistic valued logic (Z. Shen and L. Ding, 1994). In KWS truth-I of fuzzy valued logic is 
adopted. 
 
Definition 11 (EF on fuzzy valued logic): Let t ∈ [0, 1] be a truth value in fuzzy valued logic, 
then t can be represented in its exponential form Bc when 
 

t = (B – U) × c + U, (22) 
 

 

where B ∈ [0, 1] is called the fuzzy truth base, c ∈ (-∞, ∞) is called confidence exponent, U is the 

unknown point for inference. In truth-I, we further specify U = 0, and B∈(0, 1]. 
It is important to be aware of that a super confidence c > 1 may cause a loss of information 
in inference (Z. Shen and L. Ding, 1994), so a truth base B ≥ t is usually recommended. 
When applying the EF originally defined with single truth value to IVC, we have the IVC 
format of unknown UIVC = (0, 0, 0), the IVC format of truth base BIVC = (B, B, B) with B ∈ (0, 1], 
and the IVC format of confidence exponent C = (ac, mc, bc). So the above (22) can be rewritten 
as: 
 

tIVC = (at, mt, bt) = (B × ac, B × mc, B × bc). (23) 
 
Definition 12 (Base changing in EF): The exponential form of a fuzzy truth t on truth base B1 
can be converted to that on truth base B2 by 
 

21
21

CC BBt  . (24) 
 
where B1, B2 ≠ 0, U is the unknown point of inference, B1, B2 ≠ U, and c1, c2, B1 and B2 satisfy 
the following relation: 
 

c2 = c1 × (B1 – U) ÷ (B2 – U). (25) 
 
Using the IVC format of truth base and unknown point, given two confidences C1 = (a1, m1, 
b1) under truth base B1 = (B1, B1, B1) and C2 = (a2, m2, b2) under B2 = (B2, B2, B2), the above (23) 
can be rewritten as: 
 

C2 = (a2, m2, b2) = (a1× B1 ÷ B2, m1× B1 ÷ B2, b1× B1 ÷ B2). (26) 
 
Definition 13 (Logical operations on EF): The AND, OR and NOT operations on EF are 
defined as: 
 

AND( 1CB , 2CB ,…, CnB ) = BAND(
1c ,

2c ,…,
nc ) (27) 

OR( 1CB , 2CB ,…, CnB ) = BOR(
1c , 2c ,…,

nc ) (28) 

NOT( CB ) = BNOT( c ) (29) 
 
where B is a given common truth base, and EF values originally with different truth bases are 
converted to the selected common truth base before carrying out logical operations. 
 
B. Confidence transfer with arbitrary intelligent component 
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm 
(Figure 14) without loss of generality, where K represents a knowledge-based mapping 
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk,      >, where the data 
dk is from other intelligent component IC-k, and associated with IVC Ck = (ak, mk, bk) under a 
selected truth base Bk. When a common truth base B is selected for all the inputs in1, in2, … , 

kC
kB
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and the IVC format of confidence exponent C = (ac, mc, bc). So the above (22) can be rewritten 
as: 
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where B1, B2 ≠ 0, U is the unknown point of inference, B1, B2 ≠ U, and c1, c2, B1 and B2 satisfy 
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NOT( CB ) = BNOT( c ) (29) 
 
where B is a given common truth base, and EF values originally with different truth bases are 
converted to the selected common truth base before carrying out logical operations. 
 
B. Confidence transfer with arbitrary intelligent component 
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm 
(Figure 14) without loss of generality, where K represents a knowledge-based mapping 
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk,      >, where the data 
dk is from other intelligent component IC-k, and associated with IVC Ck = (ak, mk, bk) under a 
selected truth base Bk. When a common truth base B is selected for all the inputs in1, in2, … , 
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inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will 
be considered as a special case of having an empty IC when dk is directly from problem 
domain. The inference output of A is obtained through the following algorithm. 
In a hybrid KBS constructed by KWS, the default common truth base is set as T = (1, 1, 1), the 
strong true in IVC format. This also applies to intelligent components with interpretable rule-
based type of knowledge, and so the discussion of confidence transfer in (L. Ding, 2008) can 
be rebuilt using EF with the default common truth base. 
 

 

IC-1

IC-2

IC-m

<d1,C1>

<d2,C2>

<dm,Cm>

d1

d2

dm A <r,Cr*>
<r,C out>

Cin

d1,d2, ...,dm→rK

 
Fig. 14. Confidence transfer in an IC of hybrid KBS 

 
3.3.3. Confidence Transfer in Hybrid KBS 
Compared with a typical fuzzy inference system (J.-S.R. Jang et al, 1997; R.R. Yager, 1994), a 
hybrid KBS constructed by KWS usually does not have a universal knowledge base but 
multiple knowledge sources associated in individual intelligent components. In this sense, 
each knowledge source has only a local affection to the corresponding intelligent component 
realizing a mapping relation between its input and output. Given two arbitrary intelligent 
components A and B, having the output of A linked to the input of B means its content is 
passed on for further knowledge-based processing in B, and at the same time its confidence 
is integrated in the calculation of the confidence of output of B. Therefore, an IC is needed to 
distinguish the uncertainty associated with external input or introduced by its internal 
inference result. We represent the former as input confidence, and the latter as result 

Algorithm-1 (Confidence transfer of IC uses less interpretable knowledge representation): 
1) The input <dk,        > (1 ≤ k ≤ m) is first converted to <dk,           >, where T is the strong true (1, 

1, 1) in IVC format, and Cin-k = (ain-k, min-k, bin-k) is the confidence exponent in IVC format, 
through base changing; 

2) The combined confidence of input is then calculated by 
Cin = (ain, min, bin) = [mink(ain-k),mink(min-k),mink(bin-k)];  

3) The data d1, …, dk, …, dm are then accepted as input values with perfect confidence for the 
inference in A; 

4) Assume that a data r is obtained as the content of inference result of A with the result 
confidence       , where Cr = (ar, mr, br). The        is converted to          through base changing, 
then the output confidence of A is calculated by 

Cout = ANDIVC (Cin, Cr*)                                 
based on the Definition 4, and <r,           > is the output of A 

kC
kB kinCT 

outCT

Cr
rB*CrTCr

rB

 

confidence. When all the intelligent components in a hybrid KBS use rule-based knowledge 
(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations, 
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based 
network that embeds internal inference structure of individual IC into the knowledge 
hierarchy (L. Ding et al, 1996; L. Ding, 2008). 
 
Example 4: With the rapid development of Internet technologies, people are receiving more 
and more e-mails for commercial promotion purpose and often need spend time and effort 
for filtering and cleaning. We consider a simple hierarchical KBS for the filtering function 
based on the title of e-mail. There are three major parts of title related to promotion: action 
(of promotion), e.g., “offer”, “provide”, or “sale”; benefit (to user), e.g., “saving”, “earn”, or 
“win”; currency (or percentage, number), e.g., “$”, “%”, or “xx.xx”. 
The system consists of five intelligent components of type summarization, recognition, and 
decision (L. Ding, 2007b; L. Ding and S. Nadkarni, 2007) (Fig. 15). 

 
Fig. 15. An example of hierarchical inference with IVC flow 
 
Sum (S) - a summarization component that performs pre-processing to eliminate less 
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary. 
The cleaned-up version of email title will be passed up to three recognition components for 
further processing. 
Act (A) - a recognition component to recognize words that match the “action” category. The 
knowledge source defines the kind of words often used to positively describe promotion 
action, including the representative words and their major variants. 
Ben (B) - a recognition component to recognize words that match the “benefit” category. The 
knowledge source defines the kind of words often used to highlight the potential benefit to 
attract people’s attention, including the representative words as well as their major variants. 
Cur (C) - a recognition component to recognize characters of currency, percentage, or 
numbers. 
Dec (D) - a decision component to decide whether the text examined is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge may be 
fuzzy association rules obtained through possible knowledge discovery, such as: 
 

rule-d1: If A and B, Then P (0.8) 
rule-d2: If B or C, Then P (0.4) 

rule-d3: If A and C, Then P (0.6) 
 
When an e-mail is received with a title like: 
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inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will 
be considered as a special case of having an empty IC when dk is directly from problem 
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(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations, 
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based 
network that embeds internal inference structure of individual IC into the knowledge 
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Sum (S) - a summarization component that performs pre-processing to eliminate less 
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary. 
The cleaned-up version of email title will be passed up to three recognition components for 
further processing. 
Act (A) - a recognition component to recognize words that match the “action” category. The 
knowledge source defines the kind of words often used to positively describe promotion 
action, including the representative words and their major variants. 
Ben (B) - a recognition component to recognize words that match the “benefit” category. The 
knowledge source defines the kind of words often used to highlight the potential benefit to 
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Cur (C) - a recognition component to recognize characters of currency, percentage, or 
numbers. 
Dec (D) - a decision component to decide whether the text examined is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge may be 
fuzzy association rules obtained through possible knowledge discovery, such as: 
 

rule-d1: If A and B, Then P (0.8) 
rule-d2: If B or C, Then P (0.4) 

rule-d3: If A and C, Then P (0.6) 
 
When an e-mail is received with a title like: 
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“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 
(a) S filters out the less relevant words and obtained a cleaned-up version: 

“Offer Saving 99%” 
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1). 
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1). 
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as 

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as: 
If $or%-character or number then is-C. 

So we have overall confidence for C is 
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1). 

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is 
defined as and (confidence-of-premise, confidence-of-rule). We check each of the 
rules. 

d1: confidence-of-premise 
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1); 
confidence-of-conclusion 
= ANDIVC[ (0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8). 

d2: confidence-of-premise 
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1). 

d3: confidence-of-premise 
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1). 

(f) Now we aggregate the results of d1~d3 from (e): 
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)] 
= (0.6, 0.8, 1). 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied) or “very likely” as a linguistic interpretation. 
 

Example 5: We replace the component Dec (D) in Example 4 with the below: 
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge used is 
case-based reasoning technique. 
When an e-mail is received with a title like: 
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 

(a) ~  (d), the same as in Example 4; 
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section 

4.3.2, we have: 
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0, 

1, 1)>; 
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1, 

1) (0, 0.8, 1)>; 
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1, 

1)>. 
Step-2: The combined confidence of input is then calculated by 

 

Cin = (ain, min, bin)  
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1)) 
= (0, 0.8, 1) 

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input 
values with perfect confidence for the inference in D2 

Step-4: Assume that component D2 through case-based reasoning 
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have: 

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1) 
Then the output confidence of D2 is calculated by 
Cout = ANDIVC (Cin, Cr*)  
= (0, 0.8, 0.9) 

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to 
<“Promotion”, (0, 0.8, 0.9)>, it is the final result. 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied). 

 
4. KWS Inference Engine 
 

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms 
the static inference structure of target KBS. The execution on such a static inference structure 
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to 
control the execution of components in KBS by managing protocol between components, 
and sending necessary signals for the order of execution. A component in an inference 
structure constructed by KWS is a customized knowledge-based processing unit, and a field 
in the inference structure is a space that stores input data or intermediate result during 
inference. Fig. 16 gives an example of inference structure. 
 

 
Fig. 16. An example of inference structure 

 
4.1. Level of Component and Layer of Field 
Based on the position of each component in inference hierarchy, a topological sorting 
determines the execution order with which a child component should always be executed 
before its parent component. For the purpose of such topological sorting, we need to first 
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine 
the level of all the components in a given knowledge hierarchy, as well as the layer of each 
of the fields associated with the components. 
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“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 
(a) S filters out the less relevant words and obtained a cleaned-up version: 

“Offer Saving 99%” 
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1). 
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1). 
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as 

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as: 
If $or%-character or number then is-C. 

So we have overall confidence for C is 
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1). 

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is 
defined as and (confidence-of-premise, confidence-of-rule). We check each of the 
rules. 

d1: confidence-of-premise 
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1); 
confidence-of-conclusion 
= ANDIVC[ (0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8). 

d2: confidence-of-premise 
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1). 

d3: confidence-of-premise 
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1). 

(f) Now we aggregate the results of d1~d3 from (e): 
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)] 
= (0.6, 0.8, 1). 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied) or “very likely” as a linguistic interpretation. 
 

Example 5: We replace the component Dec (D) in Example 4 with the below: 
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge used is 
case-based reasoning technique. 
When an e-mail is received with a title like: 
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 

(a) ~  (d), the same as in Example 4; 
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section 

4.3.2, we have: 
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0, 

1, 1)>; 
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1, 

1) (0, 0.8, 1)>; 
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1, 

1)>. 
Step-2: The combined confidence of input is then calculated by 

 

Cin = (ain, min, bin)  
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1)) 
= (0, 0.8, 1) 

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input 
values with perfect confidence for the inference in D2 

Step-4: Assume that component D2 through case-based reasoning 
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have: 

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1) 
Then the output confidence of D2 is calculated by 
Cout = ANDIVC (Cin, Cr*)  
= (0, 0.8, 0.9) 

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to 
<“Promotion”, (0, 0.8, 0.9)>, it is the final result. 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied). 

 
4. KWS Inference Engine 
 

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms 
the static inference structure of target KBS. The execution on such a static inference structure 
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to 
control the execution of components in KBS by managing protocol between components, 
and sending necessary signals for the order of execution. A component in an inference 
structure constructed by KWS is a customized knowledge-based processing unit, and a field 
in the inference structure is a space that stores input data or intermediate result during 
inference. Fig. 16 gives an example of inference structure. 
 

 
Fig. 16. An example of inference structure 

 
4.1. Level of Component and Layer of Field 
Based on the position of each component in inference hierarchy, a topological sorting 
determines the execution order with which a child component should always be executed 
before its parent component. For the purpose of such topological sorting, we need to first 
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine 
the level of all the components in a given knowledge hierarchy, as well as the layer of each 
of the fields associated with the components. 
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The level of components and the layer of fields in the example given in Figure 16 are shown 
in Table 3-a and Table 3-b, respectively.  
Except usual tree structure, in inference structure there are some special graph structures 
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For 
example, in Figure 16 component D and E are the parents of component C, component B of 
level-1 passes its result to component E of level-4. The order of execution is determined by a 
topological sorting according to level of components. The key issue here is the data 
consistency. 
 

Component Level 
A, B 1 

C 2 
D 3 
E 4 

 

Field Layer 
F1, F2 1 
F3, F4 2 

F5 3 
F6 4 
F7 5 

 

(a) The level of components (b) The layer of fields 
Table 3. The level of components and the layer of fields for Figure 16 

 
4.2. Protocol between Components 
The protocol between components is described from three aspects: syntax, semantics and 
data type. With the general classes of intelligent components defined, we have syntactical 
rules indicating the possible connections between different classes. For instance, a 
component of Confirmation class is allowed to send its output to the input of a component of 
Decision class, but not allowed to do the same to the input of a component of Filtering class. 
For each allowable connection between classes, we further set semantic rules with more 
details to specify legal connections. A Filtering component may connect to another Filtering 
component syntactically. However, there may be semantic constraints based on the detailed 
types of knowledge used in each Filtering component. For instance, a Dictionary component 
can be the support (child component) for a List component, but the reverse case does not 
hold true. 
At the component-to-component level, there are four kinds of protocol for the data type of 
implementation. 
1) single-to-single: a singleton data is connected to an input field of singleton. 
2) single-to-multiple: a singleton data is connected to an input field of vector. 
3) multiple-to-single: a vector data is connected to an input field of singleton. 
4) multiple-to-multiple: a vector data is connected to an input field of vector. 

 
 

Algorithm-2 (Determine level of component and layer of field): 
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is 

the layer of f; 
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where 

level(C) is the level of C; 
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer 

(fc2), ..., layer (fch)].

 

4.3. Forward Inference with Partial Feedback 
It is always desired to get a “better” solution when knowledge-based processing involved in 
an intelligent component can provide multiple candidates of solution for output. In order to 
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with 
partial feedback. When a component receives inputs, it executes and generates the result as 
output. As a typical scenario, a component generates inference result and passes the result 
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result 
when the previously submitted result is found unsatisfactory. The rerun mechanism 
provides a possible way to extend the forward inference mechanism in KBS. Final result will 
only be generated when the inference is successful.  
The inference in KBS constructed by KWS is basically a forward inference. As the simple 
case when there is no feedback considered, the inference flow starts from layer-1 receiving 
input data directly from application, goes up for the level-1 components to execute and 
provide result as layer-2, and then further goes up for the level-2 components to execute, …, 
finally has the last level components execute to provide result as the last layer, which 
represents the inference result. 
For a more general case when there is partial feedback introduced, if a component of level-k 
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a 
Rerun signal to the corresponding child component, and the current execution will be pulled 
back down to the level of the child component accordingly. When there are several 
components send Rerun signal to their child components, the current execution will be set as 
the level that is the lowest among the levels of components that received Rerun signal. 
Considering again the example given in Fig. 16, if component C sent a Rerun signal to 
component B, then the current execution will be pulled back to level-1 for B to execute its 
function again to generate next possible results. With a similar spirit, if component E sent a 
Rerun signal to component B, then the current execution will also be pulled back to level-1. 
It is important to notice that there are other two components C and D at a higher level than 
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen 
temporarily to ensure the data consistency. 

 
4.3.1 States of Component 
In order to indicate the execution status of a component, we introduce state of component. The 
transition between states is shown in Fig.  17 and the explanation is listed in Table 4. 
 

 
Fig. 17. The states of a component 



Automatic Construction of Knowledge-Based System using Knowware System 211

 

 
The level of components and the layer of fields in the example given in Figure 16 are shown 
in Table 3-a and Table 3-b, respectively.  
Except usual tree structure, in inference structure there are some special graph structures 
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For 
example, in Figure 16 component D and E are the parents of component C, component B of 
level-1 passes its result to component E of level-4. The order of execution is determined by a 
topological sorting according to level of components. The key issue here is the data 
consistency. 
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Field Layer 
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F5 3 
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(a) The level of components (b) The layer of fields 
Table 3. The level of components and the layer of fields for Figure 16 

 
4.2. Protocol between Components 
The protocol between components is described from three aspects: syntax, semantics and 
data type. With the general classes of intelligent components defined, we have syntactical 
rules indicating the possible connections between different classes. For instance, a 
component of Confirmation class is allowed to send its output to the input of a component of 
Decision class, but not allowed to do the same to the input of a component of Filtering class. 
For each allowable connection between classes, we further set semantic rules with more 
details to specify legal connections. A Filtering component may connect to another Filtering 
component syntactically. However, there may be semantic constraints based on the detailed 
types of knowledge used in each Filtering component. For instance, a Dictionary component 
can be the support (child component) for a List component, but the reverse case does not 
hold true. 
At the component-to-component level, there are four kinds of protocol for the data type of 
implementation. 
1) single-to-single: a singleton data is connected to an input field of singleton. 
2) single-to-multiple: a singleton data is connected to an input field of vector. 
3) multiple-to-single: a vector data is connected to an input field of singleton. 
4) multiple-to-multiple: a vector data is connected to an input field of vector. 

 
 

Algorithm-2 (Determine level of component and layer of field): 
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is 

the layer of f; 
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where 

level(C) is the level of C; 
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer 

(fc2), ..., layer (fch)].

 

4.3. Forward Inference with Partial Feedback 
It is always desired to get a “better” solution when knowledge-based processing involved in 
an intelligent component can provide multiple candidates of solution for output. In order to 
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with 
partial feedback. When a component receives inputs, it executes and generates the result as 
output. As a typical scenario, a component generates inference result and passes the result 
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result 
when the previously submitted result is found unsatisfactory. The rerun mechanism 
provides a possible way to extend the forward inference mechanism in KBS. Final result will 
only be generated when the inference is successful.  
The inference in KBS constructed by KWS is basically a forward inference. As the simple 
case when there is no feedback considered, the inference flow starts from layer-1 receiving 
input data directly from application, goes up for the level-1 components to execute and 
provide result as layer-2, and then further goes up for the level-2 components to execute, …, 
finally has the last level components execute to provide result as the last layer, which 
represents the inference result. 
For a more general case when there is partial feedback introduced, if a component of level-k 
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a 
Rerun signal to the corresponding child component, and the current execution will be pulled 
back down to the level of the child component accordingly. When there are several 
components send Rerun signal to their child components, the current execution will be set as 
the level that is the lowest among the levels of components that received Rerun signal. 
Considering again the example given in Fig. 16, if component C sent a Rerun signal to 
component B, then the current execution will be pulled back to level-1 for B to execute its 
function again to generate next possible results. With a similar spirit, if component E sent a 
Rerun signal to component B, then the current execution will also be pulled back to level-1. 
It is important to notice that there are other two components C and D at a higher level than 
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen 
temporarily to ensure the data consistency. 

 
4.3.1 States of Component 
In order to indicate the execution status of a component, we introduce state of component. The 
transition between states is shown in Fig.  17 and the explanation is listed in Table 4. 
 

 
Fig. 17. The states of a component 
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State Explanation 
Run The component will execute its function, if successful; the results will be sent to its 

parent, if unsuccessful, the component will send a rerun signal to its child components. 
Rerun The component will execute its rerun function, trying to generate next possible results. If 

successful, the results will be sent to its parent, if unsuccessful, the component will send 
a rerun signal to its child components. 

Finish The run or rerun of component is successful. 
Table 4. The explanation of component states 
 
The state of an output field as same as the corresponding component which sends result to 
the field, the explanation of field states is listed in Table 5. 
 

State Explanation 
Run Representing a field “waiting for obtaining result”. 

Rerun Representing an output field “waiting for obtaining new result of rerun”. 
Finish Representing a field “finished obtaining result”. 

Table 5. The explanation of field states 
 
Example 6: Consider a scenario of execution on the inference structure given in Fig. .  

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from 
layer-1, and component A and B executed and provided result as layer-2, finally, component 
A and B updated their state to be “Finish”, and the current execution is updated to be at 
level-2. 

 
Time-2: The current execution is at level-2. Assume that the result from component B is 

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B 
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is 
pulled back down to level-1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R – Run; RR – Rerun; F – Finish 
Table 7. An example of inference flow 

 
Time-3: Component B executed and provided next possible results as layer-2. 

 
Time 

Level Component 
A B C D E 

1 1 R R R R R 
2 2 F F R R R 
2 Assume that, C sent rerun signal to B 
3 1 F RR R R R 
3 Assume that, B generate next possible result 
4 2 F F R R R 
5 3 F F F R R 
6 4  F F F F R 
6 Assume that, E sent rerun signal to B, C, D 
7 1 F RR RR RR R 
7 Assume that, B generate next possible result 
8 2 F F R RR R 
9 3 F F F R R 
10 4  F F F F R 
11 5 F F F F F 
11 The final result is in F7 

 

Time-4, Time-5: Continued the inference in the same manner. 
Time-6, Time-7: The situation is similar as Time-3. 
Time-8, Time-9, Time-10, Time-11: Continued the inference. 
Finally, the final result is in F7 at layer-5. 
Table 7  lists out the state change of components.  

 
4.3.2 Feedback Handling 
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The 
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based 
processing. When the inference engine calling execution(Cr), it passes the control to the 
component Cr and waits for the return of execution result. When a feedback of reasoning is 
considered, necessary interruption should be introduced to adjust the execution sequence. 
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to 
monitor feedback handling. 
Considering an inference carried out in a KBS constructed by KWS, when an intelligent 
component failed to work out a solution as its output with its local knowledge source, an 
effort is expected to “bring back” the process to those field(s) or component(s) that provided 
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge 
hierarchy. This is achieved by the Rerun control of the KWS inference engine. 
A component under Rerun state means it is not successful in the previous run of inference 
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by 
asking new input from child component(s), according to the type of protocol between an 
input field of component Cr currently under Rerun and the output field of its corresponding 
child component Cc. The main algorithm is given in Algorithm-3 with further 
implementation details omitted. 

Algorithm-3 (Control of execution, with k ≥ 2 components): 
1)    Get input data for all the layer-1 fields, and 

set them as of Finish; 
Set all other components and fields as of Run; 

2)    While (not all the components are of Finish) 
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun 

Then set currentFrozen : = minjlevel(Cj) 
Else 

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)]; 
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list 

following nondecreasing order of level: 
2-2-1) If Cr is of Run and  

level(Cr) < currentFrozen and 
all of its input field(s) are of Finish 

Then If execution (Cr) /* successful */ 
Then set Cr and its output field as of Finish; 
Else set Cr and its output field as of Rerun; 

2-2-2) Else If Cr is of Rerun and  
level(Cr) ≤ currentFrozen and 
all of its input field(s) are of Finish 

Then call PartialRerun(Cr). 
/* else next component */ 

/* end of while */ 
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State Explanation 
Run The component will execute its function, if successful; the results will be sent to its 

parent, if unsuccessful, the component will send a rerun signal to its child components. 
Rerun The component will execute its rerun function, trying to generate next possible results. If 

successful, the results will be sent to its parent, if unsuccessful, the component will send 
a rerun signal to its child components. 

Finish The run or rerun of component is successful. 
Table 4. The explanation of component states 
 
The state of an output field as same as the corresponding component which sends result to 
the field, the explanation of field states is listed in Table 5. 
 

State Explanation 
Run Representing a field “waiting for obtaining result”. 

Rerun Representing an output field “waiting for obtaining new result of rerun”. 
Finish Representing a field “finished obtaining result”. 

Table 5. The explanation of field states 
 
Example 6: Consider a scenario of execution on the inference structure given in Fig. .  

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from 
layer-1, and component A and B executed and provided result as layer-2, finally, component 
A and B updated their state to be “Finish”, and the current execution is updated to be at 
level-2. 

 
Time-2: The current execution is at level-2. Assume that the result from component B is 

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B 
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is 
pulled back down to level-1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R – Run; RR – Rerun; F – Finish 
Table 7. An example of inference flow 

 
Time-3: Component B executed and provided next possible results as layer-2. 

 
Time 

Level Component 
A B C D E 

1 1 R R R R R 
2 2 F F R R R 
2 Assume that, C sent rerun signal to B 
3 1 F RR R R R 
3 Assume that, B generate next possible result 
4 2 F F R R R 
5 3 F F F R R 
6 4  F F F F R 
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7 1 F RR RR RR R 
7 Assume that, B generate next possible result 
8 2 F F R RR R 
9 3 F F F R R 
10 4  F F F F R 
11 5 F F F F F 
11 The final result is in F7 

 

Time-4, Time-5: Continued the inference in the same manner. 
Time-6, Time-7: The situation is similar as Time-3. 
Time-8, Time-9, Time-10, Time-11: Continued the inference. 
Finally, the final result is in F7 at layer-5. 
Table 7  lists out the state change of components.  

 
4.3.2 Feedback Handling 
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The 
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based 
processing. When the inference engine calling execution(Cr), it passes the control to the 
component Cr and waits for the return of execution result. When a feedback of reasoning is 
considered, necessary interruption should be introduced to adjust the execution sequence. 
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to 
monitor feedback handling. 
Considering an inference carried out in a KBS constructed by KWS, when an intelligent 
component failed to work out a solution as its output with its local knowledge source, an 
effort is expected to “bring back” the process to those field(s) or component(s) that provided 
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge 
hierarchy. This is achieved by the Rerun control of the KWS inference engine. 
A component under Rerun state means it is not successful in the previous run of inference 
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by 
asking new input from child component(s), according to the type of protocol between an 
input field of component Cr currently under Rerun and the output field of its corresponding 
child component Cc. The main algorithm is given in Algorithm-3 with further 
implementation details omitted. 

Algorithm-3 (Control of execution, with k ≥ 2 components): 
1)    Get input data for all the layer-1 fields, and 

set them as of Finish; 
Set all other components and fields as of Run; 

2)    While (not all the components are of Finish) 
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun 

Then set currentFrozen : = minjlevel(Cj) 
Else 

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)]; 
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list 

following nondecreasing order of level: 
2-2-1) If Cr is of Run and  

level(Cr) < currentFrozen and 
all of its input field(s) are of Finish 

Then If execution (Cr) /* successful */ 
Then set Cr and its output field as of Finish; 
Else set Cr and its output field as of Rerun; 

2-2-2) Else If Cr is of Rerun and  
level(Cr) ≤ currentFrozen and 
all of its input field(s) are of Finish 

Then call PartialRerun(Cr). 
/* else next component */ 

/* end of while */ 
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When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible 
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the 
component to provide next new result (if any) with the same previous input data. The KWS 
inference engine tries to get new input data for the component Cr currently under Rerun, 
through either getNext() or reExecution(). When the effort of getting new input data from its 
child component Cc is successful either through getNext() or reExecution(), all the ancestor 
component(s) of Cc as well as their output fields will be updated to Run state by calling 
setRunAncestor() to clean up the result of previous run. As long as one of the child 
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it 
will remain as of Rerun and all its child components as well as their output fields will be set 
as of Rerun. 
In case that a single child component is supporting multiple parent components, a data 
inconsistency should be avoided when partial feedback and rerun are considered. This 
consistency is guaranteed by indicating the current frozen area. A component Cc being 
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’ 
execution to other related components. A ‘frozen’ execution affects two groups of 
components: (a) all components of Run state at a level equal to or higher than currentFrozen; 
(b) all components of Rerun state at a level higher than currentFrozen. 
 

 

Algorithm-4 (Partial Rerun from Cr): 
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 

If it is the output field of some child component Cc 
Then Check the protocol connection from Cc to Cr: 

Case: multiple-to-single 
If getNext(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

Else If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 
/* end of case multiple-to-single */ 

Case: single-to-single: 
Case: single-to-multiple: 
Case: multiple-to-multiple: 

If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

/* check next input field of Cr */ 
/* end of 1st for */ 

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 
If it is a direct input from application 
Then stop processing and report failure 
Else /* it is the output field of some child component Cc */ 

set Cc and its output field as of Rerun; 
/* end of 2nd for */ 

 

5. Conclusions 
 
We have introduced the KWS as a framework of development tool for developers to model 
and develop their customized KBS, provided the processing flow of KWS in constructing a 
KBS, and discussed the major sub-systems of KWS, including KWS inference engine, 
intelligent editor, KDL processor, and installer. 
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at 
two levels simultaneously: the content level of inference that relies only on the knowledge 
sources stored “locally” in individual intelligent components, and the truth (confidence) 
level of inference that contributes to the confidence flow throughout the entire KBS. We 
have discussed the mechanism of TVFI as well as its implementation. The interval-valued 
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in 
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy 
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties 
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types 
of intelligent component and corresponding interpretability has also been discussed. KWS 
inference engine has been explained in detail with the control algorithms of execution order 
of components for a forward inference with partial feedback, the management of protocols, 
and the handling of imprecision with TVFI and IVC.  
Further effort will be put in handling knowledge imprecision with different types of 
intelligent processing and their integration in hybrid intelligent systems. 
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When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible 
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the 
component to provide next new result (if any) with the same previous input data. The KWS 
inference engine tries to get new input data for the component Cr currently under Rerun, 
through either getNext() or reExecution(). When the effort of getting new input data from its 
child component Cc is successful either through getNext() or reExecution(), all the ancestor 
component(s) of Cc as well as their output fields will be updated to Run state by calling 
setRunAncestor() to clean up the result of previous run. As long as one of the child 
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it 
will remain as of Rerun and all its child components as well as their output fields will be set 
as of Rerun. 
In case that a single child component is supporting multiple parent components, a data 
inconsistency should be avoided when partial feedback and rerun are considered. This 
consistency is guaranteed by indicating the current frozen area. A component Cc being 
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’ 
execution to other related components. A ‘frozen’ execution affects two groups of 
components: (a) all components of Run state at a level equal to or higher than currentFrozen; 
(b) all components of Rerun state at a level higher than currentFrozen. 
 

 

Algorithm-4 (Partial Rerun from Cr): 
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 

If it is the output field of some child component Cc 
Then Check the protocol connection from Cc to Cr: 

Case: multiple-to-single 
If getNext(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

Else If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 
/* end of case multiple-to-single */ 

Case: single-to-single: 
Case: single-to-multiple: 
Case: multiple-to-multiple: 

If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

/* check next input field of Cr */ 
/* end of 1st for */ 

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 
If it is a direct input from application 
Then stop processing and report failure 
Else /* it is the output field of some child component Cc */ 

set Cc and its output field as of Rerun; 
/* end of 2nd for */ 

 

5. Conclusions 
 
We have introduced the KWS as a framework of development tool for developers to model 
and develop their customized KBS, provided the processing flow of KWS in constructing a 
KBS, and discussed the major sub-systems of KWS, including KWS inference engine, 
intelligent editor, KDL processor, and installer. 
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at 
two levels simultaneously: the content level of inference that relies only on the knowledge 
sources stored “locally” in individual intelligent components, and the truth (confidence) 
level of inference that contributes to the confidence flow throughout the entire KBS. We 
have discussed the mechanism of TVFI as well as its implementation. The interval-valued 
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in 
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy 
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties 
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types 
of intelligent component and corresponding interpretability has also been discussed. KWS 
inference engine has been explained in detail with the control algorithms of execution order 
of components for a forward inference with partial feedback, the management of protocols, 
and the handling of imprecision with TVFI and IVC.  
Further effort will be put in handling knowledge imprecision with different types of 
intelligent processing and their integration in hybrid intelligent systems. 
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1. Introduction     
 

In general, most complex systems, which are constructed by collecting more than one part to 
perform either single or multiple functions, are usually repaired rather than replaced after 
failures, since such systems can be restored to fully implement the required functions by 
methods other than replacing the entire system (Ascher & Feingold, 1984). However, the 
successive times between failures are not necessarily identically distributed, as in renewal 
processes. More generally, they can become smaller (an indication of deterioration), or 
conversely larger and larger (an indication of reliability growth) (Barlow & Proschan, 1965). 
If deterioration is detected, then the decision of when to overhaul or discard the system, 
given the costs of repairs and failures, is of fundamental importance.  
At the time of the decision, the degree of future deterioration, which is likely to be uncertain, 
is of primary interest for the decision maker. Decision analysis seems to be able to provide 
methods to deal with such uncertain situation. However, the decision structure is usually 
formulated in such a way as to imposingly quantify particular qualitative characteristics on 
human being as decision rules (Freeling, 1984). The most important of these characteristics is 
that of human ability to precisely specify numerical values of ends and means in a decision 
process. These non-fuzzy decision rules are useful; however, they are limited in their 
applicability to real world situations where nearly all real human decision problems are 
imprecise, ill-definedness and vagueness (Dompere, 1982). In such situations, decision-
making depends on numerous factors which limit human ability and increase difficulties to 
deal with (Asai & Okuda, 1975). Therefore, the use of fuzzy method may be very helpful in 
solving the decision making problems of deteriorating repairable systems (Bellman & 
Zadeh, 1970).  In section 2, describes some related researches about modeling deteriorating 
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issue. In addition, the nonhomogeneous Poisson process (NHPP) was introduced. In section 
3, delineates the implementation procedure for fuzzy Bayesian decision process. For the 
sake of information value analysis, we will discuss Bayesian decision process when the 
collected information is assumed to be fuzzy. Section 4, we will describes some fuzzy 
aggregation operations researches method and process. Further, section 5 a case study to 
illustrate the use of the models developed in the previous sections. Finally, section 6 
discusses the work items and contributions of this study. 

 
2. Deteriorating Repairable Systems 
 

In order to model deterioration in repairable systems, the Non-Homogeneous Poisson 
Process (NHPP) was introduced since it seems more plausible for systems consisting of 
many components (Härtler, 1989). The system failure process is time-dependent and its 
intensity function of the failure process is usually assumed to be of the form    xhx ;0   , 

where 0 is the scale factor,  is the deteriorating rate, x  is the elapsed time, and h(.) can be 
any function that reflects the deteriorating process. Suppose we have a system whose failure 
process is given by a non-homogeneous Poisson process and with a power law intensity 
function of the form (Ascher & Feingold, 1984): 
 

1
0)(   xx , 0> 0, > 0                                                      (1) 

 
The likelihood function of the first N=n failure times for the case of time-truncated data is 
given by 
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Huang and Bier (1998) proposed a natural conjugate prior distribution for the power law 
failure model, which is given by 
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Comparing with other approaches, this natural conjugate prior distribution has many 
desirable properties, which are summarized as follows: 

 
(1) The marginal distribution of  is a gamma distribution with parameters m and , 

expectation  /m , and coefficient of variation CV m/1 . 
(2)  The conditional distribution of 0 given  is a gamma distribution with parameters m 

and cym. 
(3)  The expectation of 0 is given by 0
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These properties provide guidance on how to choose the parameters , m, ym and c to 
achieve joint distributions with the desired prior moments. For example, m can be chosen to 
give the desired value of CV,  can be selected to give the desired value for , ym can be 
selected to give the desired value for CV0

 and c can be selected to give the desired value for 
0

. 

 
3. Fuzzy Bayesian Decision Process 
 

Generally, the information is expressed by means of numerical values in a quantitative 
setting (Crow, 1974). However, in a qualitative setting, which is filled with vague or 
imprecise knowledge, the information cannot be estimated with an exact numerical value 
(Herrera & Herrera, 2000). In such case, a more realistic approach may be used for linguistic 
assessments instead of numerical values, that is, to presume that the variables involved in 
the problem are assessed by means of linguistic terms (Hisdal, 1984; Tong & Bonissone, 
1984). This approach is appropriate since it allows a representation of information in a more 
realistic and adequate form when precision is not achievable. 
In real Bayesian decision problems there are two different types of vagueness: states and 
information (Fruhwirth-Schnatter, 1993). In this section we will discuss decision models for 
the cases in which only the states are fuzzified and both the states and additional 
information are fuzzified (Roubens, 1997; Stephen & Donnell, 1979). Finally, we will also 
present the decision flowchart and the decision analysis process. 
As mentioned in the previous section, Huang and Bier (1998) developed the joint natural 
conjugate prior distributions for 0 and . This proposed conjugate prior distribution 
provides guidance on how to choose the parameters , m, ym and c by collecting the experts’ 
knowledge and observed data about the prior moments (i.e., , CV, 0

, CV0
). In other 

words, in order to apply the joint natural conjugate prior distribution into the decision 
process, the experts need to specify a specific value for each of these four moments, 
respectively. However, this is not necessarily realistic for real world cases, since it is usually 
a tough task for the experts to specify a value to a prior moment with sufficient confidence. 
Instead, the experts often think of a prior moment as a fuzzy number, that is, a range of 
numbers and each number within the range has a different membership value. Furthermore, 
since the prior moments are not exactly provided by the experts, the parameters (i.e., , m, c, 
and ym) are therefore formed as the functions of these fuzzy numbers. From the properties of 
the joint natural conjugate prior in the previous section, we can have (Huang & Chang, 
2004) 
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issue. In addition, the nonhomogeneous Poisson process (NHPP) was introduced. In section 
3, delineates the implementation procedure for fuzzy Bayesian decision process. For the 
sake of information value analysis, we will discuss Bayesian decision process when the 
collected information is assumed to be fuzzy. Section 4, we will describes some fuzzy 
aggregation operations researches method and process. Further, section 5 a case study to 
illustrate the use of the models developed in the previous sections. Finally, section 6 
discusses the work items and contributions of this study. 

 
2. Deteriorating Repairable Systems 
 

In order to model deterioration in repairable systems, the Non-Homogeneous Poisson 
Process (NHPP) was introduced since it seems more plausible for systems consisting of 
many components (Härtler, 1989). The system failure process is time-dependent and its 
intensity function of the failure process is usually assumed to be of the form    xhx ;0   , 

where 0 is the scale factor,  is the deteriorating rate, x  is the elapsed time, and h(.) can be 
any function that reflects the deteriorating process. Suppose we have a system whose failure 
process is given by a non-homogeneous Poisson process and with a power law intensity 
function of the form (Ascher & Feingold, 1984): 
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The likelihood function of the first N=n failure times for the case of time-truncated data is 
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desirable properties, which are summarized as follows: 
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Generally, the information is expressed by means of numerical values in a quantitative 
setting (Crow, 1974). However, in a qualitative setting, which is filled with vague or 
imprecise knowledge, the information cannot be estimated with an exact numerical value 
(Herrera & Herrera, 2000). In such case, a more realistic approach may be used for linguistic 
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present the decision flowchart and the decision analysis process. 
As mentioned in the previous section, Huang and Bier (1998) developed the joint natural 
conjugate prior distributions for 0 and . This proposed conjugate prior distribution 
provides guidance on how to choose the parameters , m, ym and c by collecting the experts’ 
knowledge and observed data about the prior moments (i.e., , CV, 0

, CV0
). In other 

words, in order to apply the joint natural conjugate prior distribution into the decision 
process, the experts need to specify a specific value for each of these four moments, 
respectively. However, this is not necessarily realistic for real world cases, since it is usually 
a tough task for the experts to specify a value to a prior moment with sufficient confidence. 
Instead, the experts often think of a prior moment as a fuzzy number, that is, a range of 
numbers and each number within the range has a different membership value. Furthermore, 
since the prior moments are not exactly provided by the experts, the parameters (i.e., , m, c, 
and ym) are therefore formed as the functions of these fuzzy numbers. From the properties of 
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Based on the above discussion and Equations (4) to (7), we start the discrimination problem 
with fuzzy states space F=(, CV, 0

, CV0
) and exact observation space X = {x} (Dompere, 

1982). Consider a sequence of observations x(n)=( nxxx ,...,, 21 ), therefore the fuzzy prior 
distribution of the fuzzy state Fj for the deteriorating repairable system is given by 
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numbers, respectively, and f(Fj) is the fuzzy integral over the fuzzy hyper space of four 
dimensions. Similar argument can be applied to the fuzzy posterior distribution derived 
from the fuzzy state Fj along with the additional exact data for the deteriorating repairable 
system, and which is given by 
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where ),,,( 21 nxxx   means we observe the additional exact data until the nth failures. 
Furthermore, in the part of observe additional fuzzy data, the fuzzy likelihood function of 
observing the nth failure times is given by  
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Note that K, K’and K’’ in Equations (8), (9) and (11) are normalizing factors. Figure 1 shows 
a fuzzy Bayesian analysis in deteriorating repairable systems with experts’ prior knowledge. 
The same decision elements proposed by Huang (2001) of a Bayesian decision analysis for a 
deteriorating repairable system are as follows: 

(a) Parameter space :{(0,)| 0>0}. 
(b) Action space A:{a1,a2}, where a1 is the status quo, and a2 is the risk reduction action. 
(c) Loss function L: a real function defined on A. If we decide to keep the system 

operating, then the loss we face is L(,a1); if we decide to take the risk reduction 
action, then the loss we face is L(,a2). 

(d) Sample space X: The additional information available to be collected (e.g., 
successive failure times). The cost of collecting this additional data or information 
should also be reflected in the decision process. 

We assume (i) that the status of system after a repair is essentially the same as it was 
immediately before failure occurred (as good as old); and (ii) that the repair times can be 
neglected. The following terminology will be used in the decision analysis process: 

CF: the cost of a failure if it occurs. 
CR: the cost of the proposed risk reduction action. 
CI: the cost of collecting additional information. 
: the reduction in failure rate that would result from the proposed risk reduction 

action (0<<1). 
T: the time horizon under consideration. 
t: the time at which the decision is being made. 
: the expected number of failures during the time period [t, T] under the status quo. 
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where ),,,( 21 nxxx   means we observe the additional exact data until the nth failures. 
Furthermore, in the part of observe additional fuzzy data, the fuzzy likelihood function of 
observing the nth failure times is given by  
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Note that K, K’and K’’ in Equations (8), (9) and (11) are normalizing factors. Figure 1 shows 
a fuzzy Bayesian analysis in deteriorating repairable systems with experts’ prior knowledge. 
The same decision elements proposed by Huang (2001) of a Bayesian decision analysis for a 
deteriorating repairable system are as follows: 

(a) Parameter space :{(0,)| 0>0}. 
(b) Action space A:{a1,a2}, where a1 is the status quo, and a2 is the risk reduction action. 
(c) Loss function L: a real function defined on A. If we decide to keep the system 

operating, then the loss we face is L(,a1); if we decide to take the risk reduction 
action, then the loss we face is L(,a2). 

(d) Sample space X: The additional information available to be collected (e.g., 
successive failure times). The cost of collecting this additional data or information 
should also be reflected in the decision process. 

We assume (i) that the status of system after a repair is essentially the same as it was 
immediately before failure occurred (as good as old); and (ii) that the repair times can be 
neglected. The following terminology will be used in the decision analysis process: 

CF: the cost of a failure if it occurs. 
CR: the cost of the proposed risk reduction action. 
CI: the cost of collecting additional information. 
: the reduction in failure rate that would result from the proposed risk reduction 

action (0<<1). 
T: the time horizon under consideration. 
t: the time at which the decision is being made. 
: the expected number of failures during the time period [t, T] under the status quo. 
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Fig. 1. Flowchart for Fuzzy Bayesian Decision Process 

 
Suppose that the repairable system has a planned lifetime (i.e., time horizon) T, and the 
decision of whether to maintain the status quo or perform some risk reduction action must 
be made at time t. The decision variable we are dealing with is then the expected number of 
failures during the time period [t, T]. Since the system failure times are assumed to be drawn 
from a non-homogeneous Poisson process with power law intensity function, the expected 
number of failures in [t, T] under the status quo is given by 
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Suppose that the risk reduction action will reduce the failure intensity by a fraction , where 

1<<0  . Then the expected number of failures in [t, T] if the risk reduction action is 
performed is given by 
 

 T
t ds)1)(s( =(1-)                                                  (13) 

 

On the basis of the assumptions given above, we therefore have a two-action problem with a 
linear loss function, where the loss for taking action a1 (i.e., continuing with the status quo) 
is CF and the loss for taking action a2 (i.e., undertaking the risk reduction action) is 

RF CC +)-1(  . The expected loss for the status quo is simply CFE{}, and the expected loss 
for the risk reduction action is 

RF CC +})E{ρ-1(  . Since the fuzzy prior and posterior density 
functions for  are available by using defuzzified techniques and bivariate transformation 
for Equations (8), (9) and (11), respectively, the prior and posterior mean values of  can be 
evaluated. Therefore, Fuzzy Bayesian decision analyses can be performed by comparing the 
prior and posterior mean values of  with the cutoff value C=CR/(CF). If the relevant 
mean is smaller than C, then we should keep the system operating as in the status quo; if 
not, then we should perform the risk reduction action. 

 
4. Fuzzy Aggregation Operation Methods 
 

Generally, changing one’s beliefs when new information becomes available is a common 
mode of human reasoning. It is observed in the deliberate gathering of pertinent evidence 
during industrial troubleshooting, or medical diagnosis and so on. In another word, if one 
can make independence assumptions, many of the problems disappear, and in fact, this is 
often the method of choice even when it is obviously incorrect. There are different 
methodologies for dealing with this problem, e.g., maximal entropy and Dempster-Shafer 
Theory (Oberkampf et al., 2004). However, it still left some the Challenge Problems to solve, 
these questions were (Ferson et al., 2004; Fetz & Oberguggenberger, 2004): (1) How should 
epistemic uncertainty about a quantity be represented? (2) How can epistemic and aleatory 
uncertainty about a quantity be combined and propagated in calculations? (3) How should 
multiple estimates of uncertain quantities be aggregated before calculation? (4) How should 
the technical issue of repeated uncertain parameters be handled in practical calculations? (5) 
How might various approaches be adapted for use in practical calculations based on 
sampling strategies?  
This section reviews the (1) to (3) of five technical issues addressed by the Challenge 
Problems that are commonly involved in computational problems involving epistemic 
uncertainty. In a sense, this is a problem of too much information because it means the 
analyst must decide how to combine this information before proceeding with the analysis. 
In point of problem, we will examine the fuzzy entropy aggregation operators in two ways: 
through the fuzziness of the prior moments 

00
,,,   CVCV  and through the fuzziness of 

failure data set. A fuzzy number is not a measurement. In other word, a fuzzy number is a 
subjective valuation assigned by one or more human operators. In addition, defuzzification 
methods have been widely studied for several years and were applied to fuzzy arithmetic 
(Kandel, 1986; Kim et al., 1998; Ma et al., 2002). The major idea behind these methods was to 
obtain a typical value from a given fuzzy set according to some specified characters, such as 
central gravity, median, etc. In other words, each defuzzification method provides a 
correspondence from the set of all fuzzy sets into the set of real numbers (Roychowdhury & 
Pedrycz, 2001). Therefore, in order to transfer the subjective valuation into real valuation, 
we have to use the fuzzy concept of entropy measure method (Chang, 2008). It should lend 
itself to probabilistic updating formulas by allowing heuristic estimation of the degree of 
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independence. After describing these formulae, one example illustrates how fuzzy entropy 
might be applied. 
 
4.1 Uncertainty measure of Entropy  
Entropy is a measure of the amount of uncertainty in the outcome of a random experiment, 
or equivalently, a measure of the information obtained when the outcome is observed. This 
concept has been defined in various ways (Shannon, 1948; Renyi, 1961; Kosko, 1986; Pal & 
Chakraborty, 1986) and generalized in different applied fields, such as communication 
theory, mathematics, statistical thermodynamics, and economics (Belahut, 1987; Cover & 
Thomas, 1992; Ching et al., 1995). Of these various definitions, Shannon contributed the 
broadest and the most fundamental definition of the entropy measure in information theory. 
In Shannon’s entropy, entropy can be considered as a measure of the uncertainty of a 
random variable x . Let x  be a discrete random variable with a finite alphabet set 
containing N symbols given by  110 ,...,, Nxxx . If an output 

jx  occurs with probability )( jxp , 

then the amount of information associated with the known occurrence of output 
jx  is 

defined as 
 

)(log)( 2 jj xpxI                                                          (14) 

 
That is, for a discrete source, the information generated in selecting symbol jx  is 

)(log 2 jxp  bits. On average, the symbol jx  will be selected )( jxpn   times in a total of N 

selections, so the average amount of information obtained from n source outputs is 
 

)(log)()(log)()(log)( 121121020  NN xpxpnxpxpnxpxpn           (15)   
 

Dividing (15) by n, we obtain the average amount of information per source output symbol. 
This is known as the average information, the uncertainty, or the entropy, and is defined: 
The entropy H(X) of a discrete random variable x is defined as (Shannon, 1948) 
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where 
jp  denotes )( jxp . 

Hence, entropy is a function of the distribution of X. Further, this amount of information is 
estimated by the average weighted information provided by the expected probabilities of 
occurrence of the events as follows (Kosko, 1986): 
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where
ip is the probability of occurrence of event i and n is the number of events.  

 

Equation (18) is also called Entropy as its form suggests, one can realize that when 
maximizing entropy, not only the probabilities of the events will affect the quantity of 
information, but also the number of events will cause certain impacts. Since these events will 
provide information, they are the factors concerning the information of the system and thus, 
their probabilities of occurrence are the weights of importance of these factors.  
Several important properties regarding this Entropy model (Kosko, 1990; Kosko, 1997) 
which will be quoted by as below: 
(1) The objective function is a continuous function of

nppp ,,2,1 ... . Therefore, small changes in

nppp ,,2,1 ... will causes small changes in 
nH .This means that information provided by 

factor i will be changed when the probability of occurrence of factor i changes. 
(2) 

nH  is a symmetric function of its arguments. Therefore, the amounts of information will 
not be changed by the different orders of factors. 

(3) )...()0...( ,,2,1,,,2,11 nnnn pppHpppH 
.Thus, the amount of information is not changed if 

an impossible outcome is added to the probability scheme. That is, if a factor i with 
probability of occurrence equal 0, it will not give any contribution to the expected 
information and thus it can be deleted. 

(4) 
nH  will be reach the maximum when nppp n /1...21  , and the maximum 

information by giving the outcomes equal probabilities of occurrence when the 
maximum uncertainty is faced. 

(5)  The maximum value of nH equals ln(n) . The maximum value of nH  increase as n 
increased. So, when we investigate more factors of a system, the expected information 
about the system will increase. 
In what follows, we will propose the fuzzy entropy measure which is an extension of 

Shannon’s definition. 

 
4.2 Fuzzy Entropy  
In general, the membership function of a fuzzy set is determined by the users subjectively, 
which means that the membership function specified for the same concept by different 
persons may vary considerably. The shapes of the membership functions always present the 
knowledge grade of the elements in the fuzzy sets for the users (Zadeh, 1983). In other 
words, every membership function also presents the fuzziness of the corresponding fuzzy 
set in the idea of users. Therefore, it is necessary for us to have some measurements to 
measure the fuzziness of fuzzy sets. According to Szmidt and Kacprzyk (2000), fuzziness, a 
feature of imperfect information, results from the lack of crisp distinction between the 
elements belonging and not belonging to a set (i.e. the boundaries of the set under 
consideration are not sharply defined). A measure of fuzziness often used and cited in the 
literature is entropy first mentioned in 1965 by Zadeh (1965). The name entropy was chosen 
due to an intrinsic similarity of equations to the ones in the Shannon entropy. However, the 
two functions measure fundamentally different types of uncertainty. Basically, the Shannon 
entropy measures the average uncertainty in bits associated with the prediction of outcomes 
in a random experiment. Until now, there are several typical methods to be used to measure 
the fuzziness of fuzzy sets. In 1972, De Luca and Termini (1972) introduced some 
requirements which capture human intuitive comprehension of the degree of fuzziness. 
Kaufmann (1975) proposed that the fuzziness of a fuzzy set can be measured through the 
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independence. After describing these formulae, one example illustrates how fuzzy entropy 
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set in the idea of users. Therefore, it is necessary for us to have some measurements to 
measure the fuzziness of fuzzy sets. According to Szmidt and Kacprzyk (2000), fuzziness, a 
feature of imperfect information, results from the lack of crisp distinction between the 
elements belonging and not belonging to a set (i.e. the boundaries of the set under 
consideration are not sharply defined). A measure of fuzziness often used and cited in the 
literature is entropy first mentioned in 1965 by Zadeh (1965). The name entropy was chosen 
due to an intrinsic similarity of equations to the ones in the Shannon entropy. However, the 
two functions measure fundamentally different types of uncertainty. Basically, the Shannon 
entropy measures the average uncertainty in bits associated with the prediction of outcomes 
in a random experiment. Until now, there are several typical methods to be used to measure 
the fuzziness of fuzzy sets. In 1972, De Luca and Termini (1972) introduced some 
requirements which capture human intuitive comprehension of the degree of fuzziness. 
Kaufmann (1975) proposed that the fuzziness of a fuzzy set can be measured through the 
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distance between the fuzzy set and its nearest non-fuzzy set. Another way given by Yager 
(1979) suggested the measure of fuzziness can be expressed by the distances between the 
fuzzy set and its complement. De Luca and Termini (1972) utilized the conception of the 
entropy to indicate the fuzziness of a fuzzy set. Kosko (1997) investigated the fuzzy entropy 
in relation to a measure of subsethood.  
In order to elicit expert’s knowledge, and advances in numerical methods and computation 
have made it possible to implement fuzzy Bayesian analysis in ways previously research 
(Chang & Cheng, 2007). The fuzzy mutual entropy and explores the information theoretic 
structure of fuzzy cubes was be applied (we will explore it more in detail at following 
context). The fuzzy mutual entropy of a fuzzy set F acts as a type of distance measure 
between F and its set complement cF . The logistic map equates the sum of a real vector’s n 
components with the mutual entropy of some fuzzy set F and its complement cF . This cube 
geometry motivates the ratio measure of fuzziness baFE /)(  (Kosko, 1986), where a is 
the distance ),(1

nearFF from F to the nearest vertex nearF and b is the distance ),(1
farFF  

from F to the farthest vertex farF . The fuzzy entropy theorem reduces this ratio of distances 

to a ratio of counts in Equation (19) and Figure 2 shows the fuzzy entropy theorem in the 
unit square. 
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Fig. 2.  Geometry of fuzzy entropy theorem (Data Source: Kosko, 1986) 
 
Fuzzy cubes map smooth onto extended real spaces of the same dimension and vice versa. 
The n2 infinite limits of extended real space n],[   map to the n2  binary corners of the 

fuzzy cube nI . The real origin 0 maps to the cube midpoint. Each real point x will mapping 
to a unique fuzzy set F as Figure 3 shows. 

 

 
Fig. 3.  Diffeomap from extended real space to fuzzy space (Data Source: Kosko, 1986) 

 
Fuzzy mutual entropy equals the negative of the divergence of Shannon entropy. 
Uncertainty descriptions define points in the fuzzy cube parameter space. Versions of both 
extended Shannon entropy and fuzzy mutual entropy define vector fields on the fuzzy cube. 
As to the methods of defuzzification, there have been widely studied for decades and 
effectively utilized to the applications of fuzzy arithmetic (Kandel, 1986; Kim et al., 1998; Ma 
et al., 2002). The foremost idea behind these methods was to obtain a typical value from a 
given fuzzy set according to some specified characters, such as central gravity, mean, or 
median, etc. In other words, each defuzzification method provides a correspondence from 
the set of all fuzzy sets into the set of real numbers (Roychowdhury & Pedrycz, 2001). 
Therefore, in order to transfer the subjective valuation into real valuation, we have planning 
to apply the intuitionistic fuzzy sets and discuss the extension of Luca–Termini Axioms for 
the measurement of entropy-based defuzzification method. The following will be explored 
both contents more in detail:   
First, a geometric interpretation of intuitionistic fuzzy sets and fuzzy sets is presented in 
Figure 4 which summarizes considerations presented in (Szmidt & Kacprzyk, 2000). 
Basically, an intuitionistic fuzzy set X is mapped into the triangle ABD in that each element 
of X corresponds to an element of ABD, as an example, a point 'x  ABD corresponding to 
'x X is marked. In Figure 4, this condition is fulfilled only on the segment AB. Segment 

AB may be therefore viewed to represent a fuzzy set. The orthogonal projection of the 
triangle ABD gives the representation of an intuitionistic fuzzy set on the plane. (The 
orthogonal projection transfers 'x ABD into ''x ABC.) The interior of the triangle ABC 
=ABD’ is the area where  >0. Segment AB represents a fuzzy set described by two 
parameters:   and v . The orthogonal projection of the segment AB on the axis   (the 
segment [0; 1] is only considered) gives the fuzzy set represented by one parameter   only. 

(The orthogonal projection transfers ''x ABC into '''x CA.) As it was shown in Szmidt and 
Kacprzyk (2000), distances between intuitionistic fuzzy sets should be calculated taking into 
account three parameters describing an intuitionistic fuzzy set. 
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Fig. 4.  A geometrical interpretation of an intuitionistic fuzzy set (Data Source: Szmidt & 
Kacprzyk, 2000) 
 
Second, in order to transfer the subjective valuation into real valuation, our proposed 
entropy-based defuzzification method is based on the Luca–Termini Axioms and Lee et al. 
(2001), and developed defined as follows:   
(1) Let  nrrrX ,...,, 21  be a universal set with elements ir  distributed in a pattern space, 

where ni ,...,3,12 . 
(2) Let ∼A be a fuzzy set defined on an interval of pattern space which contains k elements (k 

< n). The mapped membership degree of the element ir  with the fuzzy set ∼A is denoted 

by )(~ i
A
r . 

(3) Let mCCC ,...,, 21 represent m classes into which the n elements are divided. 
(4) Let )( nC rS

j
denote a set of elements of class j on the universal set X. It is a subset of the 

universal set X. 
(5) The match degree 

jD with the fuzzy set ∼A  for the elements of class j in an interval, where 

j = 1, 2, . . . , m, is defined as  
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(6) The fuzzy entropy )(
~
AFE

jC
 of the elements of class j in an interval is defined as  
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In Equation (21), the fuzzy entropy )(
~
AFE

jC
 is a non-probabilistic entropy and the match 

degree jD in fuzzy entropy is measured via the membership values of occurring elements.  
First of all, we will start our investigations with fuzzy states and consider the prior moments 

00
,,,   CVCV where be recorded with the interval [ 21,ii ] of successive failure data r  

)or,,,(
00   CVCVr  (i.e., about 0.3 within the interval [ 21, ii ] for prior moment, 

respectively), the pattern space shown in the top of the Figure 5 (Hoffman et al., 1996). 
Subsequently, let us consider the importance weights of the prior parameters are assessed in 
linguistic terms represented by fuzzy numbers, such as “ L ” ( Low), “M ” (Medium)
、“H ” (High) where provided by experts’ linguistic form, and the membership functions 
of the three linguistic weight terms with triangular membership function are shown the 
bottom of the Figure 5. In addition, the value of a membership function can be viewed as the 
degree to which a pattern belongs to a specified pattern space. Fuzzy entropy of the 
observed interval [ 21,ii ] has shows in the bottom of the Figure 5. 
In order to show the advanced method, let us consider about the both parts of (a) and (b) 
with the probability formula in the Figure 5, the probability of “star” is: 8.05/4)( starp  , 
the probability of “circle” is: 2.05/1)(1  starp . In such situations, decision making 
depends on numerous factors which limit human ability and increase difficulties to deal 
with. Since, the result of Shannon’s entropy is: 
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Fig. 5.  Two cases of pattern distribution with corresponding membership functions (The 
symbol of ★ and ○ stand for the degree of membership functions; 

1C ,
2C ,

3C  denote the 
center of three triangular fuzzy sets, respectively) 

 
As mentioned above, the match degree

jD  in fuzzy entropy is based on mapped 

membership values of elements. Assume we begin by assigning three triangular 
membership functions with overlapped regions in the pattern space of [0, 1], as shown in 
Figure 5. The value of a membership function can be viewed as the degree to which a 
pattern belongs to a specified pattern space. The fuzzy entropy of the interval [ 21,ii ] for the 
degree of membership functions as show follows: 

(1). From the corresponding membership function
~
L , the total membership degree of “★” is 

7.00022.038.0  . Total membership degree of “○” is 0.0.  
The match degree of “★” is 0.1
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(2). From the corresponding membership function
~
M , the total membership degree of “★” 

is 3.257.085.088.06.0  . Total membership degree of “○” is 0.56.  
The match degree of “★” is 80.0
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(3). From the corresponding membership function
~
H , the total membership degree of “★” is 

5.04.01.000  . Total membership degree of “○” is 0.4.  
The match degree of “★” is 56.0
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Further, we can obtain the whole fuzzy entropy via summation of all corresponding fuzzy 
entropies as follows:  
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From the above illustration, the entropy-based defuzzification method will be able to 
discriminate the actual distribution of patterns better. By employing membership functions 
for measure match degrees, the value of entropy not only considers the number of patterns 
but also takes the actual distribution of patterns into account. 
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5. Application 
 

In this section we will show the discrimination problems with both cases of fuzzy states and 
exact information and exact states and fuzzy information, which are studied from the 
viewpoint of fuzzy arithmetic measures. 

 
5.1 Fuzzy States and Exact Information 
Suppose that the states spaces of the four fuzzy moments and the linguistic importance 
weight of each value assigned by experts are assessed and shown in Table 1.  

 
The Prior Moments of  Interval Observations Linguistic Weight 

0
 =  7.0,4.0

0
 L[0.1,0.3,0.5] 

0
CV =  9.0,3.0

0
cv M[0.3,0.5,0.7] 

 =  8.0,6.0


 M[0.3,0.5,0.7] 

CV =  6.0,4.0


 cv H[0.5,0.7,0.9] 
Table 1. The fuzzy prior moments provided by experts 
 
Furthermore, by applying the fuzzy entropy method, the fuzzy number can be defuzzified 
into the crisp value. For example the defuzzified value of  9.0,3.0

0
cv  is attainable as shown 

in Figure 6.  
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5. Application 
 

In this section we will show the discrimination problems with both cases of fuzzy states and 
exact information and exact states and fuzzy information, which are studied from the 
viewpoint of fuzzy arithmetic measures. 

 
5.1 Fuzzy States and Exact Information 
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weight of each value assigned by experts are assessed and shown in Table 1.  
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Finally, Equations (8) and (9) can be used to study the prior and posterior decision for the 
decision maker when dealing with the decision problem for deteriorating repairable 
systems. 

 
5.2 Fuzzy States and Fuzzy Information 
When the states and the addition information are both fuzzy, besides the work for the fuzzy 
prior as described in the previous case, we have to also deal with the problem of 
defuzzifying the failure data as shown in Table 2.  

Failure Data Fuzzy interval ( Hour / 24) Linguistic Weight 
1989.07.06 ( 1ADD ) [0.33,0.50] L[0.1,0.3,0.5] 
1989.10.23 ( 2ADD ) [0.42,0.58] M[0.3,0.5,0.7] 
1990.01.12 ( 3ADD ) [0.58,0.66] M[0.3,0.5,0.7] 
1990.09.08 ( 4ADD ) [0.42,0.50] H[0.5,0.7,0.9] 
1990.11.14 ( 5ADD )  [0.54,0.63] H[0.5,0.7,0.9] 

Table 2. The fuzziness of the added failure data 
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Finally, Equations (8) and (9) can be used to study the prior and posterior decision for the 
decision maker when dealing with the decision problem for deteriorating repairable 
systems. 

 
5.2 Fuzzy States and Fuzzy Information 
When the states and the addition information are both fuzzy, besides the work for the fuzzy 
prior as described in the previous case, we have to also deal with the problem of 
defuzzifying the failure data as shown in Table 2.  

Failure Data Fuzzy interval ( Hour / 24) Linguistic Weight 
1989.07.06 ( 1ADD ) [0.33,0.50] L[0.1,0.3,0.5] 
1989.10.23 ( 2ADD ) [0.42,0.58] M[0.3,0.5,0.7] 
1990.01.12 ( 3ADD ) [0.58,0.66] M[0.3,0.5,0.7] 
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Table 2. The fuzziness of the added failure data 
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The fuzzy numbers of failure data can also be defuzzified into crisp values and form the 
likelihood function. Equations (8) and (11) can be used to study the prior and posterior 
decision for the decision maker when dealing with the decision problem for deteriorating 
repairable systems. The decision problems for both the previous two cases can be assessed; 
however, the computing problem in Huang (2001) for the posterior mean of the decision 
variable is also encountered. If the expected number of failures from the decision time until 
the system is discarded is used as the decision variable, the numerical integration is still 
needed for evaluating the values and therefore making the decision. 

 
6. Conclusion 
 

In this chapter, we have presented a method to solve the decision problem of deteriorating 
repairable systems and we also present an approach to illustrate the fuzzy entropy-based 
arithmetic approach for modeling experts’ epistemic uncertainty in deteriorating repairable 
systems. The decision process is useful in selecting the best alternative when the 
deteriorating repairable system associated with alternatives are known in terms of linguistic 
variables (Zadeh, 1975), in particular, when these linguistic variables can be modeled by 
fuzzy numbers. In real world situations, the deteriorating phenomena are usually expressed 
as some degrees of severity. In such case, the proposed decision process can provide more 
realistic solutions. In this chapter, we have assumed that the importance weights of different 
criteria are assessed in linguistic terms represented by triangular fuzzy numbers. However, 
there are still several limitations and further study may undergo by considering other kinds 
of fuzzy membership function, since it still leaves lots of space for extension. 
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however, the computing problem in Huang (2001) for the posterior mean of the decision 
variable is also encountered. If the expected number of failures from the decision time until 
the system is discarded is used as the decision variable, the numerical integration is still 
needed for evaluating the values and therefore making the decision. 

 
6. Conclusion 
 

In this chapter, we have presented a method to solve the decision problem of deteriorating 
repairable systems and we also present an approach to illustrate the fuzzy entropy-based 
arithmetic approach for modeling experts’ epistemic uncertainty in deteriorating repairable 
systems. The decision process is useful in selecting the best alternative when the 
deteriorating repairable system associated with alternatives are known in terms of linguistic 
variables (Zadeh, 1975), in particular, when these linguistic variables can be modeled by 
fuzzy numbers. In real world situations, the deteriorating phenomena are usually expressed 
as some degrees of severity. In such case, the proposed decision process can provide more 
realistic solutions. In this chapter, we have assumed that the importance weights of different 
criteria are assessed in linguistic terms represented by triangular fuzzy numbers. However, 
there are still several limitations and further study may undergo by considering other kinds 
of fuzzy membership function, since it still leaves lots of space for extension. 
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1. Introduction     
 

Flight delays occur at almost all the airports every year. At major hub airports, flight delays 
occur more frequently and cause more serious problems. The FAA, i.e. Federal Aviation 
Administration, divides the flight delays into two types. One is the so-called technique 
delay, which is mainly caused by the flight waiting for the resources of air flow control or 
the limit of flow management, and the other is the so-called effective arrival delay. 
According to some papers, there are five kinds of flight delays, i.e. the delay of flow 
operating, the delay of aircraft ground operating, the aircraft technique delay, the delay of 
flow control and the airport delay. There are many reasons of flight delays. Macroscopically, 
the main reason of flight delays is that the capacity of airspace and airports cannot meet the 
requirement of the increasing air traffic. Bad weather, mechanical problems of aircraft, the 
operation issues of airlines and unexpected problems caused by passengers may be the main 
reasons in microscopic scales. In recent years, most of the researchers agree with that the 
main reason of flight delays is the limit of the runway capacity. Therefore flight delays can 
be reduced by increasing the number of runways, taxiways and the air flow control devices 
and improving flight management, such as the process of air flow control, the sequence of 
the arrival and departure flights.  
Because of the serious consequences of flight delays, there has been a tremendous amount of 
researches on how to deal with the various problems caused by flight delays. However, very 
little research focuses on how to forecast flight delays. Since there are so many factors of the 
flight delays, it is very difficult to calculate the delays by the deduction. Any mistakes of the 
factors may lead the result invalid; in contrast, the prediction by statistical law may be more 
effective. From the view of statistics, the flights could be perceived as repeated experiments, 
although there may be a few differences between the environments of each experiment. 
Therefore, the delay time of the flight should satisfy some special probability distribution. 
The difference of the experiment environments is just the reason why the time taken by the 
flights is variable. The uncertainty of experiment environments would add the prediction 
difficulty of delay time. Conversely, assume that all the factors of two flights are same, i.e. 
the two experiments have been taken in the same environment. Then they must have same 
delay time, i.e. the results of the two experiments are same. The probability distribution 

13



Machine Learning240

could show the a priori probability of the delay time. As a prediction system, the posterior 
probability, i.e. the probability of the delay time in some special condition, may be more 
important than the a priori probability. Machine learning is usually used to calculate the 
posterior probability from the data. 
In this chapter, an example will be shown to introduce how to use machine learning 
methods to alarm large scale of flight delays, which is a very complex problem. This is a real 
application in a hub airport of China. We will use the symbols “Airport A” to denote this 
airport with omitting its real name. The concept of “flight delay” may be changed under 
different requirement. Thus, the background of the application will be introduced firstly in 
this chapter and the relative concepts, especially the application requirement, will be 
defined clearly. Besides, the data gotten from the practice, which is an important factor to 
use machine learning methods, will be depicted in this chapter. According to the data and 
the requirement, the process of learning could be discussed. To solve the problem of 
alarming flight delays, the delay levels, which are used to describe the serious degree of 
delays, are required. Therefore, there will be a section to show how to use the unsupervised 
learning method to calculate the delay levels. Depending on the defined levels, the 
supervised method could be used to predict the coming delays. Some classical methods, 
both supervised and unsupervised, will be tried in this chapter, although there will be only 
one method in the final application. After introducing these methods, how to choose the 
most suitable one will be discussed. At last, a conclusion of the whole chapter will be 
shown . 

 
2. Application Requirements and Data Preparing 
 

Flight is a civil aircraft which take a mission from a certain departure airport to the certain 
arrival airport in the certain time according to the flight schedule. There are two kinds of 
time to each flight in the schedule, i.e. the plan departure time and the plan arrival time. The 
flight departure or arrival at the time later than the plan departure or arrival time is called a 
departure delay flight or arrival delay flight respectively. Since the flight is influenced by 
multiple factors, the concepts of departure delay flight and arrival delay flight may be too 
strict. The constraint is usually relaxed in practical applications. In the Airport A, the flight 
which departs or arrives at the time later than the schedule time in 30 minutes is treated as a 
normal flight but not a delayed one. The concept “large scale of flight delays” means the 
number (or the ratio) of the delayed flights is more than a given threshold. To alarm large 
scale of flight delays is just to give a prediction, the main foundation of which is the recent 
status of the airport, before the delays.  
The main difference between engineering application and laboratory experiment is the data, 
which are always ready in the laboratory. Collecting enough data and converting them into 
right form is very important to the engineering. The statistics theory, which aims at the 
asymptotic theory when sample size is tend to infinity, is the basic theory of machine 
learning. However, the size of sample usually is finite, so that some learning methods 
perform well only in theory. To guarantee the application of the machine learning method 
effectively, we need discuss the form of the data which could be collected from the airport. 
The form of data restricts the method which could be used in the application. Conversely, 
the method itself could tell us what kind of data are required.  

Intuitively, finding the association event of flight delays may be a good way to do prediction. 
The alarm could be given when the association events happened. The recent researches 
show that there are five classes of factor which may lead flight delays, including: weather, 
the management of the airline company, the control of airports, the air traffic control and the 
factor of the passengers. However, it is not so easy to collecting the data of all these factors. 
For example, the factor of the passengers is really uncertainty. It is possible that some 
passenger, who had already passed the security checking, decided not to board in without 
any announcement. In this case, the staffs must find the passenger and confirm that he (or 
she) would not board in. The flight could not take off before the confirmation. Since this is 
just a stochastic event which may cause the flight delays, it is very difficult to monitor this 
factor. Therefore, the prediction from the factors may be invalidity. 
Actually, the so-called “association event” may not be the direct reason of delay, but a 
concept of statistics. An event is called an association event of the flight delays means that 
the flight is very likely to delay when this event occurs. In the language of the probability 
theory, the conditional probability of the association event to the flight delays is large 
enough. Thus, we need to find the association events of the flight delays firstly, and then to 
find the pattern of the association events and the flight delays. Obviously, only the events in 
the records of Airport A could be used to predict flight delays. Therefore, we will show the 
Attributes of the records of Airport A in the following (See Table 1) in order to discuss the 
association events. 
 
Attribute Explanation Type 
FID The ID of the flight Nominal 
AID The ID of the aircraft Nominal 

D/A Departure flight or arrival flight where the symbol “D” and “A” 
stands for departure flight and the arrival flight, respectively {“D”, “A”} 

D/I Domestic flight or International flight where the symbol “D” and 
“A” stands for Domestic flight or International flight, respectively {“D”, “I”} 

AT The type of the aircraft Nominal 
CT The code of the task such as normal flight, charter flight and so on Nominal 
TB Terminal building which will serves the flight Numeric 
AC The air company that the flight belongs to Nominal 
SD The time when the flight departs in the schedule Numeric 
PD The predicting time when the flight will depart Numeric 
RD The time when the flight departs Numeric 
TA The target airport of the flight Nominal 
SA The time when the flight arrives in the schedule Numeric 
PA The predicting time when the flight will arrive Numeric 
RA The time when the flight arrives Numeric 
BS The boarding status of the flight Nominal 
BG Which gate will be used to boarding to the flight Nominal 

Table 1. the Attributes of the records of Airport A 
 
Table 1 shows all attributes recorded by Airport A. In other words, all predictions must be 
done only on these attributes. However, there is very little correlation between the above 
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could show the a priori probability of the delay time. As a prediction system, the posterior 
probability, i.e. the probability of the delay time in some special condition, may be more 
important than the a priori probability. Machine learning is usually used to calculate the 
posterior probability from the data. 
In this chapter, an example will be shown to introduce how to use machine learning 
methods to alarm large scale of flight delays, which is a very complex problem. This is a real 
application in a hub airport of China. We will use the symbols “Airport A” to denote this 
airport with omitting its real name. The concept of “flight delay” may be changed under 
different requirement. Thus, the background of the application will be introduced firstly in 
this chapter and the relative concepts, especially the application requirement, will be 
defined clearly. Besides, the data gotten from the practice, which is an important factor to 
use machine learning methods, will be depicted in this chapter. According to the data and 
the requirement, the process of learning could be discussed. To solve the problem of 
alarming flight delays, the delay levels, which are used to describe the serious degree of 
delays, are required. Therefore, there will be a section to show how to use the unsupervised 
learning method to calculate the delay levels. Depending on the defined levels, the 
supervised method could be used to predict the coming delays. Some classical methods, 
both supervised and unsupervised, will be tried in this chapter, although there will be only 
one method in the final application. After introducing these methods, how to choose the 
most suitable one will be discussed. At last, a conclusion of the whole chapter will be 
shown . 

 
2. Application Requirements and Data Preparing 
 

Flight is a civil aircraft which take a mission from a certain departure airport to the certain 
arrival airport in the certain time according to the flight schedule. There are two kinds of 
time to each flight in the schedule, i.e. the plan departure time and the plan arrival time. The 
flight departure or arrival at the time later than the plan departure or arrival time is called a 
departure delay flight or arrival delay flight respectively. Since the flight is influenced by 
multiple factors, the concepts of departure delay flight and arrival delay flight may be too 
strict. The constraint is usually relaxed in practical applications. In the Airport A, the flight 
which departs or arrives at the time later than the schedule time in 30 minutes is treated as a 
normal flight but not a delayed one. The concept “large scale of flight delays” means the 
number (or the ratio) of the delayed flights is more than a given threshold. To alarm large 
scale of flight delays is just to give a prediction, the main foundation of which is the recent 
status of the airport, before the delays.  
The main difference between engineering application and laboratory experiment is the data, 
which are always ready in the laboratory. Collecting enough data and converting them into 
right form is very important to the engineering. The statistics theory, which aims at the 
asymptotic theory when sample size is tend to infinity, is the basic theory of machine 
learning. However, the size of sample usually is finite, so that some learning methods 
perform well only in theory. To guarantee the application of the machine learning method 
effectively, we need discuss the form of the data which could be collected from the airport. 
The form of data restricts the method which could be used in the application. Conversely, 
the method itself could tell us what kind of data are required.  

Intuitively, finding the association event of flight delays may be a good way to do prediction. 
The alarm could be given when the association events happened. The recent researches 
show that there are five classes of factor which may lead flight delays, including: weather, 
the management of the airline company, the control of airports, the air traffic control and the 
factor of the passengers. However, it is not so easy to collecting the data of all these factors. 
For example, the factor of the passengers is really uncertainty. It is possible that some 
passenger, who had already passed the security checking, decided not to board in without 
any announcement. In this case, the staffs must find the passenger and confirm that he (or 
she) would not board in. The flight could not take off before the confirmation. Since this is 
just a stochastic event which may cause the flight delays, it is very difficult to monitor this 
factor. Therefore, the prediction from the factors may be invalidity. 
Actually, the so-called “association event” may not be the direct reason of delay, but a 
concept of statistics. An event is called an association event of the flight delays means that 
the flight is very likely to delay when this event occurs. In the language of the probability 
theory, the conditional probability of the association event to the flight delays is large 
enough. Thus, we need to find the association events of the flight delays firstly, and then to 
find the pattern of the association events and the flight delays. Obviously, only the events in 
the records of Airport A could be used to predict flight delays. Therefore, we will show the 
Attributes of the records of Airport A in the following (See Table 1) in order to discuss the 
association events. 
 
Attribute Explanation Type 
FID The ID of the flight Nominal 
AID The ID of the aircraft Nominal 

D/A Departure flight or arrival flight where the symbol “D” and “A” 
stands for departure flight and the arrival flight, respectively {“D”, “A”} 

D/I Domestic flight or International flight where the symbol “D” and 
“A” stands for Domestic flight or International flight, respectively {“D”, “I”} 

AT The type of the aircraft Nominal 
CT The code of the task such as normal flight, charter flight and so on Nominal 
TB Terminal building which will serves the flight Numeric 
AC The air company that the flight belongs to Nominal 
SD The time when the flight departs in the schedule Numeric 
PD The predicting time when the flight will depart Numeric 
RD The time when the flight departs Numeric 
TA The target airport of the flight Nominal 
SA The time when the flight arrives in the schedule Numeric 
PA The predicting time when the flight will arrive Numeric 
RA The time when the flight arrives Numeric 
BS The boarding status of the flight Nominal 
BG Which gate will be used to boarding to the flight Nominal 

Table 1. the Attributes of the records of Airport A 
 
Table 1 shows all attributes recorded by Airport A. In other words, all predictions must be 
done only on these attributes. However, there is very little correlation between the above 
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attributes and the delays intuitively. Actually, the calculation of the data shows the same 
conclusion, i.e. none of the above attributes is the association event of flight delays. This 
may be a big problem. Without the association events, the prediction will miss the basis.  
The above case is very common in many applications. Data are not so prefect where we 
cannot find what we expected. In this case, we must rebuild the data set with the association 
attributes. Rebuilding data set does not mean recollecting data. What we need to do is just to 
get the statistical information, which is associated to the flight delay intuitively.  
One of the common methods is to build time associated attributes, i.e. the association of 
recent status and the past status. In most of systems, the recent status is an important factor 
of the future status. Since the computer could only process the discrete data, we assume that 
the monitoring system is discrete. For example, we can assume that the status is monitored 
every five minutes. Because the flight delay is mainly caused by the capacity of airspace and 
airports not large enough, only a few flights could be executed in five minutes. Thus, the 
recent delay flights in the waiting sequence may be also in the waiting sequence in the next 
five minutes. The number of delay flight in the next statistical period includes two parts: one 
is the recent delay flights and the other is the new arrival or departure delay flights. In other 
words, the recent status is associated with the future status. Furthermore, we can use the 
association to do prediction in order to alarm the flight delays. 
The severity of flight delays finds expression not only in the amount of delayed flights, but 
also in the delay hours and passenger numbers involved, etc. Since we are going to build a 
model to predict the future delays, we must try to find all association events as possible as 
we can. According to the recent researches, there five aspects of flight delays including the 
number of delayed flights, total delay hours, the number of passengers involved, the 
number of air companies involved, and the number of airports which the delays have 
spread to directly. We can get all the value of the above attributes by statistical method 
except the number of passengers involved. The data provided by Airport A does not contain 
the information of passengers. But we can get an estimate value by the number of seats of 
each type of aircraft and the average attendance rate, which could be found in the civil 
aviation handbooks. Table 2 shows some samples of the association attributes in the 
following. 
 
the number 
of delayed 
flights 

total 
delay 
hours 

the number of airports which the 
delays have spread to directly 

the number of 
air companies 
involved 

the number of 
passengers 
involved 

118 142 61 24 14997 
47 79 32 14 5904 
85 301 49 22 10318 
110 144 56 26 14160 
156 147 65 32 20819 
169 243 68 34 22411 
172 219 62 27 22951 
150 137 59 30 20074 
102 115 55 21 13588 
173 206 64 23 22140 
… … … … … 

Table 2. Samples of the Association Attributes to Flight Delays 

The data shown in Table 2 are statistical values of each day at a given time. Considering 
there are big differences between the ranges of each attribute shown in Table 2. The 
attributes with the big range may influence the prediction more than the one with small 
range, which is unfair intuitively. We will normalize the data in order to eliminate effects.  

 
3. Grading Flight Delays with Unsupervised Learning Methods 
 

According to the data shown in Table 2, our prediction should be aim at the delay levels of 
Airport A at a given time. The basis of the prediction is the value of the five attributes shown 
in Table 2. Thus, we must build a model to show the relationship of these five attributes and 
delay levels. However, there is no information about the delay levels. Therefore, we must 
calculate the delay levels at given time according to the value of the five attributes shown in 
Table 2. The prediction model could be built only after the levels have been ready.  
From the viewpoint of data, there should be some similarity among the data in same level. 
Assume that there is only one attribute (for example, the number of delayed flights) in Table 
2. Then the values of data in the same level must be very close to each other. Similar with 
this simple case, the data in the same level must be similar with each other in the case of 
more than one attributes. The similarity could be calculated by the sum of squares of the 
difference of each attribute, which denotes the Euclid’s distance, between two data. Thus, 
the level could be gotten by group the flight data with the similarity, which is just a process 
of clustering. Clustering is perceived as an unsupervised process since there are no 
predefined classes and no examples that would show what kind of desirable relations 
should be valid among the data.  
To simplify the problem, we will use k-means algorithm, which is very popular and easy to 
be implemented, to grade the data of flight delays. There are three steps of k-means 
algoithm. First of all, select k means of clusters randomly. Then put each data to the cluster 
whose mean is nearest to the data, i.e. the similarity measure value of the data and the 
cluster’s mean is bigger than the value of any other cluster's mean and the data. Then the 
algorithm recalculates the mean of each cluster. At last the algorithm output the clusters if 
they are not changed, otherwise it will return to the second step. The parameter k denotes 
the number of clusters, which means the number of levels of flight delays in this application. 
The recent subjective standard of flight delays in Airport A divides the flight delays into four 
levels, which is shown in Table 3. 
 
Levels Definition 
Blue Level there should be blue alarm if more than 40% of the departure flights will be 

delayed for the bad weather or the control of route 
Yellow Level there should be yellow alarm if the weather is so bad that more than 60% 

of the departure flights in the coming two hours will be delayed or more 
than 10 flights will be delayed for more than 4 hours. 

Orange Level there should be orange alarm if more than 80% of the departure flights in 
the coming two hours will be delayed for the bad weather. 

Red Level there should be red alarm if all of the departure flights in the coming two 
hours will be delayed for the bad weather. 

Table 3. Recent Standard of Flight Delays in Airport A 
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attributes and the delays intuitively. Actually, the calculation of the data shows the same 
conclusion, i.e. none of the above attributes is the association event of flight delays. This 
may be a big problem. Without the association events, the prediction will miss the basis.  
The above case is very common in many applications. Data are not so prefect where we 
cannot find what we expected. In this case, we must rebuild the data set with the association 
attributes. Rebuilding data set does not mean recollecting data. What we need to do is just to 
get the statistical information, which is associated to the flight delay intuitively.  
One of the common methods is to build time associated attributes, i.e. the association of 
recent status and the past status. In most of systems, the recent status is an important factor 
of the future status. Since the computer could only process the discrete data, we assume that 
the monitoring system is discrete. For example, we can assume that the status is monitored 
every five minutes. Because the flight delay is mainly caused by the capacity of airspace and 
airports not large enough, only a few flights could be executed in five minutes. Thus, the 
recent delay flights in the waiting sequence may be also in the waiting sequence in the next 
five minutes. The number of delay flight in the next statistical period includes two parts: one 
is the recent delay flights and the other is the new arrival or departure delay flights. In other 
words, the recent status is associated with the future status. Furthermore, we can use the 
association to do prediction in order to alarm the flight delays. 
The severity of flight delays finds expression not only in the amount of delayed flights, but 
also in the delay hours and passenger numbers involved, etc. Since we are going to build a 
model to predict the future delays, we must try to find all association events as possible as 
we can. According to the recent researches, there five aspects of flight delays including the 
number of delayed flights, total delay hours, the number of passengers involved, the 
number of air companies involved, and the number of airports which the delays have 
spread to directly. We can get all the value of the above attributes by statistical method 
except the number of passengers involved. The data provided by Airport A does not contain 
the information of passengers. But we can get an estimate value by the number of seats of 
each type of aircraft and the average attendance rate, which could be found in the civil 
aviation handbooks. Table 2 shows some samples of the association attributes in the 
following. 
 
the number 
of delayed 
flights 

total 
delay 
hours 

the number of airports which the 
delays have spread to directly 

the number of 
air companies 
involved 

the number of 
passengers 
involved 

118 142 61 24 14997 
47 79 32 14 5904 
85 301 49 22 10318 
110 144 56 26 14160 
156 147 65 32 20819 
169 243 68 34 22411 
172 219 62 27 22951 
150 137 59 30 20074 
102 115 55 21 13588 
173 206 64 23 22140 
… … … … … 

Table 2. Samples of the Association Attributes to Flight Delays 

The data shown in Table 2 are statistical values of each day at a given time. Considering 
there are big differences between the ranges of each attribute shown in Table 2. The 
attributes with the big range may influence the prediction more than the one with small 
range, which is unfair intuitively. We will normalize the data in order to eliminate effects.  

 
3. Grading Flight Delays with Unsupervised Learning Methods 
 

According to the data shown in Table 2, our prediction should be aim at the delay levels of 
Airport A at a given time. The basis of the prediction is the value of the five attributes shown 
in Table 2. Thus, we must build a model to show the relationship of these five attributes and 
delay levels. However, there is no information about the delay levels. Therefore, we must 
calculate the delay levels at given time according to the value of the five attributes shown in 
Table 2. The prediction model could be built only after the levels have been ready.  
From the viewpoint of data, there should be some similarity among the data in same level. 
Assume that there is only one attribute (for example, the number of delayed flights) in Table 
2. Then the values of data in the same level must be very close to each other. Similar with 
this simple case, the data in the same level must be similar with each other in the case of 
more than one attributes. The similarity could be calculated by the sum of squares of the 
difference of each attribute, which denotes the Euclid’s distance, between two data. Thus, 
the level could be gotten by group the flight data with the similarity, which is just a process 
of clustering. Clustering is perceived as an unsupervised process since there are no 
predefined classes and no examples that would show what kind of desirable relations 
should be valid among the data.  
To simplify the problem, we will use k-means algorithm, which is very popular and easy to 
be implemented, to grade the data of flight delays. There are three steps of k-means 
algoithm. First of all, select k means of clusters randomly. Then put each data to the cluster 
whose mean is nearest to the data, i.e. the similarity measure value of the data and the 
cluster’s mean is bigger than the value of any other cluster's mean and the data. Then the 
algorithm recalculates the mean of each cluster. At last the algorithm output the clusters if 
they are not changed, otherwise it will return to the second step. The parameter k denotes 
the number of clusters, which means the number of levels of flight delays in this application. 
The recent subjective standard of flight delays in Airport A divides the flight delays into four 
levels, which is shown in Table 3. 
 
Levels Definition 
Blue Level there should be blue alarm if more than 40% of the departure flights will be 

delayed for the bad weather or the control of route 
Yellow Level there should be yellow alarm if the weather is so bad that more than 60% 

of the departure flights in the coming two hours will be delayed or more 
than 10 flights will be delayed for more than 4 hours. 

Orange Level there should be orange alarm if more than 80% of the departure flights in 
the coming two hours will be delayed for the bad weather. 

Red Level there should be red alarm if all of the departure flights in the coming two 
hours will be delayed for the bad weather. 

Table 3. Recent Standard of Flight Delays in Airport A 
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The main factor of the levels shown in Table 3 is the weather, but there are only about 4.63% 
of delayed flights caused by the bad weather according to (Ma & Cui, 2004). Therefore, it is 
difficult to check the validity of this standard. Besides, there is no attribute about the 
weather in the data set provided by Airport A. Thus, we cannot mark the levels to the data. 
Although this subjective grading may not fit the data very well, it still provides some 
information about the level. After all, these levels are constituted by the the domain experts. 
There are four levels in Table 3 without the level of few flight delays. Thus, it may be five 
levels of the data, which is is an important information of the k-means algorithm. According 
to Table 3, the parameter of the k-means algorithm may be set as k=5 in this application. 
Certainly, this is just an assumption which needs to be checked in the experiment. 
Since there is no standard answer about what the clustering process learns, a measure index 
of clustering is required in order to make the clustering result fit the application and find the 
optimum parameters. We first introduce four clustering validity indexes, including Dunn’s 
index, Davies-Bouldin’s index, CS index and Lu’s index, and then try to find the optimum 
parameter k of k-means by these four indexes. 
Dunn’s index is defined as 
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If the data set contains compact and well-separated clusters, the distance between the 
clusters is expected to be large and the diameter of the clusters is expected to be small. 
The Davies-Bouldin’s  index is defined as 
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above definition that 
cnDB  is the average similarity between each cluster Ci, i=1, ..., nc and its 

most similar one. It is desirable for the clusters to have the minimum possible similarity to 
each other; therefore we seek clusterings that minimize DB. The 

cnDB  index exhibits no 
trends with respect to the number of clusters and thus we seek the minimum value of 

cnDB  
in its plot versus the number of clusters. 
The CS index is defined as 
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where xj and vi is the jth data and the center of the ith cluster, respecitvely. 
The Lu’s index is defined as 
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where   is a threshold of similarity. The Lu’s index is not with respect to the concept of 
“cluster center” so that it could be used in the case of non-spherical clusters. 
We will cluster the data by k-means algorithm with the parameter k varies from 3 to 10. The 
value of the above indexes on the clusters is shown in Table 4. 
 

Number of 
Clusters 

Dunn's 
Index 

Davies-
Bouldin’s 
Index 

CS Index Lu’s 
Index 

3 0.0417 0.7622 1.3653 0.1884 
4 0.0373 0.7944 1.3290 0.1719 
5 0.0454 0.8357 1.2638 0.1704 
6 0.0353 0.9170 1.4038 0.2006 
7 0.0372 0.9182 1.2662 0.2083 
8 0.0353 0.9435 1.3217 0.2318 
9 0.0376 1.0129 1.3776 0.2514 
10 0.0305 0.9918 1.3257 0.2261 
Optimal 
Number 

5 3 5 5 

Table 4. The Values of Indexes on Each Clustering 
 
Level the number of 

delayed flights
total delay 
hours

the number of 
airports which 
the delays have 
spread to 
directly

the number of 
air companies 
involved

the number of 
passengers 
involved

very low 
delays 0.1113±0.0576 0.0367±0.023 0.2094±0.0967 0.2084±0.0961 0.1170±0.0605 

low delays 0.2342±0.0508 0.0578±0.0185 0.3893±0.0574 0.4130±0.0898 0.2436±0.0531 
moderate 
delays 0.3820±0.0585 0.0885±0.0217 0.5333±0.0522 0.5579±0.0938 0.3991±0.0575 

significant 
delays 0.5615±0.0685 0.1539±0.0515 0.6784±0.0588 0.6778±0.0997 0.5774±0.0649 

excessive 
delays 0.8233±0.0934 0.3867±0.174 0.8299±0.0757 0.7859±0.1246 0.8276±0.0921 

Table 5. The Mean and Standard Deviation of Each Cluster 
 



Alarming Large Scale of Flight Delays: an Application of Machine Learning 245

The main factor of the levels shown in Table 3 is the weather, but there are only about 4.63% 
of delayed flights caused by the bad weather according to (Ma & Cui, 2004). Therefore, it is 
difficult to check the validity of this standard. Besides, there is no attribute about the 
weather in the data set provided by Airport A. Thus, we cannot mark the levels to the data. 
Although this subjective grading may not fit the data very well, it still provides some 
information about the level. After all, these levels are constituted by the the domain experts. 
There are four levels in Table 3 without the level of few flight delays. Thus, it may be five 
levels of the data, which is is an important information of the k-means algorithm. According 
to Table 3, the parameter of the k-means algorithm may be set as k=5 in this application. 
Certainly, this is just an assumption which needs to be checked in the experiment. 
Since there is no standard answer about what the clustering process learns, a measure index 
of clustering is required in order to make the clustering result fit the application and find the 
optimum parameters. We first introduce four clustering validity indexes, including Dunn’s 
index, Davies-Bouldin’s index, CS index and Lu’s index, and then try to find the optimum 
parameter k of k-means by these four indexes. 
Dunn’s index is defined as 
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If the data set contains compact and well-separated clusters, the distance between the 
clusters is expected to be large and the diameter of the clusters is expected to be small. 
The Davies-Bouldin’s  index is defined as 
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above definition that 
cnDB  is the average similarity between each cluster Ci, i=1, ..., nc and its 

most similar one. It is desirable for the clusters to have the minimum possible similarity to 
each other; therefore we seek clusterings that minimize DB. The 

cnDB  index exhibits no 
trends with respect to the number of clusters and thus we seek the minimum value of 

cnDB  
in its plot versus the number of clusters. 
The CS index is defined as 
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where xj and vi is the jth data and the center of the ith cluster, respecitvely. 
The Lu’s index is defined as 
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where   is a threshold of similarity. The Lu’s index is not with respect to the concept of 
“cluster center” so that it could be used in the case of non-spherical clusters. 
We will cluster the data by k-means algorithm with the parameter k varies from 3 to 10. The 
value of the above indexes on the clusters is shown in Table 4. 
 

Number of 
Clusters 

Dunn's 
Index 

Davies-
Bouldin’s 
Index 

CS Index Lu’s 
Index 

3 0.0417 0.7622 1.3653 0.1884 
4 0.0373 0.7944 1.3290 0.1719 
5 0.0454 0.8357 1.2638 0.1704 
6 0.0353 0.9170 1.4038 0.2006 
7 0.0372 0.9182 1.2662 0.2083 
8 0.0353 0.9435 1.3217 0.2318 
9 0.0376 1.0129 1.3776 0.2514 
10 0.0305 0.9918 1.3257 0.2261 
Optimal 
Number 

5 3 5 5 

Table 4. The Values of Indexes on Each Clustering 
 
Level the number of 

delayed flights
total delay 
hours

the number of 
airports which 
the delays have 
spread to 
directly

the number of 
air companies 
involved

the number of 
passengers 
involved

very low 
delays 0.1113±0.0576 0.0367±0.023 0.2094±0.0967 0.2084±0.0961 0.1170±0.0605 

low delays 0.2342±0.0508 0.0578±0.0185 0.3893±0.0574 0.4130±0.0898 0.2436±0.0531 
moderate 
delays 0.3820±0.0585 0.0885±0.0217 0.5333±0.0522 0.5579±0.0938 0.3991±0.0575 

significant 
delays 0.5615±0.0685 0.1539±0.0515 0.6784±0.0588 0.6778±0.0997 0.5774±0.0649 

excessive 
delays 0.8233±0.0934 0.3867±0.174 0.8299±0.0757 0.7859±0.1246 0.8276±0.0921 

Table 5. The Mean and Standard Deviation of Each Cluster 
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According Table 4, there should be five levels of flight delays, which is consistent with the 
conclusion of the domain experts. Intuitively, these five levels should be very low delays, 
low delays, moderate delays, significant delays, excessive delays, respectively. The mean 
and the standard deviation of each cluster is shown in Table 5.  
For each formula x±y in the grids of Table 5, x and y denotes the mean and standard 
deviation, respectively.  As a learning result from data, these levels may fit the data better 
than the recent subjective standard.  

 
4. Train the Supervised Learning Methods 
 

The unsupervised learning model builds the levels of the flight delays, which could act as 
the attribute “class” of the records. With this attribute, we can train the classification models 
as the alarmming model. Notice that it is not always validity to training classification 
models with the attribute built by clustering. The clustering is a process to build the classes 
(clusters) by the given relation (similarity) of the data while the classification is to find the 
relation of the data by the given classes. Thus, the clustering and the classification are the 
inverse processes of each other in some sense. The relation found by the classification does 
just fit to the class. If the class is built by clustering, the one which relation fits to is just the 
relation on which the clustering is based. Then the relation learning by the classification on 
the same data set may be invalid. In the application of alarming large scales of flight delays, 
the supervised learning method is used to find the relationship between the recent status 
and the future delays, which is unknown before training. Therefore, the unsupervised 
method and the supervised method in this application are not on the same training data set. 
According to the theory of machine learning, the result of the learning method fits both the a 
priori knowledge and the data. Therefore, the a priori knowledge is an important factor of 
the effective of learning result. Usually, the a priori knowledge of the supervised learning is 
the structure of the model. Thus, we must choose a suitable model in order to meet with 
good results. The decision tree model, Bayesian learning model and the artificial neural 
networks model are the most common classification methods. We will try to build the 
alarming model based on these methods. Before the application, there is a brief introduction 
of these method in the following. 
The problem of constructing a decision tree can be expressed recursively. First, select an 
attribute to place at the root node and make one branch for each possible value. This splits 
up the example set into subsets, one for every value of the attribute. Now the process can be 
repeated recursively for each branch, using only those instances that actually reach the 
branch. If at any time all instances at a node have the same classification, stop developing 
that part of the tree. 
C4.5 builds decision trees from a set of training data, using the concept of information 
entropy. At each node of the tree, C4.5 chooses one attribute of the data that most effectively 
splits its set of samples into subsets enriched in one class or the other. Its criterion is the 
normalized information gain (difference in entropy) that results from choosing an attribute 
for splitting the data. The attribute with the highest normalized information gain is chosen 
to make the decision. The C4.5 algorithm then recurses on the smaller sublists. 
The following shows the main steps of C4.5. First of all, for each attribute a, find the 
normalized information gain from splitting on a. And then let a_best be the attribute with the 
highest normalized information gain. Create a decision node that splits on a_best. At last, 

recurse on the sublists obtained by splitting on a_best, and add those nodes as children of 
node. 
One highly practical Bayesian learning method is the naive Bayes learner, often called the 
naive Bayes classifier. The naive Bayes classifier applies to learning tasks where each 
instance x is described by a conjunction of attribute values and where the target function f(x) 
can take on any value from some finite set V. A set of training examples of the target 
function is provided, and a new instance is presented, described by the tuple of attribute 
values ( 1 2, ,..., na a a ). The learner is asked to predict the target value, or classification, for this 
new instance. 
The naive Bayes classifier is based on the simplifying assumption that the attribute values 
are conditionally independent given the target value. In other words, the assumption is that 
given the target value of the instance, the probability of observing the conjunction 

1 2, ,..., na a a  is just the product of the probabilities for the individual attributes. 
The study of artificial neural networks has been inspired in part by the observation that 
biological learning systems are built of very complex webs of interconnected neurons. In 
rough analogy, artificial neural networks are buit out of a densely interconnected set of 
simple units, where each unit takes a number of real-valued inputs (possibly the outputs of 
other units) and produces a single real-valued output (which may become the input to many 
other units) 
Backpropagation, or propagation of error, is a common method of teaching artificial neural 
networks how to perform a given task. It is a supervised learning method, and is an 
implementation of the Delta rule. It requires a teacher that knows, or can calculate, the 
desired output for any given input. It is most useful for feed-forward networks (networks 
that have no feedback, or simply, that have no connections that loop). The term is an 
abbreviation for "backwards propagation of errors".  
The backpropagation neural network works in the following steps. Present a training 
sample to the neural network. Compare the network's output to the desired output from 
that sample. Calculate the error in each output neuron. For each neuron, calculate what the 
output should have been, and a scaling factor, how much lower or higher the output must 
be adjusted to match the desired output. This is the local error. Adjust the weights of each 
neuron to lower the local error. Assign "blame" for the local error to neurons at the previous 
level, giving greater responsibility to neurons connected by stronger weights. Repeat from 
above step of calculating what the output should have been on the neurons at the previous 
level, using each one's "blame" as its error.  
Usually, the common method to choose models is to analyze the data, especially the 
intuitive meaning of the attributes. However, there are so few recent researches about the 
flight data that we cannot judge which model will be better before the experiments. The only 
way is to train the models and compare the statistical results of each model. The Kappa 
statistic is a common statistical measure of inter-rater agreement for qualitative (categorical) 
items. It is generally thought to be a more robust measure than simple percent agreement 
calculation since Kappa statistic takes into account the agreement occurring by chance. The 
Equation 6 shows the formal definition of Kappa statistic in the following. 
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According Table 4, there should be five levels of flight delays, which is consistent with the 
conclusion of the domain experts. Intuitively, these five levels should be very low delays, 
low delays, moderate delays, significant delays, excessive delays, respectively. The mean 
and the standard deviation of each cluster is shown in Table 5.  
For each formula x±y in the grids of Table 5, x and y denotes the mean and standard 
deviation, respectively.  As a learning result from data, these levels may fit the data better 
than the recent subjective standard.  

 
4. Train the Supervised Learning Methods 
 

The unsupervised learning model builds the levels of the flight delays, which could act as 
the attribute “class” of the records. With this attribute, we can train the classification models 
as the alarmming model. Notice that it is not always validity to training classification 
models with the attribute built by clustering. The clustering is a process to build the classes 
(clusters) by the given relation (similarity) of the data while the classification is to find the 
relation of the data by the given classes. Thus, the clustering and the classification are the 
inverse processes of each other in some sense. The relation found by the classification does 
just fit to the class. If the class is built by clustering, the one which relation fits to is just the 
relation on which the clustering is based. Then the relation learning by the classification on 
the same data set may be invalid. In the application of alarming large scales of flight delays, 
the supervised learning method is used to find the relationship between the recent status 
and the future delays, which is unknown before training. Therefore, the unsupervised 
method and the supervised method in this application are not on the same training data set. 
According to the theory of machine learning, the result of the learning method fits both the a 
priori knowledge and the data. Therefore, the a priori knowledge is an important factor of 
the effective of learning result. Usually, the a priori knowledge of the supervised learning is 
the structure of the model. Thus, we must choose a suitable model in order to meet with 
good results. The decision tree model, Bayesian learning model and the artificial neural 
networks model are the most common classification methods. We will try to build the 
alarming model based on these methods. Before the application, there is a brief introduction 
of these method in the following. 
The problem of constructing a decision tree can be expressed recursively. First, select an 
attribute to place at the root node and make one branch for each possible value. This splits 
up the example set into subsets, one for every value of the attribute. Now the process can be 
repeated recursively for each branch, using only those instances that actually reach the 
branch. If at any time all instances at a node have the same classification, stop developing 
that part of the tree. 
C4.5 builds decision trees from a set of training data, using the concept of information 
entropy. At each node of the tree, C4.5 chooses one attribute of the data that most effectively 
splits its set of samples into subsets enriched in one class or the other. Its criterion is the 
normalized information gain (difference in entropy) that results from choosing an attribute 
for splitting the data. The attribute with the highest normalized information gain is chosen 
to make the decision. The C4.5 algorithm then recurses on the smaller sublists. 
The following shows the main steps of C4.5. First of all, for each attribute a, find the 
normalized information gain from splitting on a. And then let a_best be the attribute with the 
highest normalized information gain. Create a decision node that splits on a_best. At last, 

recurse on the sublists obtained by splitting on a_best, and add those nodes as children of 
node. 
One highly practical Bayesian learning method is the naive Bayes learner, often called the 
naive Bayes classifier. The naive Bayes classifier applies to learning tasks where each 
instance x is described by a conjunction of attribute values and where the target function f(x) 
can take on any value from some finite set V. A set of training examples of the target 
function is provided, and a new instance is presented, described by the tuple of attribute 
values ( 1 2, ,..., na a a ). The learner is asked to predict the target value, or classification, for this 
new instance. 
The naive Bayes classifier is based on the simplifying assumption that the attribute values 
are conditionally independent given the target value. In other words, the assumption is that 
given the target value of the instance, the probability of observing the conjunction 

1 2, ,..., na a a  is just the product of the probabilities for the individual attributes. 
The study of artificial neural networks has been inspired in part by the observation that 
biological learning systems are built of very complex webs of interconnected neurons. In 
rough analogy, artificial neural networks are buit out of a densely interconnected set of 
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where  Pr a is the relative observed agreement among raters, and  Pr e  is the 
hypothetical probability of chance agreement, using the observed data to calculate the 
probabilities of each observer randomly saying each category. If the raters are in complete 
agreement then 1K  . If there is no agreement among the raters (other than what would be 
expected by chance) then 0K  . 
Besides, the mean absolute error, the root mean squared error, the relative absolute error 
and the root relative squared error are other common indexes to measure the learning result. 
These indexes could be easily found in the statistical books so that we do not show the 
formulas here.  
We will try to train the above three supervised learning models on the data with the classes 
built by the unsupervised method, and then choose the best one. The training data set is 
built based on the normalized data of each day after 8:00 in some year of Airport A. Table 6 
shows the statistical results of each model. 
 

Models 
Incorrectly 
Classified 
Instances 

Kappa 
statistic 

Mean 
absolute 
error 

Root 
mean 
squared 
error 

Relative 
absolute 
error 

Root 
relative 
squared 
error 

Naive 
Bayes 54.5205% 0.2967 0.2266 0.3966 75.0904% 102.1397% 

C4.5 
Decision 
Tree 

20.274% 0.7291 0.1212 0.2462 40.1601% 63.3979% 

BP 
Neural 
Network 

38.3562% 0.4771 0.2075 0.3214 68.7521% 82.7804% 

Table 6 Statistical Results of Supervised Learning Models 
 
As Table 6 shows, the C4.5 decision tree model is the best one according to the statistical 
values. Thus, we can use this model to predict the fight delays. It may be the final step of 
laboratory experiment that the model has been trained ready. However, this is an 
engineering application, but not a laboratory experiment. In the engineering application, the 
intuitive meaning of the model is required in order to check the validity by experiences. The 
decision tree is not intuitive enough to be read. A common way to solve this problem is to 
convert the decision tree to rules, which is very easy to read. And then the rules may be 
modified by the domain experts in the applications.  The finally model to alarm large scale 
of flight delays is built by these checked and modified rules.  
Since the alert of large scale of flight delay is a momentous decision, the alarming model 
must be controllable and explainable. Good statistical result is only a necessary condition. 
This is very important in the engineering applications, but usually not required in the 
laboratory. Compare with the Bayesian models and the artificial neural network models, the 
decision tree models could be explained more intuitively. Then the users could check 
whether it needs to be modified by their domain knowledge and experience. Thus, the 
model with clearly intuitive meaning is always chosen in the applications. 

 

5. Conclusion 
 

This chapter shows an example to use machine learning method in applications. Limited by 
the space of pages, some details have been skipped to get the main point. As a supplement, 
we will show some reference in which the details could be found. The flight delays will 
cause a series of serious consequences. However, it is very difficult to predict flight delays 
accurately. Some models have been presented to describe the flight delays, such as Milan 
Janic’s disruption model (Janic, 2005), Ning Xu’s Bayesian network model (Xu, 2007) and 
Zonglei Lu’s decision tree model (Lu et al, 2008a) and so on. However, there is no model 
could predict the flight delays accurately up to now. These models could give only some 
reference of the prediction.  
There are some machine learning methods mentioned in this chapter. The systematic 
introduction about these methods could be found in the classical machine learning books, 
such as (Mitchell, 1997) and (Witten & Frank, 2005). For more details, the k-means clustering 
algorithm is first mentioned in (Jain, 1967). The Dunn’s index, Davies-Bouldin’s index, CS 
index and Lu’s index has been introduced by (Dunn, 1974), (Davies & Bouldin, 1979), (Chou 
et al, 2004) and (Lu et al, 2008b), respectively. Some details about these clustering validity 
indexes could also be found in (Halkidi et al, 2002), a survey of clustering validity index.  
The C4.5 decision tree model, the naive Bayes model and the BP neural network model is 
mentioned in (Quinlan, 1993), (John & Langley, 1995), (Werbos, 1974), respectively.  
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1. Introduction     
 

Terrain topography carries information that is fundamental for geomorphic modeling and, 
ultimately, for understanding geologic processes responsible for land-surface form. 
Classification of terrain is tantamount to organizing the expressions (features) of terrain 
topography into landforms (classes) – patches of topography having similar characteristics 
and commonly recognizable semantic labels. Because of the spatial character of topographic 
data, such classification is referred to as geomorphic mapping. The result of classification of 
an entire landscape scene into a set of mutually exclusive and exhaustive landform classes is 
referred to as a geomorphic map.
Geomorphic mapping of terrestrial and planetary surfaces has been done traditionally via 
visual interpretation of images (Wilhelms, 1990; Tanaka, 1994). This manual method is slow, 
labor intensive, and suffers from subjectivity. Presently, remote sensing instruments 
onboard spacecrafts are providing increasingly large volumes of topographic data related to 
Earth as well as surfaces of other planets. This data rich environment challenges the ability 
of the geosciences community to turn a significant portion of all collected data into  
products (like, for example, geomorphic maps) that could be utilized in research. Simply 
put, advances in geomorphic mapping have not kept up with advances in data collection. If 
left to manual mapping, the percentage of planetary surfaces mapped to the level of detail 
permitted by an increased resolution of newly collected data will continue to drop 
precipitously. In order to prevent this decline in rate of data to map conversion, it is 
necessary to automate the mapping process. Fortunately, the surface properties that 
distinguish between different landforms can be described quantitatively by a set of 
numerical measures called terrain attributes which are derived from a digital elevation 
model (DEM) of the surface. This opens the opportunity for automation of the mapping 
process. The topic of auto-mapping landforms from topography has received some attention 
in the geosciences literature; however, such approaches rely frequently on hand-made rules 
for classification and are designed exclusively for terrestrial applications. 
Machine learning can play a vital role in automating the process of geomorphic mapping. A 
learning system can be employed to either fully automate the process of discovering 
meaningful landform classes using clustering techniques; or it can be used instead to predict 
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the class of unlabeled landforms - after an expert has manually labeled a representative 
sample of the landforms - using classification techniques. We refer to the two techniques as 
unsupervised and supervised learning, respectively. Unsupervised learning techniques are 
applicable in cases of exploratory mapping, where no prior knowledge about the surface 
exists and both landform types and their spatial presence need to be derived by an 
algorithm. Exploratory mapping finds application in expediting creation of geologic maps in 
planetary science context where surfaces are still being explored and landform classes are 
not yet defined. Supervised learning techniques are applicable in cases of exploitation 
mapping when only the spatial presence of a priori defined landform classes is required. 
Exploitation mapping finds application in creating final geomorphic maps for terrestrial and 
planetary sites for which constituting landform classes are known a priori.
In developing machine learning-based mapping tools we face a number of design choices, 
starting from the selection of a basic unit of surface, through the choice of features (terrain 
attributes), to a pick of an appropriate machine learning technique. The fundamental 
problem is to design a technique that results in a map that has information content and 
visual esthetics similar to those found in manually drawn maps; such outcome ensures a 
large impact in the geosciences community and, consequently, has the greatest scientific 
value.   

 
2. Preliminaries and previous work 
 

All our tools are based on topographic data which provides a fundamental description of a 
surface and is well-suited for automated mapping. Topographic data is available as a grid-
based DEM, a raster that stores site’s elevation value at each pixel in a corresponding raster 
node. All features used by our machine learning-based mapping tools are derived from the 
DEM. These features are divided into at-pixel features and area statistics features (Evans, 
1998). At-pixel features, except for elevation itself, require a small region or neighborhood 
around the pixel to calculate their values. Area statistics features depend on the range or 
distribution of values within the selected, larger neighborhood. 
Previously published methods for auto-mapping of landforms can be divided into those that 
utilize machine learning and those that don’t (Gallant et al, 2005; Dragut and Blaschke, 2006; 
van Asselen and Seijmonsbergen, 2006; Iwahashi and Pike, 2007). Machine learning-based 
methods can be further grouped into those using unsupervised learning techniques (Irvin et 
al, 1997; Burrough et al, 2000; Adediran et al, 2004; Stepinski and Vilalta, 2005; Bue and 
Stepinski, 2006; Ehsani and Quiel, 2008;) and those using supervised learning (Brown et al, 
1998; Hengl and Rossiter, 2003; Prima et al, 2006; Stepinski et al, 2006; Stepinski et al, 2007). 
Moreover, all methods can be grouped into pixel-based methods (Irvin et al, 1997; Brown et 
al, 1998; Burrough et al, 2000; Hengl and Rossiter, 2003; Adediran et al, 2004; Stepinski and 
Vilalta, 2005; Bue and Stepinski, 2006; Prima et al, 2006; Iwahashi and Pike, 2007; Ehsani and 
Quiel, 2008), where an algorithm assigns landform label for each pixel in a DEM separately, 
and segmentation-based methods (Dragut and Blaschke, 2006; van Asselen and 
Seijmonsbergen, 2006; Stepinski et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009), where an 
algorithm assigns landform labels to multi-pixel but attribute-homogeneous segments of the 
landscape. Fig. 1. illustrates the conceptual difference between pixel-based and 
segmentation-based approaches. Proposed methods differ broadly in classification 
algorithms and feature selection. We claim that a segmentation-based approach utilizing 

supervised or unsupervised machine learning has the potential to generate maps most 
comparable to manual maps, and thus most useful. Consequently, our own recent efforts 
have concentrated on such approaches. Here we discuss the spectrum of tools that we have 
developed for both exploratory and exploitation purposes. We discuss the tools for 
exploratory mapping that are both, pixel-based and segmentation-based. We also discuss 
the tools for exploitation mapping, which are exclusively segmentation-based. Our work 
focuses on mapping the planet Mars, because Mars is the only planet besides Earth for 
which global topographic data is currently available (Smith et al, 2003). However, the tools 
are applicable to mapping terrestrial landmass for which a global, high resolution DEM is 
available. Moreover, these tools are also applicable to mapping the surfaces of planet 
Mercury and the Moon once the DEMs for these planets become available (Krishna et al, 
2009; Araki et al, 2009) in the near future. The resolution of DEMs of planetary surfaces is 
coarser than the resolution of terrestrial DEMs. This presents unique challenges for auto-
mapping their surfaces as the coarse resolution excludes the direct use of area statistics 
features decreasing the number of features available to a classifier. 
 

 
Fig. 1. Two different approaches to assigning geomorphic labels to topographic data 

 
3. Unsupervised learning for exploratory mapping 
 

Development of tools for exploratory geomorphic mapping of Martian surfaces is motivated 
by a desire for taking stock of all potential landforms present in the site regardless of their 
semantic meaning. Exploratory mapping is best achieved by unsupervised learning that 
relies on clustering techniques to automatically discover natural clusters in data. We discuss 
generating exploratory maps of Martian geomorphology using both, pixel-based and 
segmentation-based method. 
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3.1 Pixel-based, unsupervised mapping 
In our pixel-based application to exploratory mapping of Mars (Stepinski and Vilalta, 2005), 
an unsupervised learning algorithm groups pixels that are similar in the space of 
geomorphic features. The choice of features is dictated by the type of surface to be mapped. 
A large portion of Martian surface consists of cratered plateau; planetary geomorphologists 
are interested in mapping various parts of craters, non-crater ridges, linear landforms 
known as channels, and various types of plateau. This interest dictates the choice of features 
that are best to discriminate between potential landforms of interest. 
In the first tool that we have developed (Stepinski and Vilalta, 2005) the mapping is based 
on six features (terrain attributes). The first feature, u1, is the elevation itself. The second 
feature, u2, is a “flooding adjustment”; In order to calculate u2 we first artificially modify the 
original elevation using the so-called “flooding” algorithm (O’Callaghan and Mark, 1984). It 
identifies all enclosed topographic depressions and raises their elevation to the level of the 
lowest pour point around their edge thus producing a “flooded” elevation field. The 
flooding adjustment (u2) is the difference between flooded and original elevations; it has 
non-zero values only for pixels located inside topographic depressions (craters). The third 
feature, u3, is the steepest slope between a focus pixel and the eight of its nearest 
neighboring pixels calculated using the original elevation field. The fourth feature, u4, is the 
steepest slope calculated using the flooded elevation field. The fifth feature, u5, is a 
contributing area. The contributing area is the total number of pixels “draining” through a 
focus pixel; the term draining is used here as a metaphor for connectivity between different 
pixels in a landscape. A pixel counts toward the contributing area of a focus pixel if there is 
a chain of steepest slope directions linking it to the focus pixel. Small values of u5 flag pixels 
located on topographic peaks, ridges, and divides. Large values of u5 flag channels. Finally, 
the sixth feature, u6, is the contributing area based on the flooded elevation field. 
The set of six features { u1, u2, u3, u4, u5, u6 } is calculated for all pixels in a site. The basic object 
of clustering is a pixel in the DEM that carries a vector of six features. Two pixels are similar 
if their feature vectors are close in the sense of Euclidean metric. A clustering algorithm 
applied for all pixels produces as output a set of k classes, Ck = { c1, c2, . . . , ck } where each 
class ci contains a list of pixels that are similar to each other. The set of classes is mutually 
exclusive and exhaustive. The map is generated by assigning each pixel a color 
corresponding to its class. In our first implementation (Stepinski and Vilalta, 2005) of our 
pixel-based exploratory mapping tool we cluster the DEM using probabilistic clustering 
algorithm that follows the Expectation Maximization (EM) technique (McLachlan and 
Krishan, 1997). It groups vectors into classes by modeling each class through a probability 
density function. Each vector in the dataset has a probability of class membership and is 
assigned to the class with highest posterior probability. The number of classes is calculated 
using cross-validation (Cheesman and Stutz, 1996). Because a typical Martian DEM of 
interest contains a large amount of data, a direct clustering via the EM technique is 
computationally expensive. To alleviate this problem we sample the DEM to create a 
smaller, initial dataset of pixels. This initial dataset is clustered into Ck using the EM 
technique. The remaining pixels are classified into Ck using a decision tree learning 
algorithm (Quinlan, 1993) constructed on the basis of the initial dataset.  
 
 
 

 
Fig. 2. (A) Topography of Tisia Valles site on Mars. (B) The 12-class geomorphic map created 
by a pixel-based tool using a probabilistic clustering algorithm. 
 
In order to demonstrate the utility of our tool for producing an exploratory geomorphic map 
of landscape on Mars we have applied it to a test site called Tisia Valles. The six-feature 
vector was calculated for each of the site’s 163,240 pixels. Because different features have 
different physical meaning and different range of values, we have normalized all features so 
that their values are in the range (0, 1). This normalization assures that every feature 
contributes with equal weight to the “distance” between different pixels. The 40,000 pixels 
were randomly chosen to create an initial dataset. We have assured uniform sampling in 
order to obtain an unbiased representation of all, even rare landscape features. Our 
clustering algorithm has grouped these 40,000 pixels into 12 separable and exhaustive 
clusters. The remaining pixels were classified into those 12 clusters using a decision tree 
algorithm. 
Fig. 2A. shows the topography of the test site; red-to-blue gradient indicates high-to-low 
elevation. Fig. 2B. shows a geomorphic map generated by our tool; different landform 
classes (clusters of similar feature vectors) are shown using different colors. The semantic 
interpretation of these classes requires expert judgment; an analyst needs to review statistics 
of feature vectors values in each class and spatial distribution of classes with respect to each 
other. A simplified result of such interpretation is given in the legend of Fig. 2. An analyst 
divided the 12 classes into 4 different groups pertaining to plateau, craters, ridges, and 
channels, respectively. Some groups, for example the plateau group, may include several 
landforms classes. An expert grouped the four classes (labeled 1, 2, 3, and 4) into the plateau 
group because they are identical from a geomorphic point of view, just located at different 
elevations. This example illustrates a “problem” with mapping based on the principle of 
unsupervised learning - a reasonable cluster derived under a proximity measure may not 
constitute a “novel” landform as perceived by an analyst. Nevertheless, in face of lack of any 
previous knowledge about the site’s landscape, unsupervised learning delivers valuable, 
first draft information. 
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Fig. 3. (A) Topography of Terra Cimmeria site on Mars. (B) The 20-class geomorphic map 
created by a pixel-based tool using a SOM-Ward clustering algorithm. 
 
Our tool for exploratory mapping using pixel-based unsupervised learning technique was 
further modified (Bue and Stepinski, 2006) to achieve greater computational efficiency 
necessary for mapping larger sites. The clustering efficiency was significantly improved by 
using a two-level clustering procedure (Vesanto and Alhoniemi, 2000) consisting of a self-
organizing map (SOM) (Kohonen, 1995) and the Ward hierarchical clustering (Ward, 1963). 
The SOM is a neural network technique that groups similar vectors into nearby points on a 
2-D grid composed of nodes. Through an unsupervised, iterative procedure, a large set of 
feature vectors is mapped onto the much smaller number of SOM’s nodes in such a way that 
similar feature vectors are associated with the same note or neighboring nodes. Because the 
number of nodes is much smaller than the number of vectors, many similar vectors are 
mapped onto a single node. The bundle of feature vectors associated with a given SOM 
node is typified by a single representative vector referred to as a codebook vector. The final 
clustering of feature vectors into an assigned number of k clusters (landform classes) is 
achieved by the Ward’s minimum variance grouping algorithm (Ward, 1963) applied to the 
set of codebook vectors. 
Fig. 3A. depicts a topography of a 5,303,888 pixels-large site on Mars referred to as Terra 
Cimmeria. We used 30 x 30 rectangular SOM grid to perform a first step of clustering the 
feature vectors associated with those pixels into 900 codebook vectors. In the final step the 
codebook vectors were clustered into 20 landform classes shown on Fig. 3B using different 
colors. As in the previous example, the semantic interpretation of the classes requires expert 
judgment; a simplified result of such interpretation is given in the legend of Fig. 3. 
 

 

3.2 Segmentation-based, unsupervised mapping 
Our second tool for exploratory mapping via unsupervised learning combines aspects of 
pixel-based and segment-based mapping approaches (Stepinski and Bagaria, 2009). We 
constructed a two-stage algorithm consisting of a pixel-based base classifier and a segment-
based meta classifier. A base classifier is applied to multiple pixels in a neighborhood of a 
focus pixel resulting in an ensemble of landform type predictions. A meta classifier is an 
unsupervised segmentation/classification algorithm that combines these predictions and 
outputs a segment-based map of emergent landform regions or classes.  This tool is 
designed for exploratory mapping of very large regions using small number of original 
features.  
In order to increase a computational efficiency of our tool we utilize a rule-based classifier as 
our base classifier. The rule-based classifier uses empirical knowledge to construct a 
decision tree; submitting a set of terrain features to a trunk of the tree results in a landform 
type label at the leave of the tree. The nested means technique (Iwahashi and Pike, 2007) is 
used to construct a decision tree because it outputs landform types whose meanings do not 
correspond directly to named terrestrial formations, thus, they won’t lose their relevance in 
application to non-terrestrial surfaces. Our rule-based classifier uses only three original 
terrain features (slope gradient, surface texture, and local convexity) to label each pixel into 
one of 16 statistically predefined landform types.  
The segment-based meta classifier uses a set of secondary features designed to capture 
contextual information around a given pixel. The secondary features are calculated from the 
labels (1 to 16) returned by the base classifier; they are combined into a pixel-attached 
feature-vector which describes, in a generalized manner, surface character in the 
neighborhood of this pixel. We calculate 19 secondary features. The first 16 features are 
normalized frequencies of labels outputted by the base classifier contained within a N x N 
pixels square window centered on the focus pixel. The value of N controls the level of 
generalization from landform types to landform classes. Two windows may have similar 
frequencies but different spatial distributions of the labels. The last three secondary features 
measure pattern of landform types in a neighborhood and are based on a modification of 
Multi-Scale Local Binary Pattern (LBP) concept (Ojala et al,  2002). The 19-dimensional 
vector of secondary features is used to generate a final segmentation-based map.
We use the Recursive Hierarchical Segmentation (RHSEG) algorithm (Tilton, 2000) that 
simultaneously segments the DEM on the basis of secondary features and cluster the 
segments into landform classes. The RHSEG is an iterative algorithm that produces 
hierarchies of both, segmentation levels, and clustering levels. Starting from individual 
pixels as regions seeds, the algorithm alternates between merging similar adjacent regions 
into larger regions (segmentation) and merging labels of non-adjacent similar regions 
(clustering). Both steps utilize similarity criteria based on statistics of secondary features of 
pixels constituting the segments. As this two-step process is iteratively repeated, it produces 
a natural hierarchy of both, spatial segmentations and clusters of features. Stopping RHSEG 
at a given iteration level yields a map of a certain geographical and feature-space resolution. 
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Fig. 4. (A) Topography of Tharsis region on Mars. (B) The results of rule-based classification. 
(C) The 9-class geomorphic map created by the meta classifier. 
 
In order to demonstrate the utility of our segmentation-based exploratory mapping tool we 
have applied it to the Tharsis region on planet Mars. The Tharsis region on Mars (Fig. 4A) is 
an enormous volcanic plateau containing a number of large volcanoes including Olympus 
Mons – the largest volcano in the solar system. We used a 1024 x 1024 pixels DEM of Tharsis 
region with the resolution of 4 km/pixel. The base classifier labeled each of 1,048, 576 pixels 
with one of 16 labels resulting in a pixel-based map as shown on Fig. 4B. The legend to Fig. 
4B is organized in a square array (see insert): the top row groups terrain types (1, 5, 9, 13) 
representing rough, convex landscapes; the second row groups terrain types (3, 7, 11, 15) 
standing for rough, concave landscape; the third row groups terrain types (2, 6, 10, 14) 
representing smooth, convex landscapes; the last row groups terrain types (4, 8, 12, 16) 
corresponding to smooth, concave landscapes. In each row progressively larger values of 
labels indicate gentler landscape. The secondary features are calculated using N=11 pixels 
moving window. We set the parameters of RHSEG algorithm so it starts saving the 
segmentation results when the feature-vectors are already clustered into 20 landform 
classes. This most-detailed of all retained partitioning is referred to as level 0 segmentation. 
Subsequent, progressively coarser segmentations are referred to as level 1 to 19, 
respectively. Fig. 4C shows the level 11 segmentation consisting of 2382 segments grouped 
into 9 landform classes. The legend to Fig. 4C shows a color and a numerical label assigned 
to each landform class. 
Notwithstanding superficial visual similarity (this similarity decreases rapidly when the 
close-ups of the two maps are examined) between the map generated by the base classifier 
(Fig. 4B) and the map generated by the meta classifier (Fig. 4C), the map generated by 
RHSEG algorithm has a higher utility because it partitions a site in a fashion similar to what 
an analyst would do manually – into fewer larger, more heterogeneous areas corresponding 
to more broadly defined landform classes. The small pie diagrams next to label annotations 
in a legend to Fig. 4C indicate a “composition” of each landform class in terms of types 
outputted by the base classifier. Different classes are characterized by different degrees of 
terrain type inhomogeneity reflecting the reality of natural landscape. The visual esthetics of 
the map shown on Fig. 4C resembles manually drawn geologic maps, however, direct, 
formal comparison of our map with a manually drawn geologic map is difficult because 
analysts use not only objective criteria (such as, surface morphology) but also subjective 
criteria (such as, nomenclature, history of previous investigations, etc.). Nevertheless, our 

map shown on Fig. 4C shows a rough correspondence to a manually drawn geologic map of 
the Tharsis region (Scott and Tanaka, 1986). 

 
4. Supervised learning for exploitation mapping 
 

In many cases planetary scientists know a priori what landform classes they want to map in 
a given site. Automation of such exploitation mapping should not be based on the principle 
of unsupervised learning that offers no control over the character of outcome classes; 
instead, it should be based on the principle of supervised learning where classes are set a 
priori. Recognizing that automatically generated maps must conform to expectations of the 
planetary science domain, our efforts to automate the process of exploitation mapping focus 
on the concatenation of a segmentation-based technique with supervised learning (Stepinski 
et al, 2006; Stepinski et al, 2007; Ghosh et al, 2009). The idea of segmentation-based 
classification follows from the realization that pixels are not the best fundamental units of 
visual or topographic scenes, and it is more natural and efficient to work with more 
perceptually meaningful entities obtained from low-level grouping processes. Such entities 
are referred to as superpixels (Mori, 2005) in the computer vision community and as 
segments (Benz et al, 2004) in the remote sensing community. The diagram in Fig. 1B 
illustrates the concept of segmentation-based classification of landform classes. The 
segmentation-based classification technique has many desired properties: a) segments are 
perceptually meaningful, b) they are computationally efficient, c) their geometric and 
statistical properties provide additional information that can be incorporated into 
classification, d) because the technique results in oversegmentation of the site, most 
structures in the site are conserved and there is little loss of information over using 
individual pixels. 
We have developed a family of tools for automating exploitation mapping of planetary 
surfaces; each tool utilizes a specific combination of segmentation and classification 
algorithms. We employ two different segmentation algorithms. The dividing algorithm 
splits the landscape on the basis of abrupt discontinuities in pixel-based feature vectors. The 
agglomerative algorithm initially treats each pixel as an individual segment; these initial 
segments are combined into larger segments as long as a user-defined criterion for the 
uniformity of constituent pixel-based feature vectors holds. Both algorithms use the same 
pixel-based feature vectors. We also employ three different learning algorithms for segment 
classification and to generate maps of landforms. Thus, altogether, we have evaluated six 
different tools, corresponding to six different segmentation/classification combinations. 

 
4.1 Segmentation methods 
The segmentation procedure subdivides the landscape into mutually exclusive and 
exhaustive segments containing pixels having approximately uniform pixel-based feature 
vectors. These segments constitute topographic objects, which, subsequently, are classified 
into landforms classes. Raster segmentation has been the subject of intense study in the 
domain of image analysis, however, requirements for an effective segmentation for the 
purpose of mapping are different from those encountered in the field of computer vision. In 
particular, for the purpose of mapping-by-classification, it is desirable to oversegment the 
site. Having small segments eliminates the danger of a particularly large segment being 
misclassified, which would avoid producing a grossly incorrect map. Moreover, having 
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approximately equal-sized segments assures that statistics of pixel-based features are 
calculated from comparable ensembles of member pixels. 
Our dividing segmentation algorithm (Stepinski et al, 2006) uses the watershed transform 
(Beucher, 1992) applied to a gray-scale image that encapsulates gradients of pixel-based 
feature vectors. This image is calculated using a computationally simple homogeneity 
measure H (Jing et al, 2003). A pixel located in a region that is homogeneous with respect to 
pixel-based features has a small value of H. On the other hand, a pixel located in a region 
which is inhomogeneous with respect to features has a large value of H. A raster constructed 
by calculating the values of H for all pixels in the landscape can be interpreted as a gray-
scale image and is referred to as the H-image. White areas in H-image represent boundaries 
of homogeneous regions, whereas the dark areas represent the actual regions. The 
watershed transform of H results in (over) segmentation of the H-image (and thus the 
landscape). 
Our agglomerative segmentation algorithm (Stepinski et al, 2007) uses a contiguity-
enhanced variant of the standard K-means clustering algorithm, which uses – in addition to 
terrain attributes – spatial coordinates of pixels as features. The additional spatial features 
control the size of the segments while providing the resultant segments with very desirable 
geometric properties. For example, in areas where terrain features are approximately 
uniform, the local gradient of the total feature vector is dominated by changes in spatial 
coordinates leading to the formation of round-shaped segments. On the other hand, in areas 
where change in the total feature vector is dominated by change in terrain attributes, 
segments tend to exhibit an elongated shape in direction perpendicular to the gradient of 
the terrain-only sub-vector. These properties constitute additional knowledge that could be 
exploited by the classification module. The actual segmentation invokes a simple K-means 
algorithm applied to spatially-enriched, pixel-based feature vectors. The size of the 
segments is controlled by the value of K (which needs to be large to achieve over-
segmentation).  

 
4.2 Application of segmentation methods 
In order to demonstrate the working of segmentation algorithms in practice we applied 
them to the Tisia Valles site on Mars (see Section 3.1). The site is segmented on the basis of 
three pixel-based terrain features { u1, u2, u3 } using both, watershed and K-means, 
algorithms. Note that the featured used here are different from those we choose for 
exploratory mapping (see Section 3.1); they are: u1=slope, u2=curvature, and u3=flooding 
adjustment. The watershed algorithm produced 7708 segments with sizes ranging from 1 to 
267 pixels, whereas K-means algorithm (with the value of K = 5000) produced 6593 single-
connected segments having sizes ranging from 4 to 117 pixels. Note that the K-means 
algorithm yields more than K segments because the resulting K clusters do not correspond 
to K single-connected spatial segments. In order to derive the segmentation we assign a 
unique segment identifier to each subset of a cluster corresponding to a single spatially 
connected region. The two algorithms yield segmentations having very different characters 
(see Fig. 5.). The watershed algorithm yielded a mosaic of segments that, by themselves, do 
not revel the landforms present in the site. On the other hand, the inclusion of spatial 
coordinates into the K-means algorithm resulted in segments that reflect the geometry of the 
landforms – one can notice the major landforms just from the segmentation image. 
 

Fig. 5. Six-classes geomorphic maps Tisia Valles site using different combination of 
segmentation and classification algorithms. 

 
4.3 Segment-based features 
In the segmentation-based classification, pixel-based features used for segmentation are 
different from segment-based features used for classification. Each segment, regardless of an 
algorithm used to obtain the segmentation, is represented by a combination of physical and 
spatial segment-based features. Physical features are pixel-based features averaged over the 
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scale image and is referred to as the H-image. White areas in H-image represent boundaries 
of homogeneous regions, whereas the dark areas represent the actual regions. The 
watershed transform of H results in (over) segmentation of the H-image (and thus the 
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where change in the total feature vector is dominated by change in terrain attributes, 
segments tend to exhibit an elongated shape in direction perpendicular to the gradient of 
the terrain-only sub-vector. These properties constitute additional knowledge that could be 
exploited by the classification module. The actual segmentation invokes a simple K-means 
algorithm applied to spatially-enriched, pixel-based feature vectors. The size of the 
segments is controlled by the value of K (which needs to be large to achieve over-
segmentation).  
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coordinates into the K-means algorithm resulted in segments that reflect the geometry of the 
landforms – one can notice the major landforms just from the segmentation image. 
 

Fig. 5. Six-classes geomorphic maps Tisia Valles site using different combination of 
segmentation and classification algorithms. 

 
4.3 Segment-based features 
In the segmentation-based classification, pixel-based features used for segmentation are 
different from segment-based features used for classification. Each segment, regardless of an 
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spatial segment-based features. Physical features are pixel-based features averaged over the 



Machine Learning262

constituent pixels of the segments.  Spatial features are obtained using each segment’s shape 
measure and the neighborhood context measure. The shape measure is computed in terms 
of the Shape Complexity Index (SCI). The SCI is a measure of segment circularity. The closer 
the value of SCI is to 1.0, the more circular the object; on the other hand, thin ring-like 
shapes tend to have SCI values of 2.5 and higher. One of the challenges of the automatic 
classification of landforms is feature similarity of some landform classes that differ mostly 
by their spatial context. For instance, segments making up craters’ walls and segments 
constituting ridges not associated with craters may have similar values of slope, curvature, 
but are located in different spatial contexts. In our segmentation-based tool we take into 
consideration spatial context by means of neighborhood context measures. Ideally, we 
would like to know classes of segment’s neighbors to establish its spatial context, but such 
information is not available prior to classification. However, we can categorize the 
unlabeled segments into low, medium, and high categories based on statistics of the values 
of their physical features. Such categorization is used to calculate the neighborhood 
property of each segment using a nine-dimensional vector { ahs, ams, als, ahc, amc, alc, ahf, amf, alf }, 
where aji j=h, m, l and i= s (slope), c(curvature), f(flooding adjustment) is a percentage of the 
focus segment boundary with neighbors belonging to category high (h), medium (m), or low 
(l), respectively. Thus, a segment-based feature vector has 13 components, three physical 
features, the value of SCI, and 9 values of aji. 
 
4.4 Classification and mapping 
We applied three different learning algorithms for segment classification and to generate 
geomorphic maps. First, the simple Naive Bayes algorithm provides a baseline for 
comparison with other classifiers. Second, the Support Vector Machines (SVM) algorithm 
that works by finding an optimal hyper-plane in a (transformed) feature space (Boser et al, 
1992). The optimal hyper-plane maximizes the separation between classes. SVM exploits 
local data patterns and has been found to be effective in spatial data mining applications 
(Sharifzadeh et al, 2003). Third, bagging ensemble learning algorithm (Breiman, 1996) 
generates multiple models by running a single learning algorithm multiple times over 
bootstrapped samples of the training set. The final class label is the result of voting over the 
contributing models (one from each bootstrap sample). Bagging is known to work well for 
complex datasets and is particularly attractive when the training set is noisy (Dietterich, 
2000). We use a decision tree (C4.5) as the base learner in the bagging algorithm. 
We applied these classifiers to segments generated by watershed and K-means generated 
divisions of the Tisia Valles site.  We have chosen six landform classes for mapping:  crater 
floors, convex crater walls, concave crater walls, convex ridges, concave ridges, and inter-
crater plateau.  The choice of these particular landform classes stems from our interest in the 
quantitative characterization of old, cratered Martian surface. The labeled (training) set of 
segments was generated by manually labeling 30% (by surface area) of the Tisia site into the 
aforementioned six classes. Fig. 5 offers a visual assessment of the maps generated by 
different combination of segmentation and classification algorithms. The “ground truth” 
map of Tisia (an extension of the training set to the entire site) was hand-labeled. It shows 
how a typical analyst would map the six landforms in this site;  it does not really constitute 
a ground truth (in the strict meaning of the concept) because an analyst is likely to draw an 
idealized map that misses details and projects a human conceptualization of the entire 
landscape, even if it contradicts local measurements. Maps based on the watershed 

segmentation have a “simple” look as they lack small-scale details, whereas maps based on 
the K-means segmentation look exhibit more small-scale details. On the basis of only a 
visual inspection one could conclude that maps stemming from watershed segmentation are 
“better” because they look more like the ground truth map. However, closer inspection of 
the generated maps shows that maps based on K-means segmentation correctly reflect some 
small-scale details that are absent from the watershed segmentation and the analyst-drawn 
map. The maps generated by Naive Bayes are inaccurate and inferior to maps generated by 
Bagging and SVM.  
 

 
Table 1.  Assessment of performance of different methods used to map the Tisia Valles site. 
The entries for individual landform are precision/recall. NB – Naïve Bayes, B – Bagging 
with C4.5, SVM – Support Vector machines.

Table 1  gives accuracy rates for maps of the Tisia site. Disregarding maps produced by the 
Naive Bayes algorithm, accuracy rates are above 86%. Note that maps based on the 
watershed segmentation have slightly higher rates than maps based on the K-means 
segmentation in line with their greater similarity to the analyst drawing. Precision and recall 
rates for six landform classes are also given in Table 1. Results show that inter-crater 
plateau, crater floor, and convex crater walls landforms are mapped with high accuracy. 
Concave crater walls are detected with less accuracy, and ridges are difficult to identify 
correctly. This is because local ridges look like crater walls, even though they are different 
landforms in the context of the entire landscape. 

 
5. Summary and conclusion 
 

Geomorphic auto-mapping of planetary surfaces is a challenging problem.  Here we have 
described how machine learning techniques, such as clustering or classification, can be 
utilized to automate the process of geomorphic mapping for exploratory and exploitation 
purposes.  Relatively coarse resolution of planetary topographic data limits the number of 
features that can be used in the learning process and makes planetary auto-mapping more 
challenging than terrestrial auto-mapping. With this caveat, the methods discussed here are 
also applicable to terrestrial surfaces.  
The major challenge in exploratory (unsupervised learning) mapping is to generate a map 
that has an appearance and utility similar to maps already used by the geosciences 
community.  This means that a clustering algorithm should be able to generalize from a 
simple similarity of feature vectors to a similarity of ensembles of feature vectors. In other 
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constituent pixels of the segments.  Spatial features are obtained using each segment’s shape 
measure and the neighborhood context measure. The shape measure is computed in terms 
of the Shape Complexity Index (SCI). The SCI is a measure of segment circularity. The closer 
the value of SCI is to 1.0, the more circular the object; on the other hand, thin ring-like 
shapes tend to have SCI values of 2.5 and higher. One of the challenges of the automatic 
classification of landforms is feature similarity of some landform classes that differ mostly 
by their spatial context. For instance, segments making up craters’ walls and segments 
constituting ridges not associated with craters may have similar values of slope, curvature, 
but are located in different spatial contexts. In our segmentation-based tool we take into 
consideration spatial context by means of neighborhood context measures. Ideally, we 
would like to know classes of segment’s neighbors to establish its spatial context, but such 
information is not available prior to classification. However, we can categorize the 
unlabeled segments into low, medium, and high categories based on statistics of the values 
of their physical features. Such categorization is used to calculate the neighborhood 
property of each segment using a nine-dimensional vector { ahs, ams, als, ahc, amc, alc, ahf, amf, alf }, 
where aji j=h, m, l and i= s (slope), c(curvature), f(flooding adjustment) is a percentage of the 
focus segment boundary with neighbors belonging to category high (h), medium (m), or low 
(l), respectively. Thus, a segment-based feature vector has 13 components, three physical 
features, the value of SCI, and 9 values of aji. 
 
4.4 Classification and mapping 
We applied three different learning algorithms for segment classification and to generate 
geomorphic maps. First, the simple Naive Bayes algorithm provides a baseline for 
comparison with other classifiers. Second, the Support Vector Machines (SVM) algorithm 
that works by finding an optimal hyper-plane in a (transformed) feature space (Boser et al, 
1992). The optimal hyper-plane maximizes the separation between classes. SVM exploits 
local data patterns and has been found to be effective in spatial data mining applications 
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generates multiple models by running a single learning algorithm multiple times over 
bootstrapped samples of the training set. The final class label is the result of voting over the 
contributing models (one from each bootstrap sample). Bagging is known to work well for 
complex datasets and is particularly attractive when the training set is noisy (Dietterich, 
2000). We use a decision tree (C4.5) as the base learner in the bagging algorithm. 
We applied these classifiers to segments generated by watershed and K-means generated 
divisions of the Tisia Valles site.  We have chosen six landform classes for mapping:  crater 
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segments was generated by manually labeling 30% (by surface area) of the Tisia site into the 
aforementioned six classes. Fig. 5 offers a visual assessment of the maps generated by 
different combination of segmentation and classification algorithms. The “ground truth” 
map of Tisia (an extension of the training set to the entire site) was hand-labeled. It shows 
how a typical analyst would map the six landforms in this site;  it does not really constitute 
a ground truth (in the strict meaning of the concept) because an analyst is likely to draw an 
idealized map that misses details and projects a human conceptualization of the entire 
landscape, even if it contradicts local measurements. Maps based on the watershed 
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words, an algorithm should be able to generate classes of varying degree of homogeneity 
based on spatial considerations. This is what our algorithm described in section 3.1 has been 
designed to do.  Future research will address better criteria for deciding which classes 
should be homogeneous and which should be more heterogeneous. Overall, our two-stage 
tool for exploratory mapping is expected to be adopted by the geosciences community 
because it is matured enough for immediate application in geologic mapping, quantitative 
comparative geomorphology, and landscape visualization.   
The major challenge in exploitation mapping (supervised learning) is the issue of spatial 
context. An analyst can map landforms having very similar features as different classes 
depending on broader spatial context. Thus, spatial context must be incorporated into the 
mapping algorithm in order to generate maps similar to those that are manually drawn. We 
have demonstrated that a choice of a particular segmentation method and a particular 
(capable) classification algorithm results in somewhat different maps, but, in general, all 
generated maps were acceptable. Indeed, regardless of the segmentation/classification 
combination, most misclassifications were the results of confusion due to spatial context.  
Our simple method of taking some account of spatial context proved insufficient to prevent 
misclassifications between elements of crater walls and elements of ridges. Future work 
needs to investigate more robust approach, such as, for example, Markov Random Fields, to 
incorporate spatial context information (Besag, 1986) into the learning algorithm. 
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Abstract: 
As the result of recent advent and rapid growth of the Internet, there have been an 
increasing number of corporations relying on computers and networks for communications 
and critical business transactions.  Because of the network complexity and advanced 
hacking techniques, such reliance on computer networks often presents unanticipated risks 
and vulnerabilities. A huge volume of attacks on major sites and networks have been 
recently reported including those of private companies, government agencies and even 
military classified networks. Therefore, it is important to deploy protection measures for 
networks and their services from unauthorized modification, destruction, or disclosure of 
sensitive information. Intrusion detection systems (IDS) have emerged as an important part 
of today’s network security infrastructure which can monitor the network traffic and detect 
possible attacks. Currently existing IDS suffer from low detection accuracy and system 
robustness for new and rare security breaches. To improve detection capability of IDS, this 
chapter proposes an innovative Machine Learning (ML) framework in which different types 
of intrusions will be detected with different classifiers, including different attribute 
selections and learning algorithms. Outputs of these classifiers are then combined by 
appropriate voting techniques. Experiments on the KDD-99 dataset show that our approach 
obtains superior performance in comparison with other state-of-the-art detection methods, 
achieving low learning bias and improved generalization at an affordable computational 
cost. 

 
1. Introduction 
 

As a result of the revolutionary advances in computing science and the wide spread 
deployment of the Internet, people are encouraged to communicate and exchange 
information over the computer-mediated environment. This provides convenience and 
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benefits such as shortening the effective geographical distances and sharing information 
efficiently. On the other hand, information exchange in such environments pose a problem, 
which is that, intruders or malicious users may compromise the communications. The 
safeguarding of security is becoming even more difficult, because the possible technologies 
of attacks are very sophisticated; at the same time, less technical ability is required for the 
novice attackers due to easy access to proven past methods through the Web. A traditional 
approach to defend computer networks was based on static defense mechanisms in which 
software, such as the operating system, was kept up-to-date to prevent the exploitation of 
security holes; and the firewalls deployed at critical network segments to improve the 
security at the entry level. However, firewalls aim to regulate and control the flow of 
information into and out of a network rather than detecting whether or not the network is 
under attack. To complement simple firewalls, Intrusion Detection Systems (IDS) are 
normally used to gather and analyze network data to identify possible security breaches, 
which include both intrusions (attacks from outside the organization) and misuse (attacks 
from within the organization). Although IDS have become an important part of most 
network security architectures which provides essential second line of defense, the majority 
of them face a number of challenges such as low detection rates which can miss serious 
intrusion attacks and high false alarm rates, which falsely classifies a normal connection as 
an attack and therefore obstructs legitimate user access to the network resources (Sommer, 
2008). These problems are due to the sophistication of the attacks and their intended 
similarities to normal behavior.  
Most IDS utilize some Machine Learning (ML) techniques to obtain high detection capability 
for novel attacks and automation to save human labor from manually constructing 
signatures of attacks or specifying the normal behavior of a sensor node. Theoretically, it is 
possible for a ML algorithm to achieve the best performance, i.e. it can minimize the false 
alarm rate and maximize the detection accuracy; however, this normally requires infinite 
training sample sizes (Kononenko & Kukar, 2007). In practice, such condition is impossible 
due to limited computing resources and real-time response requirement of IDS. Intrusion 
detection, therefore, remains very challenging. In this chapter, a learning framework is 
proposed to enhance the performance of intrusion detection for rare and complicated 
attacks; that is, the framework can increase the detection accuracy and decrease false alarm 
with acceptable computational expenses. In particular, characteristics of different anomaly 
categories are captured using different strategies, also referred to as local experts, with 
different feature extraction schemes and advanced learning methods.  The outputs of these 
experts are then fused by appropriate voting techniques. In addition to this framework, we 
also introduce a highly performing ML algorithm that combines a light-weight Radial Basis 
Function Neural Network and an Ensemble Learning technique. This algorithm is compared 
against other learning methods for the purpose of local expert creation. This work falls well 
under the category of bias-variance-computations tradeoff problem. In general, we wish to 
reduce bias (for higher accuracy), variance (for fewer false alarms) and computations (for 
fast real time response). An extensive empirical analysis conducted on the Knowledge 
Discovery and Data Mining (KDD-99) intrusion detection data suggests that the proposed 
framework obtains noticeable performance improvement compared with other state-of-the-
art techniques, in terms of detection accuracy, system robustness and total cost.  
This chapter starts with an overview of network intrusion detection technology and the 
related works of ML approaches for Network Security domain, followed by a study of the 

Radial Basis Function Neural Network (RBKNN) family which has been reported for great 
successes in many applications. Emphasis is put on the Generalized Regression Neural 
Network (GRNN) and Vector-Quantized GRNN (VQ-GRNN) for their typical learning and 
system robustness properties. We also provide an overview of Ensemble Learning methods 
in which multiple classifiers are trained to solve the same problem and their decisions are 
then aggregated in some manner. Such methods can be used to boost predictive 
performance of some learning algorithms. Next, the Multiple-Expert Classification 
Framework (MECF) with implementation of advanced voting techniques is presented. The 
usefulness of this model is then illustrated through its application to the network intrusion 
detection problem, focusing on detection capability on rare attack categories. Finally, this 
chapter is concluded with future research direction discussed.   

 
2. Intrusion Detection and Machine Learning techniques 
 

2.1. Intrusion Detection Systems 
As more and more corporations rely on computers and networks for communications and 
critical business transactions, securing digital information has become one of the largest 
concerns of the business community. A powerful security system is not only a requirement 
but essential to the livelihood of enterprises (Kemmerer & Vigna, 2002). In recent years, 
there has been a great deal of research conducted in this area to develop intelligent and 
automated security tools which can fight the latest cyber attacks. The security achieved must 
be reasonable yet sufficient, balancing needs for accountability with equally important 
needs for privacy and accessibility. Alongside the existing techniques for preventing 
intrusions such as encryption and firewalls, Intrusion Detection technology has established 
itself as an emerging research field that is concerned with detecting unauthorized access and 
abuse of computer systems from both internal users and external offenders. An Intrusion 
Detection System (IDS) is defined as a protection system that monitors computers or 
networks for unauthorized activities based on network traffic or system usage behaviors, 
thereby detecting if a system is targeted by a network attack such as a denial of service 
attack  (McHugh, Christie, & Allen, 2000). In response to those identified adversarial 
transactions, IDS can inform relevant authorities to take corrective actions. 
There are a large number of IDS available on the market to complement firewalls and other 
defense techniques. These systems are categorized into two types of IDS, namely (1) misuse-
based detection in which events are compared against pre-defined patterns of known 
attacks and (2) anomaly-based detection which relies on detecting the activities deviating 
from system “normal” operations.  

 
2.2. Application of Machine Learning to Intrusion Detection 
Artificial Intelligence (AI) is the key technology in many of today's novel applications, 
ranging from banking systems that detect attempted credit card fraud or a robot that can 
sense and respond to human emotions, to software systems that can work as a human 
expert to offer appropriate advice when needed. These technologies would not exist without 
the knowledge gained from AI research. As a major part of AI, Machine Learning (ML) 
refers to algorithmic mechanisms that allow computers to learn from experience, examples 
and analogy (Mitchell, 1997). The output of this learning process is actionable knowledge 
that can be used to solve a specific problem. In the case of Intrusion Detection, learning 
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benefits such as shortening the effective geographical distances and sharing information 
efficiently. On the other hand, information exchange in such environments pose a problem, 
which is that, intruders or malicious users may compromise the communications. The 
safeguarding of security is becoming even more difficult, because the possible technologies 
of attacks are very sophisticated; at the same time, less technical ability is required for the 
novice attackers due to easy access to proven past methods through the Web. A traditional 
approach to defend computer networks was based on static defense mechanisms in which 
software, such as the operating system, was kept up-to-date to prevent the exploitation of 
security holes; and the firewalls deployed at critical network segments to improve the 
security at the entry level. However, firewalls aim to regulate and control the flow of 
information into and out of a network rather than detecting whether or not the network is 
under attack. To complement simple firewalls, Intrusion Detection Systems (IDS) are 
normally used to gather and analyze network data to identify possible security breaches, 
which include both intrusions (attacks from outside the organization) and misuse (attacks 
from within the organization). Although IDS have become an important part of most 
network security architectures which provides essential second line of defense, the majority 
of them face a number of challenges such as low detection rates which can miss serious 
intrusion attacks and high false alarm rates, which falsely classifies a normal connection as 
an attack and therefore obstructs legitimate user access to the network resources (Sommer, 
2008). These problems are due to the sophistication of the attacks and their intended 
similarities to normal behavior.  
Most IDS utilize some Machine Learning (ML) techniques to obtain high detection capability 
for novel attacks and automation to save human labor from manually constructing 
signatures of attacks or specifying the normal behavior of a sensor node. Theoretically, it is 
possible for a ML algorithm to achieve the best performance, i.e. it can minimize the false 
alarm rate and maximize the detection accuracy; however, this normally requires infinite 
training sample sizes (Kononenko & Kukar, 2007). In practice, such condition is impossible 
due to limited computing resources and real-time response requirement of IDS. Intrusion 
detection, therefore, remains very challenging. In this chapter, a learning framework is 
proposed to enhance the performance of intrusion detection for rare and complicated 
attacks; that is, the framework can increase the detection accuracy and decrease false alarm 
with acceptable computational expenses. In particular, characteristics of different anomaly 
categories are captured using different strategies, also referred to as local experts, with 
different feature extraction schemes and advanced learning methods.  The outputs of these 
experts are then fused by appropriate voting techniques. In addition to this framework, we 
also introduce a highly performing ML algorithm that combines a light-weight Radial Basis 
Function Neural Network and an Ensemble Learning technique. This algorithm is compared 
against other learning methods for the purpose of local expert creation. This work falls well 
under the category of bias-variance-computations tradeoff problem. In general, we wish to 
reduce bias (for higher accuracy), variance (for fewer false alarms) and computations (for 
fast real time response). An extensive empirical analysis conducted on the Knowledge 
Discovery and Data Mining (KDD-99) intrusion detection data suggests that the proposed 
framework obtains noticeable performance improvement compared with other state-of-the-
art techniques, in terms of detection accuracy, system robustness and total cost.  
This chapter starts with an overview of network intrusion detection technology and the 
related works of ML approaches for Network Security domain, followed by a study of the 

Radial Basis Function Neural Network (RBKNN) family which has been reported for great 
successes in many applications. Emphasis is put on the Generalized Regression Neural 
Network (GRNN) and Vector-Quantized GRNN (VQ-GRNN) for their typical learning and 
system robustness properties. We also provide an overview of Ensemble Learning methods 
in which multiple classifiers are trained to solve the same problem and their decisions are 
then aggregated in some manner. Such methods can be used to boost predictive 
performance of some learning algorithms. Next, the Multiple-Expert Classification 
Framework (MECF) with implementation of advanced voting techniques is presented. The 
usefulness of this model is then illustrated through its application to the network intrusion 
detection problem, focusing on detection capability on rare attack categories. Finally, this 
chapter is concluded with future research direction discussed.   

 
2. Intrusion Detection and Machine Learning techniques 
 

2.1. Intrusion Detection Systems 
As more and more corporations rely on computers and networks for communications and 
critical business transactions, securing digital information has become one of the largest 
concerns of the business community. A powerful security system is not only a requirement 
but essential to the livelihood of enterprises (Kemmerer & Vigna, 2002). In recent years, 
there has been a great deal of research conducted in this area to develop intelligent and 
automated security tools which can fight the latest cyber attacks. The security achieved must 
be reasonable yet sufficient, balancing needs for accountability with equally important 
needs for privacy and accessibility. Alongside the existing techniques for preventing 
intrusions such as encryption and firewalls, Intrusion Detection technology has established 
itself as an emerging research field that is concerned with detecting unauthorized access and 
abuse of computer systems from both internal users and external offenders. An Intrusion 
Detection System (IDS) is defined as a protection system that monitors computers or 
networks for unauthorized activities based on network traffic or system usage behaviors, 
thereby detecting if a system is targeted by a network attack such as a denial of service 
attack  (McHugh, Christie, & Allen, 2000). In response to those identified adversarial 
transactions, IDS can inform relevant authorities to take corrective actions. 
There are a large number of IDS available on the market to complement firewalls and other 
defense techniques. These systems are categorized into two types of IDS, namely (1) misuse-
based detection in which events are compared against pre-defined patterns of known 
attacks and (2) anomaly-based detection which relies on detecting the activities deviating 
from system “normal” operations.  

 
2.2. Application of Machine Learning to Intrusion Detection 
Artificial Intelligence (AI) is the key technology in many of today's novel applications, 
ranging from banking systems that detect attempted credit card fraud or a robot that can 
sense and respond to human emotions, to software systems that can work as a human 
expert to offer appropriate advice when needed. These technologies would not exist without 
the knowledge gained from AI research. As a major part of AI, Machine Learning (ML) 
refers to algorithmic mechanisms that allow computers to learn from experience, examples 
and analogy (Mitchell, 1997). The output of this learning process is actionable knowledge 
that can be used to solve a specific problem. In the case of Intrusion Detection, learning 
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involves discovering patterns of normal behavior or intrusive behavior by analyzing the 
sample data of such activities. This sample data is also called a training set. It should be 
sufficient to represent the whole population of patterns to be discovered. The learned 
models can then be used to make classification on a new data instance based on its similarity 
to normal behavior (anomaly detection) or known attack signatures (misuse detection). 
Many security systems have implemented ML to achieve a generalization capability from 
limited training data. That means, given known intrusion signatures, a security system 
should be able to detect similar or new attacks. 

 
2.2.1. Related works 
One of the rule-based methods which is commonly used by early IDS is the Expert System 
(ES) (Bauer & Koblentz, 1988; Ilgun, 1995). In such systems, the knowledge of human 
experts is encoded into a set of rules. This allows more effective knowledge management 
than that of a human expert in terms of reproducibility, consistency and completeness in 
identifying activities that match the defined characteristics of misuse and attacks. However, 
ES suffers from low flexibility and robustness. Unlike ES, Data Mining approach derives 
association rules and frequent episodes from available sample data, not from human 
experts. It utilizes statistical techniques to discover subtle relationships between data items, 
and from that, constructs predictive models. Using the derived rules, Lee et. al. developed a 
data mining framework for the purpose of intrusion detection (W. Lee, Stolfo, & Mok, 1999a, 
1999b).  In particular, system usage behaviors are recorded and analyzed to generate rules 
which can recognize misuse attacks. The drawback of such frameworks is that they tend to 
produce a large number of rules and thereby, increase the complexity of the system. 
Decision Trees are one of the most commonly used supervised learning algorithms in IDS 
(Amor, Benferhat, & Elouedi, 2004; J.-H. Lee, Lee, Sohn, Ryu, & Chung, 2008; Levin, 2000a; 
V. Miheev, Vopilov, & Shabalin, 2000; Pfahringer, 2000a) due to its simplicity, high detection 
accuracy and fast adaptation. Another highly performing method is Artificial Neural 
Networks (ANN) which can model both linear and non-linear patterns. The resulting model 
can generate a probability estimate of whether given data matches the characteristics that it 
has been trained to recognize. Cannady (1998) developed a network-based detection system 
in which 9-packet-level network data was retrieved from the RealSecure database and then 
classified by a feed-forward neural network (Cannady, 1998). Though this prototype is not a 
complete IDS, the results clearly demonstrate the potential of an ANN in detecting network 
attacks. Latter ANN-based IDS (Mukkamala, 2002; Zhang, Li, Manikopoulos, Jorgenson, & 
Ucles, 2001) have reportedly achieved great successes in detecting difficult attacks. For 
unsupervised intrusion detection, data clustering methods can be applied (Shah, 
Undercoffer, & Joshi, 2003). These methods involve computing a distance between numeric 
features and therefore they cannot easily deal with symbolic attributes, resulting in 
inaccuracy. Another well-known ML technique used in IDS is Naïve Bayes classifiers (Amor 
et al., 2004). Because Naïve Bayes assumes the conditional independence of data features, 
which is often not the case for intrusion detection, correlated features may degrade its 
performance. In (Kruegel, Mutz, Robertson, & Valeur, 2003), the authors apply a Bayesian 
network for IDS. The network appears to be attack specific and its size grows rapidly as the 
number of features and attack types increase. Beside popular decision trees and ANN, 
Support Vector Machines (SVMs) are also a good candidate for intrusion detection systems 
(Ambwani, 2003) which can provide real-time detection capability, deal with large 

dimensionality of data. SVMs plot the training vectors in high dimensional feature space 
through nonlinear mapping and labeling each vector by its class. The data is then classified 
by determining a set of support vectors, which are members of the set of training inputs that 
outline a hyperplane in the feature space. SVMs are scalable as they are relatively insensitive 
to the number of data points (Ambwani, 2003).   

 
2.2.2. The Knowledge Discovery and Data Mining Benchmark 
Current security systems are facing two fundamental challenges. First, the unbalanced 
nature of security dataset indicates dramatic changes in the distribution of classes compared 
with the normal trends i.e., some classes dominate others with their overwhelming 
occurrences (Kemmerer & Vigna, 2002). This will bias the resultant predictive models to 
favor the dominant classes. Second, increased dimensionality, especially when noise is 
involved, can degrade learning significantly (Kemmerer & Vigna, 2002). Together, these two 
characteristics make the detecting intrusive activities very challenging. 
In order to facilitate the comparison of advanced research in the area of network security, 
the Lincoln Laboratory at the Massachusetts Institute of Technology (MIT) conducted the 
1998 and 1999 evaluations of intrusion detection (McHugh et al., 2000). Funded by The 
Defense Advanced Research Projects Agency (DARPA), the purpose of the evaluation 
program is to provide a basis for making comparisons of existing IDS under a common set 
of circumstances and assumptions. Data obtained from these programs were then used as 
the benchmark training and test data sets for “Classifier Learning Contest” organized in 
conjunction with the 5th ACM SIGKDD International Conference on Knowledge Discovery 
& Data Mining in 1999 (KDD-99). 
The KDD-99 dataset has simulated the two challenging problems discussed earlier, namely, 
the unbalanced nature and high dimensionality of security data. It contains 7 weeks of 
training traffic data and 2 weeks of testing data (McHugh et al., 2000). Preprocessing was 
applied to abstract and summarize the raw tcpdump data to form network connections.  
a) Attack types and categories 
Each connection record in the KDD-99 dataset is labeled as either normal or one type of 
attack. There are totally 39 types of attacks which are grouped into 4 major categories 
(McHugh et al., 2000): Probe, Denial of Service (DoS), User to Root (U2R) and Remote to 
Local (R2L). In particular, Probe attacks refer to the incidents in which some malicious 
programs can automatically scan a network of computers to gather sensitive information or 
search for security vulnerabilities while a DoS attack prevents normal use of network 
resources for legitimate purposes by consuming the bandwidth or overloading the 
computational resources of the victim system. The R2L attacks occur when an intruder who 
has no valid account on a machine can exploit some system vulnerabilities to gain local 
access as a legitimate user by sending packets over a network. In contrast, U2R attacks 
assume that the attacker has already access to a system as a normal user and he can exploit 
some security holes to gain user root privileges.   
b) Features 
41 features were used to summarize the connection information. These features are grouped 
as basic features and additional features respectively (McHugh et al., 2000).  
 
 
 



Network Intrusion Detection using Machine Learning and Voting techniques 271

involves discovering patterns of normal behavior or intrusive behavior by analyzing the 
sample data of such activities. This sample data is also called a training set. It should be 
sufficient to represent the whole population of patterns to be discovered. The learned 
models can then be used to make classification on a new data instance based on its similarity 
to normal behavior (anomaly detection) or known attack signatures (misuse detection). 
Many security systems have implemented ML to achieve a generalization capability from 
limited training data. That means, given known intrusion signatures, a security system 
should be able to detect similar or new attacks. 

 
2.2.1. Related works 
One of the rule-based methods which is commonly used by early IDS is the Expert System 
(ES) (Bauer & Koblentz, 1988; Ilgun, 1995). In such systems, the knowledge of human 
experts is encoded into a set of rules. This allows more effective knowledge management 
than that of a human expert in terms of reproducibility, consistency and completeness in 
identifying activities that match the defined characteristics of misuse and attacks. However, 
ES suffers from low flexibility and robustness. Unlike ES, Data Mining approach derives 
association rules and frequent episodes from available sample data, not from human 
experts. It utilizes statistical techniques to discover subtle relationships between data items, 
and from that, constructs predictive models. Using the derived rules, Lee et. al. developed a 
data mining framework for the purpose of intrusion detection (W. Lee, Stolfo, & Mok, 1999a, 
1999b).  In particular, system usage behaviors are recorded and analyzed to generate rules 
which can recognize misuse attacks. The drawback of such frameworks is that they tend to 
produce a large number of rules and thereby, increase the complexity of the system. 
Decision Trees are one of the most commonly used supervised learning algorithms in IDS 
(Amor, Benferhat, & Elouedi, 2004; J.-H. Lee, Lee, Sohn, Ryu, & Chung, 2008; Levin, 2000a; 
V. Miheev, Vopilov, & Shabalin, 2000; Pfahringer, 2000a) due to its simplicity, high detection 
accuracy and fast adaptation. Another highly performing method is Artificial Neural 
Networks (ANN) which can model both linear and non-linear patterns. The resulting model 
can generate a probability estimate of whether given data matches the characteristics that it 
has been trained to recognize. Cannady (1998) developed a network-based detection system 
in which 9-packet-level network data was retrieved from the RealSecure database and then 
classified by a feed-forward neural network (Cannady, 1998). Though this prototype is not a 
complete IDS, the results clearly demonstrate the potential of an ANN in detecting network 
attacks. Latter ANN-based IDS (Mukkamala, 2002; Zhang, Li, Manikopoulos, Jorgenson, & 
Ucles, 2001) have reportedly achieved great successes in detecting difficult attacks. For 
unsupervised intrusion detection, data clustering methods can be applied (Shah, 
Undercoffer, & Joshi, 2003). These methods involve computing a distance between numeric 
features and therefore they cannot easily deal with symbolic attributes, resulting in 
inaccuracy. Another well-known ML technique used in IDS is Naïve Bayes classifiers (Amor 
et al., 2004). Because Naïve Bayes assumes the conditional independence of data features, 
which is often not the case for intrusion detection, correlated features may degrade its 
performance. In (Kruegel, Mutz, Robertson, & Valeur, 2003), the authors apply a Bayesian 
network for IDS. The network appears to be attack specific and its size grows rapidly as the 
number of features and attack types increase. Beside popular decision trees and ANN, 
Support Vector Machines (SVMs) are also a good candidate for intrusion detection systems 
(Ambwani, 2003) which can provide real-time detection capability, deal with large 

dimensionality of data. SVMs plot the training vectors in high dimensional feature space 
through nonlinear mapping and labeling each vector by its class. The data is then classified 
by determining a set of support vectors, which are members of the set of training inputs that 
outline a hyperplane in the feature space. SVMs are scalable as they are relatively insensitive 
to the number of data points (Ambwani, 2003).   

 
2.2.2. The Knowledge Discovery and Data Mining Benchmark 
Current security systems are facing two fundamental challenges. First, the unbalanced 
nature of security dataset indicates dramatic changes in the distribution of classes compared 
with the normal trends i.e., some classes dominate others with their overwhelming 
occurrences (Kemmerer & Vigna, 2002). This will bias the resultant predictive models to 
favor the dominant classes. Second, increased dimensionality, especially when noise is 
involved, can degrade learning significantly (Kemmerer & Vigna, 2002). Together, these two 
characteristics make the detecting intrusive activities very challenging. 
In order to facilitate the comparison of advanced research in the area of network security, 
the Lincoln Laboratory at the Massachusetts Institute of Technology (MIT) conducted the 
1998 and 1999 evaluations of intrusion detection (McHugh et al., 2000). Funded by The 
Defense Advanced Research Projects Agency (DARPA), the purpose of the evaluation 
program is to provide a basis for making comparisons of existing IDS under a common set 
of circumstances and assumptions. Data obtained from these programs were then used as 
the benchmark training and test data sets for “Classifier Learning Contest” organized in 
conjunction with the 5th ACM SIGKDD International Conference on Knowledge Discovery 
& Data Mining in 1999 (KDD-99). 
The KDD-99 dataset has simulated the two challenging problems discussed earlier, namely, 
the unbalanced nature and high dimensionality of security data. It contains 7 weeks of 
training traffic data and 2 weeks of testing data (McHugh et al., 2000). Preprocessing was 
applied to abstract and summarize the raw tcpdump data to form network connections.  
a) Attack types and categories 
Each connection record in the KDD-99 dataset is labeled as either normal or one type of 
attack. There are totally 39 types of attacks which are grouped into 4 major categories 
(McHugh et al., 2000): Probe, Denial of Service (DoS), User to Root (U2R) and Remote to 
Local (R2L). In particular, Probe attacks refer to the incidents in which some malicious 
programs can automatically scan a network of computers to gather sensitive information or 
search for security vulnerabilities while a DoS attack prevents normal use of network 
resources for legitimate purposes by consuming the bandwidth or overloading the 
computational resources of the victim system. The R2L attacks occur when an intruder who 
has no valid account on a machine can exploit some system vulnerabilities to gain local 
access as a legitimate user by sending packets over a network. In contrast, U2R attacks 
assume that the attacker has already access to a system as a normal user and he can exploit 
some security holes to gain user root privileges.   
b) Features 
41 features were used to summarize the connection information. These features are grouped 
as basic features and additional features respectively (McHugh et al., 2000).  
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Basic Features 
Bro is used as the network analyzer to derive the 9 basic features from packet headers 
without inspecting the packet contents (Kemmerer & Vigna, 2002). Some examples of basic 
features include duration of connection, protocol types and service types.  
Additional Features 

 Content features: The payload of TCP packets is assessed by applying the domain 
knowledge. Examples of content-based features include the number of 
unsuccessful logins and whether the root access was gained or not. 

 Time based features: It is important to inspect the packets within some time interval 
to cope with the temporal nature of network attacks. These features are designed to 
capture properties within a 2 second temporal window. Number of connections to 
the same host is an example of time-based features.  

 Host based features: Utilize a historical window estimated over the number of 
connections (100 connections in KDD-99) instead of time. Host based features are 
therefore used to assess attacks which span over intervals longer than 2 seconds. 

c) Learning methods that use KDD-99 dataset 
Among intrusion detection models tested on KDD-99 dataset, most of them are reported to 
provide unacceptably low detection capability for U2R and R2L attacks. Some typical 
examples of such models include a rule-based predictive model (PNrule) (Agarwal, 2000) 
which is studied to effectively detect DoS and Probe attacks; the winning entry of KDD99 
contest (Pfahringer, 2000b) which is composed from 50×10 C5 decision trees fused by cost-
sensitive bagged boosting. Similar techniques are also developed such as a decision tree 
forest constructed by Kernel Miner (KM) tool (Levin, 2000b) and two layers of voting 
decision trees augmented with human security expertise (V. Miheev, Vopilov, A. Shabalin, 
I., 2000). Due to poor performance of these approaches on some sophisticated attacks, we are 
motivated to develop a new learning method to improve the overall detection performance 
on KDD 99 benchmark.  

 
3. Artificial Neural Network and Ensemble Learning 
 

Unlike other pattern recognition tasks which may sacrifice accuracy for system robustness 
and stability, Intrusion Detection requires very high accuracy which implies both high 
detection rate and low false alarm rate (Sommer, 2008). An undetected intrusion can cause 
serious damage to computer networks. In this regards, high detection accuracy is of great 
importance for new security systems. In addition to accuracy, security systems must be also 
fast enough not to cause bottlenecks in communication networks. That is, network 
administrators should be alerted that their systems have been penetrated or have been used 
as springboards for attacks on other systems right after the incidences have occurred. In 
general, security system with high accuracy requires heavy computations. In our approach, 
we develop a system that achieves high accuracy for real time IDS but requires relatively 
small computational complexity. This ensures that the systems can both perform accurately 
and respond to incidences in a timely fashion. 

 
3.1. Bias-Variance Dilemma 
Though several ML techniques have been adopted in the Network Security domain with 
certain success, there remain performance limitations including low detection accuracy and 

high false alarm rates, especially for rare and complicated attacks. For instance, the winning 
entries of KDD-99 competition do not provide satisfactory performance on U2R and R2L 
attack categories due to their low frequency and complicated nature. Several learning 
methods have been developed to increase the detection capability including ANN models. 
As a flexible “model-free" learning method, ANN can fit training data very well and thus 
provide a low learning bias. However, they are also susceptible to the overfitting problem, 
which can cause instability in generalization (Mitchell, 1997). This degraded performance is 
the consequence of the overfitting or overtraining problem, in which data sensitivity causes 
the resulting classifier to have small bias but large variance. 
The learning bias is defined as the measure of how accurately the model fits the available 
sample data while the generalization variance measures how stably the model performs for 
prediction or classification tasks (Mitchell, 1997). To avoid overfitting, some methods which 
are less dependent on available data are introduced, but they may misrepresent the true 
functional relationships and have a large bias. The bias and variance hence are said to be 
inversely related (Mitchell, 1997), i.e. with a fixed data set, reducing one will inevitably 
cause the other to increase.  
Some approaches are proposed to improve the generalization stability by reducing 
generalization variance at the cost of higher learning bias, i.e. allowing underfitting. This 
would deteriorate the overall performance to a certain level. In critical modeling 
applications, underfitting is not acceptable because a miss in detection may be very costly, 
i.e. causing the whole computer network compromised. Therefore, a sensible detection 
system which can achieve both stable generalization and accurate data learning is very 
much desirable. Theoretically, both bias and variance may be reduced at the same time 
given infinite sized models. Nevertheless, this condition is generally infeasible since the 
model complexity must be limited in real life. In this research, we seek a compromise 
solution which can retain the desirable data-fitting capacity of ANN while reducing 
generalization variance at a minimal computational cost. A learning algorithm is proposed 
by combining a radial basis function neural network with an adaptive boosting method. An 
overview of these relevant technologies is provided in the next 2 sections.  

 
3.2. Overview on VQ-GRNN  
A family of ANN models, RBFNN, has recently drawn great research attention due to its 
good generalization ability and a simple network structure that avoids unnecessary and 
lengthy calculations as compared to the Multilayer Feedforward Networks (MFN) (Zaknich, 
2003). Considering the node characteristics and the training algorithms, RBFNN are very 
different from MFN. The node characteristics for MFN are usually chosen as sigmoidal 
functions while for RBFNN, as indicated in the name, radial basis functions are employed. A 
popular algorithm in RFBNN family is the Generalized Regression Neural Network 
(GRNN) proposed by Specht (Spetch, 1991) which contains a hidden layer of radial units. 
Each radial unit models a Gaussian response surface which can be determined by its center 
point and a radius. Because these functions are nonlinear, it is enough for a single hidden 
layer to describe any shape of function. The output of these Gaussians is then linearly 
weighted to produce the desirable response. The following is the general form of GRNN: 
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Basic Features 
Bro is used as the network analyzer to derive the 9 basic features from packet headers 
without inspecting the packet contents (Kemmerer & Vigna, 2002). Some examples of basic 
features include duration of connection, protocol types and service types.  
Additional Features 

 Content features: The payload of TCP packets is assessed by applying the domain 
knowledge. Examples of content-based features include the number of 
unsuccessful logins and whether the root access was gained or not. 

 Time based features: It is important to inspect the packets within some time interval 
to cope with the temporal nature of network attacks. These features are designed to 
capture properties within a 2 second temporal window. Number of connections to 
the same host is an example of time-based features.  

 Host based features: Utilize a historical window estimated over the number of 
connections (100 connections in KDD-99) instead of time. Host based features are 
therefore used to assess attacks which span over intervals longer than 2 seconds. 

c) Learning methods that use KDD-99 dataset 
Among intrusion detection models tested on KDD-99 dataset, most of them are reported to 
provide unacceptably low detection capability for U2R and R2L attacks. Some typical 
examples of such models include a rule-based predictive model (PNrule) (Agarwal, 2000) 
which is studied to effectively detect DoS and Probe attacks; the winning entry of KDD99 
contest (Pfahringer, 2000b) which is composed from 50×10 C5 decision trees fused by cost-
sensitive bagged boosting. Similar techniques are also developed such as a decision tree 
forest constructed by Kernel Miner (KM) tool (Levin, 2000b) and two layers of voting 
decision trees augmented with human security expertise (V. Miheev, Vopilov, A. Shabalin, 
I., 2000). Due to poor performance of these approaches on some sophisticated attacks, we are 
motivated to develop a new learning method to improve the overall detection performance 
on KDD 99 benchmark.  

 
3. Artificial Neural Network and Ensemble Learning 
 

Unlike other pattern recognition tasks which may sacrifice accuracy for system robustness 
and stability, Intrusion Detection requires very high accuracy which implies both high 
detection rate and low false alarm rate (Sommer, 2008). An undetected intrusion can cause 
serious damage to computer networks. In this regards, high detection accuracy is of great 
importance for new security systems. In addition to accuracy, security systems must be also 
fast enough not to cause bottlenecks in communication networks. That is, network 
administrators should be alerted that their systems have been penetrated or have been used 
as springboards for attacks on other systems right after the incidences have occurred. In 
general, security system with high accuracy requires heavy computations. In our approach, 
we develop a system that achieves high accuracy for real time IDS but requires relatively 
small computational complexity. This ensures that the systems can both perform accurately 
and respond to incidences in a timely fashion. 

 
3.1. Bias-Variance Dilemma 
Though several ML techniques have been adopted in the Network Security domain with 
certain success, there remain performance limitations including low detection accuracy and 

high false alarm rates, especially for rare and complicated attacks. For instance, the winning 
entries of KDD-99 competition do not provide satisfactory performance on U2R and R2L 
attack categories due to their low frequency and complicated nature. Several learning 
methods have been developed to increase the detection capability including ANN models. 
As a flexible “model-free" learning method, ANN can fit training data very well and thus 
provide a low learning bias. However, they are also susceptible to the overfitting problem, 
which can cause instability in generalization (Mitchell, 1997). This degraded performance is 
the consequence of the overfitting or overtraining problem, in which data sensitivity causes 
the resulting classifier to have small bias but large variance. 
The learning bias is defined as the measure of how accurately the model fits the available 
sample data while the generalization variance measures how stably the model performs for 
prediction or classification tasks (Mitchell, 1997). To avoid overfitting, some methods which 
are less dependent on available data are introduced, but they may misrepresent the true 
functional relationships and have a large bias. The bias and variance hence are said to be 
inversely related (Mitchell, 1997), i.e. with a fixed data set, reducing one will inevitably 
cause the other to increase.  
Some approaches are proposed to improve the generalization stability by reducing 
generalization variance at the cost of higher learning bias, i.e. allowing underfitting. This 
would deteriorate the overall performance to a certain level. In critical modeling 
applications, underfitting is not acceptable because a miss in detection may be very costly, 
i.e. causing the whole computer network compromised. Therefore, a sensible detection 
system which can achieve both stable generalization and accurate data learning is very 
much desirable. Theoretically, both bias and variance may be reduced at the same time 
given infinite sized models. Nevertheless, this condition is generally infeasible since the 
model complexity must be limited in real life. In this research, we seek a compromise 
solution which can retain the desirable data-fitting capacity of ANN while reducing 
generalization variance at a minimal computational cost. A learning algorithm is proposed 
by combining a radial basis function neural network with an adaptive boosting method. An 
overview of these relevant technologies is provided in the next 2 sections.  

 
3.2. Overview on VQ-GRNN  
A family of ANN models, RBFNN, has recently drawn great research attention due to its 
good generalization ability and a simple network structure that avoids unnecessary and 
lengthy calculations as compared to the Multilayer Feedforward Networks (MFN) (Zaknich, 
2003). Considering the node characteristics and the training algorithms, RBFNN are very 
different from MFN. The node characteristics for MFN are usually chosen as sigmoidal 
functions while for RBFNN, as indicated in the name, radial basis functions are employed. A 
popular algorithm in RFBNN family is the Generalized Regression Neural Network 
(GRNN) proposed by Specht (Spetch, 1991) which contains a hidden layer of radial units. 
Each radial unit models a Gaussian response surface which can be determined by its center 
point and a radius. Because these functions are nonlinear, it is enough for a single hidden 
layer to describe any shape of function. The output of these Gaussians is then linearly 
weighted to produce the desirable response. The following is the general form of GRNN: 
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Where 
x    : Input vector (under line refers to vector) 

nx  : All other training vectors in the input space 
   : Single smoothing parameter chosen during network training 

ny  : Scalar output related to nx  
NV : Total number of training vectors 
In many applications, GRNN provides high accuracy. However, it is computationally 
expensive as well as sensitive to the selection of variances for smoothing functions. In fact, 
GRNN incorporates each and every training example { }i ix y  into its architecture, i.e. all 
of the training vectors needs to be processed and Gaussian function’s parameters such as 
centers and variance will need to be computed with respect to all other surrounding vectors. 
In order to overcome this problem, an approximation of GRNN, namely, the Vector 
Quantized – Generalized Regression Neural Network (VQ-GRNN) is proposed by Zaknich 
(Zaknich, 1998) for application to general signal processing and pattern recognition 
problems. VQ-GRNN is a generalization of Probabilistic Neural Network (PNN) and is 
related to Generalized Regression Neural Network (GRNN) classifiers (Spetch, 1991). In 
particular, this method approximates GRNN by quantizing the data space into clusters and 
associate a specific weight for each of these clusters.  
If there exists a corresponding scalar output iy  for each local region (cluster) which is 
represented by a center vector ic , then a GRNN can be approximated by a VQ-GRNN 
formulated as follow: 
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Where 

ic  = center vector for cluster i in the input space 

iy  = scalar output related to ic  

iZ = number of input vectors jx  within cluster ic  

  = single smoothing parameter chosen during network training 
M  = number of unique centers ic  
Comparing Equation 2 and Equation 1 of GRNN, we can find the only difference is that VQ-
GRNN applies its computation on a smaller number of clusters of input vectors represented 
by centers vectors ic  rather than working on individual input vectors nx . Though VQ-
GRNN has minimal computational overheads and hence, more stable than GRNN, it may be 
less accurate in predicting attacks with low frequency of occurrence. The next section 
discusses a possible approach to enhance the predictive power of VQ-GRNN.   
 

3.3. Overview on Ensemble Learning  
The goal of learning algorithms is to discover the underlying functional relationship of input 
variables. Ordinary ML methods work by searching through a space of possible functions, 
called hypotheses, to find the best approximation to the unknown function. The best 
hypothesis can be identified based on how well it fits the training data and how consistent it 
is with any available prior knowledge about the problem. Ensemble learning algorithms 
take a different approach. Rather than finding one best learner to explain the data, they 
construct a set of learners, called a committee or ensemble, and then have those learners vote 
in some manner to predict the label of new data points. Even though the component learners 
within the ensemble are all attempting to solve the same problem, it is likely that each of 
them would have different strengths and weaknesses in different situations. Realizing and 
managing the situations in which the learner do not perform as well as expected is the key 
challenge for ensemble research (Costa, Filippi, & Pasero, 1995). A number of research 
(Windeatt & Roli, 2003) has supported a widespread view that for an ensemble to achieve 
best performance on a task, the component predictors should exhibit “diverse errors”, 
meaning that they should have different error rates. However, in achieving this, the 
individual accuracy may be affected. Therefore, training an ensemble is actually a balancing 
act between error diversity and individual accuracy.  
Due to the significant performance improvements over single classifiers, ensemble 
construction has become one of the most active fields of AI and has received immense 
research attention. In particular, ensemble algorithms iteratively run a base learning 
algorithm (called base learner) and then form a vote out of the resulting hypotheses 
(Schapire, 1999). There are two main approaches to producing these component hypotheses. 
The first approach, namely bagging, is to construct each hypothesis independently in such a 
way that the resulting set of hypotheses is accurate and diverse, that is, each individual 
hypothesis has reasonably low error rate for making new predictions and yet the hypotheses 
disagree with each other in many of their predictions. It is empirically shown that an 
ensemble of those hypotheses is more accurate than any of its component classifiers, because 
their disagreements will “cancel out” when the ensemble comes to the joint classification 
stage (Optiz & Maclin, 1999). 
Unlike bagging, which relies on resampling the training dataset randomly with a uniform 
probability distribution, boosting (Schapire, 1999)  guides changes of the training data to 
direct further classifiers toward more “difficult cases”. This method is a stepwise technique 
that combines learners in such a way that the composite – boosted learner – outperforms the 
single learner. Amongst popular boosting variants, Adaptive Boosting or AdaBoost is the 
most widely adopted method which allows the designer to continue adding weak learners 
until some desired low training error has been achieved (weak learners have accuracy only 
slightly better than chance whereas weak hypotheses are generated based on the 
performance of previous ones). AdaBoost is “adaptive” in the sense that it does not require 
prior knowledge of the accuracy of these hypotheses (Schapire, 1999). Instead, it measures 
the accuracy of a base hypothesis at each iteration and sets its parameters accordingly.  
Without loss of generality, let us consider the standard two-class supervised ML problem: 
given a set of N independent and identically distributed (i.i.d) training examples ���� ���, n 
= 1,…,N, with �� � � and �� � � � ���� ���, we would like to learn a function �� � � � that 
is able to generalize well on unseen data generated from the same distribution as the 
training data. To obtain such a function, the boosting algorithm iteratively trains a weak 
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Where 
x    : Input vector (under line refers to vector) 

nx  : All other training vectors in the input space 
   : Single smoothing parameter chosen during network training 

ny  : Scalar output related to nx  
NV : Total number of training vectors 
In many applications, GRNN provides high accuracy. However, it is computationally 
expensive as well as sensitive to the selection of variances for smoothing functions. In fact, 
GRNN incorporates each and every training example { }i ix y  into its architecture, i.e. all 
of the training vectors needs to be processed and Gaussian function’s parameters such as 
centers and variance will need to be computed with respect to all other surrounding vectors. 
In order to overcome this problem, an approximation of GRNN, namely, the Vector 
Quantized – Generalized Regression Neural Network (VQ-GRNN) is proposed by Zaknich 
(Zaknich, 1998) for application to general signal processing and pattern recognition 
problems. VQ-GRNN is a generalization of Probabilistic Neural Network (PNN) and is 
related to Generalized Regression Neural Network (GRNN) classifiers (Spetch, 1991). In 
particular, this method approximates GRNN by quantizing the data space into clusters and 
associate a specific weight for each of these clusters.  
If there exists a corresponding scalar output iy  for each local region (cluster) which is 
represented by a center vector ic , then a GRNN can be approximated by a VQ-GRNN 
formulated as follow: 
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Where 

ic  = center vector for cluster i in the input space 

iy  = scalar output related to ic  

iZ = number of input vectors jx  within cluster ic  

  = single smoothing parameter chosen during network training 
M  = number of unique centers ic  
Comparing Equation 2 and Equation 1 of GRNN, we can find the only difference is that VQ-
GRNN applies its computation on a smaller number of clusters of input vectors represented 
by centers vectors ic  rather than working on individual input vectors nx . Though VQ-
GRNN has minimal computational overheads and hence, more stable than GRNN, it may be 
less accurate in predicting attacks with low frequency of occurrence. The next section 
discusses a possible approach to enhance the predictive power of VQ-GRNN.   
 

3.3. Overview on Ensemble Learning  
The goal of learning algorithms is to discover the underlying functional relationship of input 
variables. Ordinary ML methods work by searching through a space of possible functions, 
called hypotheses, to find the best approximation to the unknown function. The best 
hypothesis can be identified based on how well it fits the training data and how consistent it 
is with any available prior knowledge about the problem. Ensemble learning algorithms 
take a different approach. Rather than finding one best learner to explain the data, they 
construct a set of learners, called a committee or ensemble, and then have those learners vote 
in some manner to predict the label of new data points. Even though the component learners 
within the ensemble are all attempting to solve the same problem, it is likely that each of 
them would have different strengths and weaknesses in different situations. Realizing and 
managing the situations in which the learner do not perform as well as expected is the key 
challenge for ensemble research (Costa, Filippi, & Pasero, 1995). A number of research 
(Windeatt & Roli, 2003) has supported a widespread view that for an ensemble to achieve 
best performance on a task, the component predictors should exhibit “diverse errors”, 
meaning that they should have different error rates. However, in achieving this, the 
individual accuracy may be affected. Therefore, training an ensemble is actually a balancing 
act between error diversity and individual accuracy.  
Due to the significant performance improvements over single classifiers, ensemble 
construction has become one of the most active fields of AI and has received immense 
research attention. In particular, ensemble algorithms iteratively run a base learning 
algorithm (called base learner) and then form a vote out of the resulting hypotheses 
(Schapire, 1999). There are two main approaches to producing these component hypotheses. 
The first approach, namely bagging, is to construct each hypothesis independently in such a 
way that the resulting set of hypotheses is accurate and diverse, that is, each individual 
hypothesis has reasonably low error rate for making new predictions and yet the hypotheses 
disagree with each other in many of their predictions. It is empirically shown that an 
ensemble of those hypotheses is more accurate than any of its component classifiers, because 
their disagreements will “cancel out” when the ensemble comes to the joint classification 
stage (Optiz & Maclin, 1999). 
Unlike bagging, which relies on resampling the training dataset randomly with a uniform 
probability distribution, boosting (Schapire, 1999)  guides changes of the training data to 
direct further classifiers toward more “difficult cases”. This method is a stepwise technique 
that combines learners in such a way that the composite – boosted learner – outperforms the 
single learner. Amongst popular boosting variants, Adaptive Boosting or AdaBoost is the 
most widely adopted method which allows the designer to continue adding weak learners 
until some desired low training error has been achieved (weak learners have accuracy only 
slightly better than chance whereas weak hypotheses are generated based on the 
performance of previous ones). AdaBoost is “adaptive” in the sense that it does not require 
prior knowledge of the accuracy of these hypotheses (Schapire, 1999). Instead, it measures 
the accuracy of a base hypothesis at each iteration and sets its parameters accordingly.  
Without loss of generality, let us consider the standard two-class supervised ML problem: 
given a set of N independent and identically distributed (i.i.d) training examples ���� ���, n 
= 1,…,N, with �� � � and �� � � � ���� ���, we would like to learn a function �� � � � that 
is able to generalize well on unseen data generated from the same distribution as the 
training data. To obtain such a function, the boosting algorithm iteratively trains a weak 
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hypothesis on a weighted data sample. As boosting progresses, training examples that are 
hard to predict correctly, get incrementally higher weights than the other examples. The 
intended effect is to force the weak learner to concentrate on examples and labels that will 
be most beneficial to the overall goal of finding a highly accurate classification rule. This 
update process is repeated, until a certain stopping condition is met (e.g a given number of 
weak classifiers are trained or the learning error reaches a desirable level). The final joint 
classification is the linear weighted combination of the base hypotheses (Huang, Ertekin, 
Song, Zha, & Giles, 2007): 
����� � �����∑ �� ������ ����    
Motivated by the need of an accurate detection system for network security applications, we 
seek a learning algorithm which provides a good tradeoff for learning bias, generalization 
variance and computational requirement. In theory, the GRNN can achieve the optimal 
Bayesian estimate (with infinity network size) but with a cost of extremely demanding 
computation resource. The VQ-GRNN reduces the computationally extensive 
nonparametric GRNN to a semiparametric neural network by applying vector quantization 
techniques on the input space. This reduction significantly improves the robustness of the 
algorithm (low variance), but also affects its learning accuracy to some extent. To overcome 
this limitation, AdaBoost is used to boost its performance. The boosted version of VQ-
GRNN which is referred to as Boosted VQ-GRNN will be implemented in the Multi-Expert 
Classification Framework.  

 
4. Multi-Expert Classification Framework  
 

Different learning algorithms behave variably on different classes. They may obtain superior 
performance on some classes but present unacceptable low accuracy for others. The 
imbalance of predictive performance motivates this research to construct an intelligent 
multi-expert learning framework which can aggregate expert knowledge from class-specific 
models, i.e. classifiers specialized in detecting a specific class. There is a good deal of 
research that shows the potentials of models that combines classification results from 
individual sub-models. Basically, there are two forms of classifier combination, the multi-
stage (or hierarchical) (Vuurpijl, 2000) methods and the ensemble (or late fusion) (Kuncheva, 
2002.) methods. In the first approach, the classifiers are placed in a multi-layered 
architecture where the output of one layer affects the model selection in the next layer. On 
the other hand, the second approach explores ensembles of classifiers, trained on different 
distributions of the original dataset and using different or similar features and learning 
algorithms. The outputs of these classifiers are then fused into one compound classification 
using voting techniques.  
For a multi-class classification problem such as network intrusion detection, instead of 
trying to design a learning algorithm that is accurate over the entire space, we can focus on 
creating a model that can predict well for a specific portion within the space. We then 
combine such models to obtain a joint classifier which performs accurately on many classes. 
Under this light, a Multi-Expert Classification Framework (MECF) combining different 
classifiers for different types of attacks is proposed. Its sub-models are trained in an attack-
specific manner and then integrated to accumulate their specializations. Boosted VQ-GRNN 
will be compared with several algorithms and then used for creating component classifiers.  
 

4.1. Framework description 

Fig.1. Multi-expert classifier for Intrusion Detection 
 
Fig.1 describes a generic predictive model which combines different classifiers; each with 
special expertise in detecting a specific attack type. Each of these classifiers will be trained 
on different subsets of an underlying universal dataset. These subsets differ from each other 
in terms of attribute selections (Feature selectors) and attack-specific encoding schemes 
(Encoder). We aim to construct the class-specific classifiers, called experts, which have high 
Detection Rate on specific classes. To do so, several combinations of different attributes will 
be tested to gain the best performance for a particular attack category. We then train those 
classifiers on the dataset whose labels indicate whether a data instance belongs to a 
particular attack category or not. For example, if a classifier is created to recognize Probe 
attacks (Probe expert), then the data labels will be encoded as Probe for instances belonging 
to probe category or Non-probe otherwise. This has an effect of reducing a multi-class 
learning problem into a multiple binary classifications. The learning speed will be faster and 
the resulting classifier will be more “specialized” in detecting particular categories of attacks 
and less prone to overfitting problem.  
Another useful aspect of this approach originates from the fact that even when different 
classifiers are trained on the same dataset and have comparable performance on the test set, 
they still have different “inductive biases” (Mitchell, 1997). This prevents these models from 
generalizing in identical ways. Under the proposed arrangement, component classifiers are 
very different from each other in terms of their biases. From experiments, it is shown that if 
a classifier is trained with a dataset which emphasizes a particular attack, it will have good 
detection rate for that particular attack but does not detect other attacks well.  One of the 
widely used approaches is the cross-validation which perceives the different “inductive 
biases” as an indication to select “super” classifiers which perform best on all classes. As a 
result, some models will be discarded because of their low performance. This leads to a 
potential loss of useful information and effort. In contrast, an ensemble can effectively make 
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hypothesis on a weighted data sample. As boosting progresses, training examples that are 
hard to predict correctly, get incrementally higher weights than the other examples. The 
intended effect is to force the weak learner to concentrate on examples and labels that will 
be most beneficial to the overall goal of finding a highly accurate classification rule. This 
update process is repeated, until a certain stopping condition is met (e.g a given number of 
weak classifiers are trained or the learning error reaches a desirable level). The final joint 
classification is the linear weighted combination of the base hypotheses (Huang, Ertekin, 
Song, Zha, & Giles, 2007): 
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use of such complementary information to reduce model variance and bias (Tumer & 
Ghosh, 1995). The meta-learner in this framework could be as simple as a lookup table to a 
more advanced voting techniques. A brief review of related voting methods is given in the 
next section. 

 
4.2. Voting techniques for pattern recognition 
In human society, voting is a common concept in which voters indicate their preference 
choices from multiple options (candidates) by means of a vote (Parhami, 1994). These votes 
are then integrated into one final decision (the winner). This process is called an election. In 
the context of classifier combination, the voters are the individual classifiers that can 
generate a single class or a ranked list of all classes as a vote; the possible classes are the 
candidates and an election is the classification of one sample. The winner is the candidate 
that is chosen as result of the classification procedure of the sample by the combination of 
classifiers. There are a number of families of voting techniques.  
Firstly, the un-weighted voting methods consider each vote equally and the only 
differentiation between the candidates is the number of votes they have received. As a 
consequence, voters cannot express the degree of preference of one candidate over another 
(Parhami, 1994). Apart from this limitation, un-weighted voting such as majority voting is 
still commonly used, due to its simplicity and relatively good performance. Particularly, 
every voter has one vote that can be cast for any one candidate and the candidate that 
obtained the majority of the votes will win the election.  
The second family of voting methods is confidence voting in which voters can express the 
degree of their preference for a candidate by assigning a confidence value to candidates. The 
higher the total confidence value a candidate received, the more it is preferred by the voter. 
In our experiments, confidence value is equivalent to probabilities of class membership that 
are generated by local experts. There are 3 common ways of computing the total confidence 
votes: (1) summing up all confidence values (Sum rule); (2) multiplying all confidence 
values (Product rule); (3) repeatedly applying a majority vote based on the highest ranked 
candidate of each voter’s preference ranking and transferring votes between candidates 
(Single transferable vote-STV) (Doron, 1977). The basic principle of STV is that voters rank 
the candidates in order of preference. In order to be elected, a candidate must achieve a 
computed quota. The votes can be transferred in two cases:  

 Excess votes over the quota are appropriately down-weighted and allocated to the 
next preference of voters (this is not applicable in our case because we terminate 
voting when a winner is selected).  

 If no candidate reaches the quota, the candidate with the least number of votes is 
eliminated and their votes transferred to next preferences. 

In the context of classifier combination, voting techniques like STV are necessary because it 
can better integrate the preference choices of the local experts.  For example, if no expert has 
enough confidence to classify an input vector, instead of marking it as an “unknown” 
instance which implies overheads for further investigation, the least voted candidate class is 
eliminated and its votes will be transferred to other classes. By this means, we not only 
utilize the votes that are otherwise wasted but also reduce the need for further processing of 
the unknown instances.  In our experiments on the KDD-99 dataset, we attempt to use 
different voting methods and examine their behaviors in a multi-expert framework.  
 

5. Experimental analysis 
 

5.1. Cost-based Analysis 
The KDD-99 dataset takes the cost sensitivity into consideration in evaluating learning 
methods. An error on a particular class may not be equally serious as errors on other classes. 
To make comparison between intrusion detection methods sensitive to cost, a cost matrix 
(CostM) is given for different attack categories.  
 

       Predicted      
Actual 

Normal (0) Probe (1) DoS (2) U2R (3) R2L (4) 

Normal (0) 0 1 2 2 2 
Probe (1) 1 0 2 2 2 
DoS (2) 2 1 0 2 2 
U2R (3) 3 2 2 0 2 
R2L (4) 4 2 2 2 0 

Table 1.  Cost matrix for the KDD-99 dataset (Levin, 2000a)  
 
In this table, rows correspond to actual categories, while columns correspond to classified 
values. The Normal category is symbolized as class 0, Probe as 1 and so forth. According to 
this cost matrix, if a R2L attack is falsely classified as Normal connection, the incurred 
penalty cost is 4 while misclassification of a Probe attack as normal has a cost of 1. This 
suggests that R2L attacks are more serious than Probes.  
During the testing phase, the outputs of a classifier will be generated in form of a Confusion 
Matrix (ConfM) which summarizes the classification results. The difference between CostM 
and ConfM is that an entry at row i and column j in the cost matrix, CostM(i,j), represents 
the cost associated with a connection which actually belongs to class i and is classified as 
class j while the same position in the confusion matrix, ConfM(i.j), displays the number of 
connections of type i and is classified (correctly or incorrectly) as class j. Given a test set, the 
average cost of a classifier is calculated as below (McHugh et al., 2000): 
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Where 
N: total number of connections in the dataset 
ConfM(i,j): the entry at row i, column j in the confusion matrix. 
CostM(i,j): the entry at row i, column j in the cost matrix. 

 
5.2. Experiment design 
We are motivated to explore how different learning algorithms perform for different attack 
categories, i.e. to check weather a certain algorithm may achieve superior performance for a 
specific attack category. In the light of this possibility, we compare several detection models 
using different pattern recognition methods and select the best performing algorithms as 
well as the most discriminant features for each attack category. A multi-classifier system 
then evolves which improves the overall detection performance on the KDD-99 benchmark. 
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use of such complementary information to reduce model variance and bias (Tumer & 
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next section. 
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 Excess votes over the quota are appropriately down-weighted and allocated to the 
next preference of voters (this is not applicable in our case because we terminate 
voting when a winner is selected).  

 If no candidate reaches the quota, the candidate with the least number of votes is 
eliminated and their votes transferred to next preferences. 

In the context of classifier combination, voting techniques like STV are necessary because it 
can better integrate the preference choices of the local experts.  For example, if no expert has 
enough confidence to classify an input vector, instead of marking it as an “unknown” 
instance which implies overheads for further investigation, the least voted candidate class is 
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utilize the votes that are otherwise wasted but also reduce the need for further processing of 
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different voting methods and examine their behaviors in a multi-expert framework.  
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The KDD-99 dataset takes the cost sensitivity into consideration in evaluating learning 
methods. An error on a particular class may not be equally serious as errors on other classes. 
To make comparison between intrusion detection methods sensitive to cost, a cost matrix 
(CostM) is given for different attack categories.  
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In this table, rows correspond to actual categories, while columns correspond to classified 
values. The Normal category is symbolized as class 0, Probe as 1 and so forth. According to 
this cost matrix, if a R2L attack is falsely classified as Normal connection, the incurred 
penalty cost is 4 while misclassification of a Probe attack as normal has a cost of 1. This 
suggests that R2L attacks are more serious than Probes.  
During the testing phase, the outputs of a classifier will be generated in form of a Confusion 
Matrix (ConfM) which summarizes the classification results. The difference between CostM 
and ConfM is that an entry at row i and column j in the cost matrix, CostM(i,j), represents 
the cost associated with a connection which actually belongs to class i and is classified as 
class j while the same position in the confusion matrix, ConfM(i.j), displays the number of 
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average cost of a classifier is calculated as below (McHugh et al., 2000): 
 

���� � 1
����������� �� � �������� ��

�

���

�

���
 

 
Where 
N: total number of connections in the dataset 
ConfM(i,j): the entry at row i, column j in the confusion matrix. 
CostM(i,j): the entry at row i, column j in the cost matrix. 

 
5.2. Experiment design 
We are motivated to explore how different learning algorithms perform for different attack 
categories, i.e. to check weather a certain algorithm may achieve superior performance for a 
specific attack category. In the light of this possibility, we compare several detection models 
using different pattern recognition methods and select the best performing algorithms as 
well as the most discriminant features for each attack category. A multi-classifier system 
then evolves which improves the overall detection performance on the KDD-99 benchmark. 
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A generic ensemble model is developed as in Fig.1, containing 5 classifiers (experts) which 
specialize in detecting certain classes (Normal, Probe, DoS, U2R and R2L). There are 3 major 
phases in this model: 

Fig. 2. Multi-expert classification framework (MECF) 

 
5.2.1. Data preprocessing  
The KDD-99 dataset contains attributes of different forms such as continuous, discrete and 
symbolic with varying resolutions and ranges. In order to build predictive models, this data 
is first converted into a compatible format. Several preprocessing techniques include data 
reduction (removing duplicated data and sampling data into smaller sets), data encoding 
and normalization (mapping k-value nominal and ordinal attributes into k integers, re-
scaling numeric attributes), dimensionality reduction (extract most informative attributes by 
adapting Protocol-based Logistic Regression (PLR) (Yu, Wu, & Wong, 2008)).   

 
5.2.2. Local expert creation 
Local experts (detectors) are constructed by selecting the best performing learning 
algorithms and best disriminant features for specific attack types. For each class (normal and 
attack categories), a specialized classifier is created by three steps:  
a) Apply class-specific encoding schemes on data 
For example, to produce a DoS detector, each data record is encoded to indicate whether it is 
actually a DoS attack or not, i.e. its label is assigned to 1 if it belongs to this class, or 0 
otherwise.  
Given a dataset S in which the input features are represented by vector x and the output (or 
target) class is denoted by label c where c=1,…,K and K is the number of possible labeling (in 
KDD-99, K=5). To construct a local classifier which is specialized in detecting a specific class 

k, the label c should be recoded to  such that:  

b) Select important features from the input data 

We train some classifiers with different combinations of attributes in the encoded data. The 
combination which gives the best performance will be selected for that particular class.   
c) Choose the best performing classifier 
The learning algorithm with the best trade-off between high detection capability and low 
false alarm rate will be selected.  

 
5.2.3. Expert Combination 
Given an input vector, each local expert computes an array of probabilities (ranging from 0 
to 1) of class membership for each available class. These probabilities are merged by voting 
methods to decide the final classification of the input vector. Several voting approaches will 
be implemented and their performance will be compared in the next section.   

 
5.3. Experiment results 
 

5.3.1. Constructing MECF 
To construct local experts, different predictive models are trained with different 
combinations of data feature groups including basic group (B), content-based group (C) and 
traffic-based group (T) for basic, content-based and traffic based features respectively. In 
particular, the semi-parametric algorithms such as Boosted VQ-GRNN will be compared 
against the parametric models such as decision trees (linear discriminant), boosted trees and 
non-parametric methods (MLP, GRNN).The boosted tree algorithm is the combination of J48 
and AdaBoostM1 methods which are available from the Weka package. For the GRNN and 
Boosted VQ-GRNN models, a similar model size was chosen with one hidden layer 
containing 15 hidden nodes. The MLP has a structure of three layers with the number of 
input neurons equal to the number of input features, five hidden neurons and five output 
neurons (1 for each class).  The above numbers of hidden nodes are selected from multiple 
experiments (number of hidden nodes varying from 5 to 55 with steps of 10) by choosing the 
setting with lowest bias and variance.  
 
Model B T C B+T B+C T+C

Detection rate for Normal (%)
J48 Tree 81.1 11.4 11.2 79.9 80.2 41.2 

Boosted J48  94.6 12.5 13.1 92.0 92.2 43.2 

MLP 85.6 8.6 8.5 85.5 86.7 30.4 

SVM 90.4 10.9 10.4 91.2 91.5 29.8 

GRNN 95.1 13.5 12.5 93.8 94.6 40.2 

Boosted VQ-GRNN 95.6 14.5 13.5 95.1 95.2 33.8 

Detection rate for Probe (%)
J48 Tree 46.2 20.7 22.4 86.1 56.4 39.1 

Boosted J48  45.1 25.1 23.1 90.7 56.8 33.2 

MLP 39.1 27.7 11.3 82.3 40.1 32.1 

SVM 42.7 30.8 16.9 87.5 50.6 68.3 

GRNN 44.6 25.1 21.7 84.3 47.8 44.1 

Boosted VQ-GRNN 45.1 29.1 20.3 86.2 50.2 43.5 
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Detection rate for DoS (%) 
J48 Tree 78.2 17.2 34.7 88.6 76.1 51.3 

Boosted J48  79.0 24.1 50.1 90.3 77.3 53.7 

MLP 66.7 15.7 40.1 87.6 60.1 49.1 

SVM 78.2 20.2 33.5 85.6 58.3 50.3 

GRNN 78.1 22.2 44.8 92.0 75.7 51.4 

Boosted VQ-GRNN 78.2 23.1 43.2 92.3 78.2 50.5 

Detection rate for U2R (%)
J48 Tree 0.4 0.0 5.0 0.3 22.3 7.6 

Boosted J48  0.1 0.1 4.3 1.1 27.2 7.8 

MLP 0.3 0.8 6.7 0.1 18.1 7.1 

SVM 0.0 0.5 4.6 0.2 11.6 6.6 

GRNN 0.1 3.2 7.2 0.1 28.6 6.0 

Boosted VQ-GRNN 0.0 3.2 7.2 0.4 27.2 6.1 

Detection rate for R2L (%)
J48 Tree 0.9 0.0 2.9 0.0 34.0 2.8 

Boosted J48  0.5 0.0 2.8 0.0 35.2 2.3 

MLP 0.0 0.1 2.1 0.1 22.1 3.0 

SVM 0.0 0.0 1.5 0.0 33.8 2.5 

GRNN 0.9 0.1 2.3 0.3 36.2 3.3 

Boosted VQ-GRNN 0.1 0.1 2.1 0.3 41.2 3.1 

Table 2. Detection rate for different classes and features 
 
From the results in Table 2, for each type of attacks, the best performing combination of 
features and learning algorithms will be chosen and highlighted. For example, the 
combination of basic and traffic features with the Boosted J48 Tree achieve the highest 
detection rate for Probe attacks (90.7%). Note that, these models are trained on the data 
which is encoded for specific categories. Therefore, their detection rates are only valid on the 
encoded data. The Table 3 shows the best performing strategies (feature combination, 
attack-specific encoding scheme and learning algorithm) selected. 
 
Model Features used Encoding scheme used Algorithm used 
Normal Expert Basic 1 (Normal) ; 0(non- Normal) Boosted VQ-GRNN 
Probe Expert Basic + Traffic 1 (Probe) ; 0(non-probe) Boosted J48 Tree 
DoS Expert Basic + Traffic 1 (DoS) ; 0(non- DoS) Boosted VQ-GRNN 

U2R Expert Basic + Content 1 (U2R) ; 0(non-U2R) GRNN 
R2L Expert Basic + Content  1 (R2L) ; 0(non- R2L) Boosted VQ-GRNN 

Table 3. Local experts’ configuration 

 
5.3.2. Performance evaluation 
The classification results of the constructed local experts are combined in the Multi-Expert 
Classification Framework (MECF) using different voting strategies including majority vote 
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PNrule(Agarwal, 2000) 99.5 73.2 96.9 6.6 10.7 DR 
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MECF–MV 99.4 88.0 97.2 29.3 11.9 DR 
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MECF–STV 99.8 99.3 98.1 89.7 48.2 DR
3.6 1.1 0.06 0.03 0.19 FAR

Table 4. Detection Rate (DR %) and False Alarm Rate (FAR %) comparison 
 
Across the classes, in comparison with existing techniques, MECF using simple majority 
vote (MECF-MV) does not provide noticeable improvement in DR while its FAR is quite 
high in most cases (Probe, U2R, R2L and Normal). The product rule voting technique (in 
MECF-PR) is found unstable because it suddenly increases DR for the DoS attack (98.0%) 
while its results for the remaining classes are largely degraded. The MECF-SR, on the other 
hand, has a stable performance with fairly high DR and low FAR for most of the classes (it 
has lowest FAR for the Normal class).  
Among the methods considered here, our classification framework that uses STV technique 
(MECF-STV) and the LCRF (Gupta, Nath, & Kotagiri, 2008) are the most recent and they 
seem to be the most accurate models (high DR and low FAR). Most methods do not perform 
well for the U2R attacks (DR is lower than 30%), except for a dramatic increase in DR is 
noted for Decision Tree (J.-H. Lee et al., 2008) (58.8%), Columbia Model (W.  Lee & Stolfo, 
2000) (81.8%), LCRF (Gupta et al., 2008) (86.30%) and MECF-STV (89.7%). For the R2L 
category, only MECF-STV provides a significantly high DR (48.2%) and lowest FAR (0.19%).   
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Fig. 3. Detection Rate comparision  

Fig. 4. False Alarm comparision 
 
Though no model can provide both highest DR and lowest FAR for all the classes, our 
MECF-STV is the most promising model which makes the best combination of detection 
capability (DR) and system robustness (FAR). That is, MECF-STV can achieve highest DR 
for all the classes and its FAR for the two rare U2R and R2L categories are the lowest. In the 
case that other models obtain lower FAR, the performance difference between that model 
and MECF-STV is very small. Moreover, the average cost of MECF-STV is 0.1089 per test 
sample, which is much lower than the KDD winner (0.2332). It is also important to note that 
the test data used in our experiments follows a different distribution than in the training 
data and contains an additional 14 attack types not included in the training data. Therefore, 
achieving high DR on this test dataset suggests that our model is robust to data distribution 
changes and is able to detect unseen attacks. Fig. 3 and Fig. 4 visualize DR and FAR of the 
classifiers on the KDD-99 dataset.  
In summary, our proposed MECF-STV (multi-expert classification framework using single 
transferable voting) can significantly reduce the total misclassification cost compared with 
KDD-99 winner. Its detection rates are the highest for Normal, U2R and R2L categories and 
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very close to that of the best performing classifiers for Probe and DoS categories. Finally, 
False alarm rates obtained by MECF-STV are often the lowest compared to other methods.  

 
6. Conclusions and Future work 
 

6.1. Conclusion remarks 
Motivated by the low detection rates on rare and complicated attacks in the KDD-99 
benchmark, we develop the Multi-Expert Classification Framework (MECF) in which Vector 
Quantized Generalized Regression Neural Network (VQ-GRNN) and Adaptive Boosting 
(AdaBoost) are deployed. It is shown that some learning algorithms that use certain sets of 
features and class-specific encoding schemes can achieve superior detection capability for a 
given attack category. Consequently, MECF aims to capture the characteristics of different 
intrusive classes and normal instances by constructing a set of five local classifiers (experts) 
to classify data into five different classes including Normal, Probe, DoS, U2R and R2L. For 
each of these classes, a tailored learning strategy (an expert) is employed. The outcomes of 
these experts will then be combined using high performance voting methods. Experimental 
results indicate that the weighted voting strategies outperform simple majority voting. 
Using the transferable voting approach, our Multi-Expert Classification Framework using 
Single Transferable Voting (MECF-STV) model can significantly improve the detection rates 
of not only minority and distributed U2R and R2L attacks but also majority classes 
compared with other techniques. Moreover, this model achieves a low detection cost. 
In conclusion, the empirical analysis from this research suggests that our proposed 
framework performs very well in the intrusion detection problem in terms of accuracy and 
system robustness while offering “affordable” computation compared with existing state-of-
the-art techniques. However, no system is absolutely secure given the best possible 
detection algorithms. That is true as long as the system is connected to other networks. The 
absolute security can only be achieved by disconnecting the system from the outside world 
which is against the principal benefits of internetworking – accessibility of information. This 
means that protecting our resources from network attacks is an ongoing task and computer 
security is always an active and challenging research area.  

 
6.2. Future works 
Increasingly-intense distributed denial-of-service (DDoS) attacks on Internet Service 
Provider (ISP) backbones are surpassing providers' capacity and knocking customers offline 
(Kemmerer & Vigna, 2002). Such attacks are more dangerous than traditional DoS due to its 
complex and distributed nature. To fight these attacks, the generic IDS examined here can be 
extended to a multi-level agent detection system for distributed networks. Literature in this 
area has highlighted several generic limitations associated with Distributed Intrusion 
Detection System (DIDS) such as inability to cope with huge amount of data in different 
formats and ineffective coordination between distributed sensors and agents (Kemmerer & 
Vigna, 2002). Some of these problems were outlined and different approaches have been 
implemented to solve those problems. It is interesting to explore the applicability of our 
framework in such distributed context, i.e. using the MECF-STV to develop a multi-level 
agent framework to construct a robust, distributed, error tolerant and self protecting DIDS. 
To design such DIDS, an appropriate design of centralization and decentralization of data 
processing and detection capabilities needs to be considered.  
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1. Introduction     
 

Classification is one of the important tasks in data mining that can extract knowledge from 
real world data sets. It helps in forecasting the future knowledge from the available 
knowledge or information. It also helps people in making better decision in the future based 
on the history and existing knowledge. With the classification algorithm, people can 
repeatedly make a forecast on the accumulated knowledge in new situations. 

 
2. Immune System 
 

2.1 Natural Immune System 
A biological immune system has two broad response systems. One is innate immunity, 
which is general and exists in our body since we are born. The other one is an adaptive 
immunity that is based on two kinds of antibody cells in the body: T-cells, so named because 
they originate in the thymus gland and B-cells originate in bone marrow (de Castro & 
Timmis, 2002). When a pathogen invades the body, special cells called antigen are available. 
An individual T-cell or B-cell responds to the antigens by cloning and mutating to match the 
antigen. This is the concept of clonal selection theory (Burnet, 1959) where the binding of 
antibody with the antigen will activate the antibody and the clonal expansion of the 
antibody occurs. The closer the match, the affinity of that T-cell or B-cell from the antigen 
(Hunt & Cook, 1996) becomes stronger. B-cells that do not match any antigens will be 
eliminated. From immune network theory, (Jerne, 1974) antibody also interacts with the 
neighbour antibodies to form a network. If the antibody do not stimulate with the 
neighbour antibodies, it eventually die. After the process of generating antibodies and 
combating the antigens and a body has successfully defended against a pathogen, a 
comparatively small number of memory cells remain in the body for very long time. These 
memory cells recognize antigens similar to those that originally cause the immune response, 
so that the body’s response to a future and very similar invader is much faster and powerful 
than to a never-before-seen invader. 
 

16



Machine Learning292

2.2 Artificial Immune System 
An artificial immune system is a bio-inspired computational model that uses idea and 
concepts from the natural immune system. Although there are about four concepts that are 
explored in the immune system (de Castro & Timmis, 2002), the concepts that are discussed 
in this paper are the interaction between antigen and B-cells (stimulation and suppression) 
as in the clonal selection theory (Burnet, 1959) and also the interaction between antibody 
and antibody as in the immune network theory (Jerne, 1974). Both theories involve cloning 
and mutating process (de Castro & Von Zuben, 2000). It can offer strong and robust 
information processing capabilities for solving complex problems. Applications of AIS 
include supervised and unsupervised machine learning, pattern recognition, intrusion 
detection and security (Dasgupta, 2006). Among the early models on supervised machine 
learning is Immunos81 (Carter, 2000) and AIRS (Watkins, 2001; Watkins et al., 2004). 
However, the former model uses significantly different and complex approach. The later 
model is the first straightforward immune-inspired supervised learning algorithm and has 
subsequently gone through a period of study and refinements (Watkins & Timmis, 2002; 
2004; Hamaker & Boggess, 2004). However, many of these studied classification models 
concentrate on the population-based or clonal selection  algorithm and ignore the important 
network feature (Timmis, 2001) of the immune system. The models also require numerical 
representation of data and mostly are tested only on numerical dataset. Some of the 
applications on classification with AIS models are summarized in Table 1. 
 

Concept Objective Referrences 

Immune Network DNA Classification, 
Text Classification 

Hunt & Cook, 1996; Secker et al, 
2004 

Clonal Selection Numeric Data 
Classification 

Carter 2000; Leandro 2000; Sahan et 
al 2005; Leung et al, 2006; Peng et al 

2007 

Clonal Selection 
with resource 

limited 

Numeric Data 
classification, Text 

Classification, 
Heterogeneous data 

classification 

Watkins 2001;2002;2004; Hamaker 
2004; Secker 2007; Puteh et al 2008 

Clonal Selection 
with resource 

limited and parallel 

Numeric data 
classification Watkins 2004 

Negative Selection Binary classification Igawa et al 2005 
Table 1. Classification applications with AIS models
  
As suggested in (Watkins, 2001; Freitas & Timmis, 2007; Hart & Timmis, 2008; Timmis, 
2006), methods of using other types of data need to be explored to allow for greater 
applicability of this learning paradigm. (Hamaker & Boggess, 2004) has explored variety of 
similarity measurements in generating classifiers with clonal selection concept or 
population-based AIS algorithm but a more comprehensive experiment on many problems 
with heterogeneous types is required in order to prove a high quality classification 
technique for heterogeneous data types. (Puteh et al., 2008) has introduced a classification 

model using clonal selection for heterogeneous data that is called Flexible Artificial Immune 
Recognition System (FAIRS) to experiment the heterogeneous data in its original types. 
FAIRS has shown some improvement in the accuracy compared to the existing AIS 
classification models. To further experiment on AIS algorithm and to overcome the 
limitation mentioned in the previous research, there is a need for developing the AIS 
classifier with the network feature and be able to accept heterogeneous data without the 
need for the data transformation. In order to accept various types of data, all processes 
involving these data must consider appropriate and suitable affinity measurement, mutation 
method and the correct data structure implementation.  

 
2.2 Distance Metrics 
There are many learning systems depend on good distance function to be successful such as 
the nearest neighbour techniques (Cover & Hart, 1967; Hart, 1968; Dasarathy & Belur, 1991), 
and memory-based reasoning methods (Stanfill & Waltz, 1986). Such algorithms have had 
much success on a wide variety of applications (real-world classification tasks). Many of 
these metrics work well for numerical attributes but do not appropriately handle nominal 
attributes (Wilson & Martinez, 1997). The common distance metrics that are used for 
numerical attributes and binary attributes are the Euclidean metric and the Hamming 
metrics as shown in equation 1 and 2.  
 

Euclidean (x,y)  = �∑ ���� �����������     (1) 
 

Hamming(x,y) = ∑ ������������ � � � �������������
�������������������                           (2) 

 
The value difference Metric (VDM) (Stanfill & Waltz, 1986) was introduced to define an 
appropriate distance function for nominal attributes as shown in equation 3.  
 

       vdm��x, y� � �∑ �N�,�,�
N�,�

��N�,�,�
N�,�

�
�C���      (3) 

 
where Na,x is the number of training records in T that has the value x for an attribute a; 
Na,x,c is the number of records in T that has the value x for attribute a and class c; C is the 
number of classes in the problem domain;  q is a constant, usually value 1 or 2.  
 
This distance metric work well in many nominal domains, but they do not handle 
continuous attributes directly. Instead, they rely upon process of discretization which can 
degrade generalization accuracy (Ventura et al., 1995). Many real-world applications have 
both nominal and numeric attribute as shown in the UCI MLR (Merz & Murphy, 1998). The 
distance function that is used in the proposed model is Heterogeneous Value Difference 
Metric (HVDM). It can take heterogeneous data where it uses normalized VDM for nominal 
data and normalized difference for linear data. HVDM has shown a good potential to be the 
distance metric for heterogeneous data without the need for any transformation of data into 
any specific type. HVDM has become the choice for the algorithm in this research. The 
discussion of the distance metrics can be found in (Wilson & Martinez, 1997). As mentioned 
in the previous section, the Euclidean distance function is inappropriate for nominal 
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2006), methods of using other types of data need to be explored to allow for greater 
applicability of this learning paradigm. (Hamaker & Boggess, 2004) has explored variety of 
similarity measurements in generating classifiers with clonal selection concept or 
population-based AIS algorithm but a more comprehensive experiment on many problems 
with heterogeneous types is required in order to prove a high quality classification 
technique for heterogeneous data types. (Puteh et al., 2008) has introduced a classification 

model using clonal selection for heterogeneous data that is called Flexible Artificial Immune 
Recognition System (FAIRS) to experiment the heterogeneous data in its original types. 
FAIRS has shown some improvement in the accuracy compared to the existing AIS 
classification models. To further experiment on AIS algorithm and to overcome the 
limitation mentioned in the previous research, there is a need for developing the AIS 
classifier with the network feature and be able to accept heterogeneous data without the 
need for the data transformation. In order to accept various types of data, all processes 
involving these data must consider appropriate and suitable affinity measurement, mutation 
method and the correct data structure implementation.  
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There are many learning systems depend on good distance function to be successful such as 
the nearest neighbour techniques (Cover & Hart, 1967; Hart, 1968; Dasarathy & Belur, 1991), 
and memory-based reasoning methods (Stanfill & Waltz, 1986). Such algorithms have had 
much success on a wide variety of applications (real-world classification tasks). Many of 
these metrics work well for numerical attributes but do not appropriately handle nominal 
attributes (Wilson & Martinez, 1997). The common distance metrics that are used for 
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where Na,x is the number of training records in T that has the value x for an attribute a; 
Na,x,c is the number of records in T that has the value x for attribute a and class c; C is the 
number of classes in the problem domain;  q is a constant, usually value 1 or 2.  
 
This distance metric work well in many nominal domains, but they do not handle 
continuous attributes directly. Instead, they rely upon process of discretization which can 
degrade generalization accuracy (Ventura et al., 1995). Many real-world applications have 
both nominal and numeric attribute as shown in the UCI MLR (Merz & Murphy, 1998). The 
distance function that is used in the proposed model is Heterogeneous Value Difference 
Metric (HVDM). It can take heterogeneous data where it uses normalized VDM for nominal 
data and normalized difference for linear data. HVDM has shown a good potential to be the 
distance metric for heterogeneous data without the need for any transformation of data into 
any specific type. HVDM has become the choice for the algorithm in this research. The 
discussion of the distance metrics can be found in (Wilson & Martinez, 1997). As mentioned 
in the previous section, the Euclidean distance function is inappropriate for nominal 
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attributes, and VDM is inappropriate for continuous attribute, so neither is sufficient on its 
own for use on a heterogeneous application, i.e. one with both nominal and continuous 
attributes. So, HVDM is used as shown in equation 4,5,6,7. 
 

HVDM(x, y) =  


m

a
aaa yxd

1

2 ,      (4) 

 
where m is the number of attributes. The function da (x, y) returns a distance between the 
two values x and y for attribute a and it is defined as:  
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where normalized vdm and normalized diff are defined as follows: 
 

normalized_vdm a (x,y)  = �∑ ����������������������������� �
�����     (6) 

 
and 

normalized_diff a (x,y) = 
a

yx
4
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      (7) 

 
where x and y are 2 input vectors for attribute a and  is a standard deviation value for a. 
 
Distances are often normalized by dividing the distance for each variable by the range of 
that attribute, so that the distance for each input variable is in the range 0..1 and this is 
employed by algorithm in (Hamaker & Boggess, 2004). However, dividing by the range 
allows outliers (extreme values) to have a profound effect on the contribution of an attribute. 
A more robust alternative in the presence of outliers is to divide the values by the standard 
deviation to reduce the effect of extreme values on the typical cases. The situation for 
HVDM is more complicated because the nominal and numeric distance values come from 
different types of measurements: numeric distances are computed from the differences 
between two linear values, normalized by standard deviation, while nominal attributes are 
computed from a sum of C differences of probability values (where C is the number of 
output classes). It is therefore necessary to find a way to scale these two different kinds of 
measurements into approximately the same range to give each variable a similar influence 
on the overall distance measurement (Wilson & Martinez, 1997). 

 
 
 

3. Proposed Algorithm (FINERS) 
 

In the real world situation, there are many data set comprise both numerical and nominal 
data types. This paper investigates the use of HVDM distance metric for heterogeneous 
datasets that are composed of nominal, discrete or continuous data types or the combination 
of them without the need for the transformation of the data into any specific type. The 
algorithm in the proposed model considers an appropriate data structures to suit the 
complexity of recognizing heterogeneous data in its original types. 
The FINERS algorithm works as follows:  
1st stage:  
 Calculate Affinity Threshold (AT) by calculating average affinity (distance) between all 

pairs among antigens  
 MemoryCell (MC) initialization, usually starts with null 
For each antigen do 

2nd stage: 
 Search for mcmatch from MC, if unavailable, antigen as mcmatch 
 Clone and mutate mcmatch 
 Generate first generation antibodies (AB) 
 Create a network among antibodies with affinity greater than network affinity 

threshold (NAT)  
3rd stage: 
 Clone and mutate antibody from AB randomly until average stimulation is greater 

than stimulation threshold.  
 Generate the final AB  
 Create a network among antibodies with affinity greater than network affinity 

threshold (NAT)   
4th stage: 
 Search for mccandidate (most stimulated) from AB 
 Compare mccandidate to mcmatch, if mccandidate is more stimulated, it is added 

to MC. If affinity between mccandidate and mcmatch is less than affinity threshold 
scalar times affinity threshold then mccandidate replaces mcmatch inside MC  

 Create a network among antibodies with affinity greater than network affinity 
threshold (NAT) 

Basically, FINERS is a one shot algorithm where each antigen is processed only in one 
generation. At the end of the algorithm, set of rules or classifier and output of accuracy and 
number of rules are generated. 

 
4. Experiments and Discussions 
 

Experiment on FINERS is carried out on 8 datasets from UCI MLR (Merz & Murphy, 1998). 
The datasets are carefully selected to represent heterogeneous data types and non-
heterogeneous data types. The heterogeneous data sets are Australian Credit (CRX), 
German Credit (GC), Hepatitis (HP), Cleveland Heart Disease (HD) and Ljubljana Breast 
Cancer (BC), the non-heterogeneous data sets are Iris Plant (IRIS), Zoo Animals (ZOO), 
Wisconsin Breast Cancer (WBC) (Zwitter & Milan Zoklic, 1998). The description of each data 
set is shown in Table 1.  
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 CRX GC BC HD HP IRIS ZOO WBC 

Continuous 6 7 0 2 6 4 0 0 

Nominal 9 11 6 8 13 0 16 0 

Discrete 0 2 3 3 0 0 0 9 

Class 2 2 2 2 2 3 7 2 

Training 562 900 249 267 132 135 91 629 

Testing 62 100 28 30 15 15 10 70 
Table 2. Heterogeneous and Non-heterogeneous Data Set 
 
The dataset is distributed into 10 fold cross validation with 90% data for training and 10% 
data for testing with no overlapping. The data is tested in its original types as provided in 
the databases. For a consistent condition and comparison on FINERS and FAIRS (Puteh et 
al., 2008) and other immune algorithms from WEKA toolbox (Witten & Frank, 2005), they 
are tested using the same sets of 10-fold CV data. The selected immune classifiers from 
WEKA toolbox are AIRS1 (Watkins, 2001; Watkins et al., 2004; Brownlee, 2005), AIRS2 
(Watkins & Timmis, 2002; Brownlee, 2005), AIRS2Parallel (AIRS2P) (Watkins & Timmis, 
2004; Brwonlee, 2005), IMMUNOS1 (Brownlee, 2005; Carter, 2000) and CLONALG 
(Brownlee, 2005; de Castro & Von Zuben, 2000). The average accuracy is calculated from the 
10 sets for each dataset and the significant difference is analyzed using paired T-Test using 
standard statistical package. Table 2 shows the comparison of the accuracy rates and Table 3 
shows the comparisons of the rules reduction between FINERS and the other immune 
algorithms on heterogeneous data. Sig value  in 2nd column shows the statistically 
significant value in differences. The value in bold is the highest accuracy in the table for each 
data set. The difference is significant if the significant value is less than 0.05 with 95% 
confidence (Coakes & Steed, 2003). NA is not applicable which means that these 
classification models do not test the value. 
 

  ACCURACY 
Sig CRX GC BC HD HP 

FINERS   87 75 73 89 88 
FAIRS 0.070 87 74 72 88 88 
AIRS1 0.000 80 67 68 82 83 
AIRS2 0.001 83 71 68 82 84 

AIRS2P 0.006 81 71 67 80 85 
IMMUNOS1 0.027 85 68 71 86 80 
CLONALG 0.025 63 70 68 71 75 

Table 3. Accuracy (%)  of heterogeneous data 
 
 
 

    RULES REDUCTION 

  Sig CRX GC BC HD HP 

FINERS   30 35 71 43 30 

FAIRS 0.006 11 28 50 34 12 

AIRS1 0.900 62 20 45 42 34 
AIRS2 0.045 29 13 33 18 22 

AIRS2P 0.021 22 11 23 14 16 

IMMUNOS1   NA NA NA NA NA 

CLONALG   NA NA NA NA NA 
Table 4. Rules Reduction (%) of heterogeneous data 
 
The result shows that FINERS gives higher accuracy rate and higher rules reduction 
percentage in most of the heterogeneous datasets compared to other immune algorithms 
with statistically significant in differences. 
Table 4 shows the comparison of the accuracy rates and Table 5 shows the comparisons of 
the rules reduction between FINERS and the other immune algorithms on non-
heterogeneous data. Sig value  in 2nd column shows the statistically significant value in 
differences. The value in bold is the highest accuracy in the table for each data set. The 
difference is significant if the significant value is less than 0.05 with 95% confidence (Coakes 
& Steed, 2003). NA is not applicable which means that these classification models do not test 
the value. 
 

  ACCURACY 
Sig IRIS ZOO WBC 

FINERS   97 89 98 
FAIRS 0.681 97 95 97 
AIRS1 0.644 96 98 97 
AIRS2 0.057 94 89 96 

AIRS2P 0.381 94 98 96 
IMMUNOS1 0.181 98 96 85 
CLONALG 0.240 92 94 94 

Table 5. Accuracy (%) of non-heterogeneous data 
 
The result shows that the differences are not statistically significant which means no 
improvement in accuracy rates by FINERS compared to the previous classification models 
on non-heterogeneous data. But, for rules reduction, FINERS shows an improvement 
compare to FAIRS. 
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 CRX GC BC HD HP IRIS ZOO WBC 

Continuous 6 7 0 2 6 4 0 0 

Nominal 9 11 6 8 13 0 16 0 

Discrete 0 2 3 3 0 0 0 9 

Class 2 2 2 2 2 3 7 2 

Training 562 900 249 267 132 135 91 629 

Testing 62 100 28 30 15 15 10 70 
Table 2. Heterogeneous and Non-heterogeneous Data Set 
 
The dataset is distributed into 10 fold cross validation with 90% data for training and 10% 
data for testing with no overlapping. The data is tested in its original types as provided in 
the databases. For a consistent condition and comparison on FINERS and FAIRS (Puteh et 
al., 2008) and other immune algorithms from WEKA toolbox (Witten & Frank, 2005), they 
are tested using the same sets of 10-fold CV data. The selected immune classifiers from 
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(Watkins & Timmis, 2002; Brownlee, 2005), AIRS2Parallel (AIRS2P) (Watkins & Timmis, 
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10 sets for each dataset and the significant difference is analyzed using paired T-Test using 
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shows the comparisons of the rules reduction between FINERS and the other immune 
algorithms on heterogeneous data. Sig value  in 2nd column shows the statistically 
significant value in differences. The value in bold is the highest accuracy in the table for each 
data set. The difference is significant if the significant value is less than 0.05 with 95% 
confidence (Coakes & Steed, 2003). NA is not applicable which means that these 
classification models do not test the value. 
 

  ACCURACY 
Sig CRX GC BC HD HP 
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Table 3. Accuracy (%)  of heterogeneous data 
 
 
 

    RULES REDUCTION 

  Sig CRX GC BC HD HP 
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FAIRS 0.006 11 28 50 34 12 

AIRS1 0.900 62 20 45 42 34 
AIRS2 0.045 29 13 33 18 22 

AIRS2P 0.021 22 11 23 14 16 

IMMUNOS1   NA NA NA NA NA 

CLONALG   NA NA NA NA NA 
Table 4. Rules Reduction (%) of heterogeneous data 
 
The result shows that FINERS gives higher accuracy rate and higher rules reduction 
percentage in most of the heterogeneous datasets compared to other immune algorithms 
with statistically significant in differences. 
Table 4 shows the comparison of the accuracy rates and Table 5 shows the comparisons of 
the rules reduction between FINERS and the other immune algorithms on non-
heterogeneous data. Sig value  in 2nd column shows the statistically significant value in 
differences. The value in bold is the highest accuracy in the table for each data set. The 
difference is significant if the significant value is less than 0.05 with 95% confidence (Coakes 
& Steed, 2003). NA is not applicable which means that these classification models do not test 
the value. 
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FAIRS 0.681 97 95 97 
AIRS1 0.644 96 98 97 
AIRS2 0.057 94 89 96 

AIRS2P 0.381 94 98 96 
IMMUNOS1 0.181 98 96 85 
CLONALG 0.240 92 94 94 

Table 5. Accuracy (%) of non-heterogeneous data 
 
The result shows that the differences are not statistically significant which means no 
improvement in accuracy rates by FINERS compared to the previous classification models 
on non-heterogeneous data. But, for rules reduction, FINERS shows an improvement 
compare to FAIRS. 
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RULES 

REDUCTION 
Sig IRIS ZOO WBC 

FINERS   39 61 74 
FAIRS 0.044 35 57 53 
AIRS1 0.166 65 47 46 
AIRS2 0.337 65 81 52 

AIRS2P 0.133 53 72 48 
IMMUNOS1 NA NA NA 
CLONALG NA NA NA 

Table 6. Rule reduction (%) of non-heterogeneous data 

 
5. Conclusion 
 

This paper has proposed a new AIS immune network classifier called Flexible Immune 
Network Recognition System (FINERS) that uses HVDM as a distance metric for 
heterogeneous data type without the need for the discretization or transformation of the 
data into specific type. The experimental results show that the immune network model 
produces a better accuracy in most of the heterogeneous datasets and it also generates less 
rules compared to previous immune classification models. Comparing FINERS to FAIRS, 
although there are no differences in the accuracy for the heterogeneous data, using network 
feature from the immune system decreases the number of rules in the classifiers. The study 
solves some limitation shown in (Watkins, 2001; Freitas & Timmis, 2007; Hart & Timmis, 
2008; Timmis, 2006). However, FINERS does not show a significant different or 
improvement on the accuracy and rules reduction on non-heterogeneous data compared to 
the previous AIS classification models. In conclusion, the results suggest that the use of 
network feature and to process data in its original types can increase accuracy performance 
while reducing the number of rules in heterogeneous data. Furthermore, it is significant to 
process the data in its original types to avoid degradation of data accuracy and it decreases 
the time in pre processing of data. For the future investigation, other AIS algorithm can 
employ HVDM function for other tasks such as optimization and clustering. FINERS could 
also be further refined to make it dynamic and be able to process dynamic data such as time 
series data. With the result, we hope to derive a more stable and flexible AIS classifier. 
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1. Introduction  
 

Artificial Neural Networks (NN) basically attempt to replicate functions of the human brain 
by connecting neurons to each other in specific manners. In most cases, the number of 
neurons and connections has been limited to tens or hundreds of neurons with a similar 
order of magnitude of connections between them. This contrasts with the human brain 
which has many orders of magnitude more neurons and also many more connections 
between them. The work done so far in this field can therefore be categorized as precursory 
and the potential of this technology has yet to be fully realized. Jain & Deo (2005) present a 
survey of applications of NNs in ocean engineering. They have been used for predicting 
environmental parameters (wave heights, sea level, wind speeds, tides, etc.), forces and 
damage on ocean-going structures, and ship and barge motions, in various ship design 
applications and more. Gougoulidis (2008) presents an overview of utilization of neural 
networks in many other marine applications including structures, stability, propulsion and 
seakeeping. All of the applications that are reviewed, except one, are for predictions of 
characteristics of ships. 
In the area of ship design, NNs have been employed for various purposes. For example, 
Koushan (2003) presents a hull form optimization employing NNs in which eight hull form 
parameters are varied in order to minimize resistance. Similarly, the use of NNs in hull 
shape optimization by Danõşman et al.(2002) and Koh et al. (2005) allows for a more 
advanced flow model (panel method instead of thin-ship flow theory) and thus leads to 
improved shapes. Koh (2004) present a similar approach for investigating resistance, 
manoeuvrability and seakeeping characteristics of a high speed hull form. In Mesbahi & 
Bertram (2000), and Bertram & Mesbahi (2004), NNs are used to derive functional relations 
between design parameters for cargo ships as an alternative to using charts. In Maisonneuve 
(2003), several NN application examples from the industry are discussed, showing state-of-
the-art of European research in marine design: integrating real calculations (using CAD 
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model) and artificial calculations (using NNs as response surface methods) to perform 
single- or multi-objective optimizations.  
In most of the applications above, a single hidden layer feed-forward type of network and 
back-propagation are used. Also, the number of input nodes used by the different 
investigators was relatively small, on the order of one to ten. Very few applications used a 
large number of inputs to utilize the real power of the neural networks. One exception is 
Danõşman et al. (2002) which used a single, hidden layer NN with 40 input and four output 
parameters. The inputs represent a series of half breadths of the aft end of a catamaran and 
the output parameters are related to wave resistance, wave elevation and displacement. The 
network used back-propagation with a training set of 300 and a validation set of 50 points. 
The number of hidden units used and the errors produced by the neural network are not 
discussed in the paper, however.  
As the number of parameters to be varied increases, training the network becomes more and 
more challenging. It is demonstrated that feedforward NNs have universal approximation 
ability for a wide variety of functions classes, provided that a sufficient number of hidden 
units are available (Cybenko, 1989, Hornik, 1991). The approximation ability of a particular 
network depends on the numbers of input and output units, the number of training cases, 
the amount of noise in the targets, the complexity of the function to be learned, the actual 
architecture of the network, the type of hidden unit activation function and the training 
algorithm.  This often leaves NN users having to determine the network size by trial and 
error. Also, back-propagation, the most commonly used algorithm to train single hidden 
layer feedforward NNs, is known to be very slow for large input spaces. Other network 
structures and training algorithms should be investigated.  
This chapter presents an alternative NN structure based on a constructive network topology 
and a corresponding training algorithm suitable for large number of input/outputs to 
address the problems where the number of design parameters is fairly large, say up to 30 or 
even more.   
The chapter is divided into four sections. First, the use of NNs as advanced regression 
models in the ship design cycle is reviewed and the choice of the particular topology 
(constructive network) and training algorithm (modified cascade correlation, or “MCC”) of 
the NN is justified.  
The next section describes in detail the MCC. This algorithm is an improvement from the 
original cascade algorithm introduced by Fahlman and Lebiere (1990). Improvements 
include altering the weight initialization, modifying the candidate hidden unit training, and 
introducing normalized inputs, “early stopping” and “ensemble averaging.”  
Next, the NN approach is applied to the design/optimization of an underwater hull 
configuration using a genetic algorithm search method. Results are compared with those 
obtained with a classical optimization approach in which the CFD code is directly coupled 
with the optimizer. 
The last section presents a NN-based performance analysis and optimization of sailing 
configurations of an America’s Cup class yacht. The objective is to maximize boat speed 
(objective function) by varying the sailing setups (design variables). In the approach, the 
experimental data from the sailing records provided by sensors is used to train an MCC 
neural network. The network is coupled with a genetic algorithm to determine the 
maximum boat speed and corresponding yacht settings at various wind speeds. Because the 
majority of the data is gathered in a small region of the search space corresponding to a 

valid set of sailing configurations, the remaining regions of the domain are not well 
populated and can lead to training errors for the neural network. The chapter presents an 
automatic method to fill the domain of investigation by adding artificial points to the 
database in regions without sufficient experimental data. 

 
2. Neural Networks as Response Surface Methods in the Design Cycle 
 

2.1 NNs in the Design Cycle 
The systems engineering approach, originated and widely used in the aerospace industry, 
consists of decomposing a system into subsystems. For a ship, those would correspond to 
the hull forms definition, propulsion, structure, payload, etc. This system decomposition 
approach  is described, for example, in Blanchard & Fabrycky (1997), and can be applied at 
the ship level as well as at subsystem levels in the systems architecture. For example, this 
systems approach may also be used to design a propulsion subsystem which will be 
integrated into the ship, based on requirements established at higher levels. In other words, 
every component may be looked as a system which gets integrated into a system of systems. 
The analyses performed at each subsystem level rely, in general, on a combination of semi-
analytical models, advanced numerical methods such as finite element analysis, and use of 
existing databases. The modern approach used in the design of such systems usually 
includes optimization at some level. 
Neural networks may be inserted directly at all levels of the system design process and on a 
broad basis. Specialists who use advanced computational tools for detailed analyses are 
often remotely connected to the design loop. The use of NN allows for them to be indirectly 
integrated very early into the design cycle by generating a computational database 
representative of the problem at hand over the desired design space. For example, the 
database might consist of a few hundred CFD analyses performed for a configuration 
represented by tens of widely varying design parameters. This database can then be used to 
train –hence its name, “training set”– a neural network which is then inserted in the design 
loop (Fig. 1). At this point, the designer (not the analyst) can use the NN and get a solution 
for a variety of designs in a fraction of a second. For example, if a network has been trained 
for estimating the ship resistance, the latter can be obtained by the designer for any desired 
point in the design space with minimal computational time. 
Similar uses of neural networks can be made when dealing with available large databases. 
Such databases may be from one or more sources, numerical and/or experimental. In this 
case, the database can be used directly to train the NN and the latter can also be integrated 
into the design loop (Fig. 1).  
The result is a design approach in which the function, such as ship resistance, corresponding 
to a particular set of design variables either selected by the designer or by the computer 
(“design tool”), can be obtained instantaneously.  
In practical terms, the introduction of NN allows for extraction of time-consuming or 
difficult operations (performing an advanced numerical analysis or extracting information 
from a large and evolving database) from the design loop while still keeping their influence 
on the outcome of the design process via the NN. The cost has thus been moved (and 
possibly reduced in the process) to the training set generation (if it was not already 
available) and to the training of the network. 
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model) and artificial calculations (using NNs as response surface methods) to perform 
single- or multi-objective optimizations.  
In most of the applications above, a single hidden layer feed-forward type of network and 
back-propagation are used. Also, the number of input nodes used by the different 
investigators was relatively small, on the order of one to ten. Very few applications used a 
large number of inputs to utilize the real power of the neural networks. One exception is 
Danõşman et al. (2002) which used a single, hidden layer NN with 40 input and four output 
parameters. The inputs represent a series of half breadths of the aft end of a catamaran and 
the output parameters are related to wave resistance, wave elevation and displacement. The 
network used back-propagation with a training set of 300 and a validation set of 50 points. 
The number of hidden units used and the errors produced by the neural network are not 
discussed in the paper, however.  
As the number of parameters to be varied increases, training the network becomes more and 
more challenging. It is demonstrated that feedforward NNs have universal approximation 
ability for a wide variety of functions classes, provided that a sufficient number of hidden 
units are available (Cybenko, 1989, Hornik, 1991). The approximation ability of a particular 
network depends on the numbers of input and output units, the number of training cases, 
the amount of noise in the targets, the complexity of the function to be learned, the actual 
architecture of the network, the type of hidden unit activation function and the training 
algorithm.  This often leaves NN users having to determine the network size by trial and 
error. Also, back-propagation, the most commonly used algorithm to train single hidden 
layer feedforward NNs, is known to be very slow for large input spaces. Other network 
structures and training algorithms should be investigated.  
This chapter presents an alternative NN structure based on a constructive network topology 
and a corresponding training algorithm suitable for large number of input/outputs to 
address the problems where the number of design parameters is fairly large, say up to 30 or 
even more.   
The chapter is divided into four sections. First, the use of NNs as advanced regression 
models in the ship design cycle is reviewed and the choice of the particular topology 
(constructive network) and training algorithm (modified cascade correlation, or “MCC”) of 
the NN is justified.  
The next section describes in detail the MCC. This algorithm is an improvement from the 
original cascade algorithm introduced by Fahlman and Lebiere (1990). Improvements 
include altering the weight initialization, modifying the candidate hidden unit training, and 
introducing normalized inputs, “early stopping” and “ensemble averaging.”  
Next, the NN approach is applied to the design/optimization of an underwater hull 
configuration using a genetic algorithm search method. Results are compared with those 
obtained with a classical optimization approach in which the CFD code is directly coupled 
with the optimizer. 
The last section presents a NN-based performance analysis and optimization of sailing 
configurations of an America’s Cup class yacht. The objective is to maximize boat speed 
(objective function) by varying the sailing setups (design variables). In the approach, the 
experimental data from the sailing records provided by sensors is used to train an MCC 
neural network. The network is coupled with a genetic algorithm to determine the 
maximum boat speed and corresponding yacht settings at various wind speeds. Because the 
majority of the data is gathered in a small region of the search space corresponding to a 

valid set of sailing configurations, the remaining regions of the domain are not well 
populated and can lead to training errors for the neural network. The chapter presents an 
automatic method to fill the domain of investigation by adding artificial points to the 
database in regions without sufficient experimental data. 
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2.1 NNs in the Design Cycle 
The systems engineering approach, originated and widely used in the aerospace industry, 
consists of decomposing a system into subsystems. For a ship, those would correspond to 
the hull forms definition, propulsion, structure, payload, etc. This system decomposition 
approach  is described, for example, in Blanchard & Fabrycky (1997), and can be applied at 
the ship level as well as at subsystem levels in the systems architecture. For example, this 
systems approach may also be used to design a propulsion subsystem which will be 
integrated into the ship, based on requirements established at higher levels. In other words, 
every component may be looked as a system which gets integrated into a system of systems. 
The analyses performed at each subsystem level rely, in general, on a combination of semi-
analytical models, advanced numerical methods such as finite element analysis, and use of 
existing databases. The modern approach used in the design of such systems usually 
includes optimization at some level. 
Neural networks may be inserted directly at all levels of the system design process and on a 
broad basis. Specialists who use advanced computational tools for detailed analyses are 
often remotely connected to the design loop. The use of NN allows for them to be indirectly 
integrated very early into the design cycle by generating a computational database 
representative of the problem at hand over the desired design space. For example, the 
database might consist of a few hundred CFD analyses performed for a configuration 
represented by tens of widely varying design parameters. This database can then be used to 
train –hence its name, “training set”– a neural network which is then inserted in the design 
loop (Fig. 1). At this point, the designer (not the analyst) can use the NN and get a solution 
for a variety of designs in a fraction of a second. For example, if a network has been trained 
for estimating the ship resistance, the latter can be obtained by the designer for any desired 
point in the design space with minimal computational time. 
Similar uses of neural networks can be made when dealing with available large databases. 
Such databases may be from one or more sources, numerical and/or experimental. In this 
case, the database can be used directly to train the NN and the latter can also be integrated 
into the design loop (Fig. 1).  
The result is a design approach in which the function, such as ship resistance, corresponding 
to a particular set of design variables either selected by the designer or by the computer 
(“design tool”), can be obtained instantaneously.  
In practical terms, the introduction of NN allows for extraction of time-consuming or 
difficult operations (performing an advanced numerical analysis or extracting information 
from a large and evolving database) from the design loop while still keeping their influence 
on the outcome of the design process via the NN. The cost has thus been moved (and 
possibly reduced in the process) to the training set generation (if it was not already 
available) and to the training of the network. 



Machine Learning304

The result is a NN which can estimate the function or functions over the design space it has 
been trained on. This ability to quickly evaluate new designs allows in turn for the use of 
global optimization tools such as genetic algorithms instead of having to rely on local 
optimization methods or exploring a restricted part of the design space. 
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Fig. 1. System design loop utilizing NNs. The NNs are generated outside the design loop 
based on computationally extensive models and/or large databases. 

 
2.2 Advantages Offered by Constructive Neural Networks 
NNs have been investigated for many applications outside the field of ocean engineering 
that require a large number of function analyses, ranging from chemistry (Agatonovic-
Kustrin et al., 1998, and Takayama et al., 2003) to structural analysis (Deng et al., 2005). 
Research clearly indicates that NNs compare favourably with classical RSM (Gougoulidis, 
2008, Todoroki et al., 2004, Bourquin et al., 1998, Gomes & Awruch 2004, Dutt et al., 2004 and 
Lee & Hajel, 2001), in particular when the function is non-convex over the desired domain 
and the function may be highly nonlinear. In addition, for problems with a large number of 
inputs (design variables), the size of the dataset required for the classical RSM rapidly 
grows. Schmitz (2007) and Besnard et al. (2007) present a survey of the different RSM 
available and demonstrate the clear advantage in using NNs in this type of application.  
As discussed above, for most marine applications reported to date, however, NNs employed 
either a fixed topology and/or back propagation for training. The former implies that one 
needs to have some information about the function to approximate and the latter leads to 
increasingly large CPU time requirements for training in the case of a large number of 
inputs.  
Methods which use a fixed network topology involve evaluating in advance (before 
training) the type of network that would best suit the application (how many neurons, how 
many hidden-layers) to match the complexity of the NN to that of the function. This point is 
best illustrated by Kwok & Yeung (1997a): “Consider a data set generated from a smooth 
underlying function with additive noise on the outputs. A polynomial with too few coefficients will be 
unable to capture the underlying function from which the data was generated, while a polynomial 
with too many coefficients will fit the noise in the data and again result in a poor representation of the 
underlying function. For an optimal number of coefficients the fitted polynomial will give the best 
representation of the function and also the best predictions for new data. A similar situation arises in 
the application of NN, where it is again necessary to match the network complexity to the problem 

being solved. Algorithms that can find an appropriate network architecture automatically are thus 
highly desirable.” 
There are essentially two approaches for training multilayer feedforward networks for 
function approximation which can lead to variable networks (Kwok and Yeung 1997a). The 
Pruning Algorithms start with a large network, trains the network weights until an 
acceptable solution is found, and then uses a pruning method to remove unnecessary units 
or weights (units connected with very small weights). On the other hand, Constructive 
Algorithms start with a minimal network, and then grow additional hidden units as needed.  
The primary advantage of constructive algorithms versus pruning algorithms is that the NN 
size is automatically determined. Constructive algorithms are computationally economical 
compared to pruning algorithms which spend most time training on networks larger than 
necessary. Also, they are likely to find smaller network solutions, thus requiring less 
training data for good generalization. They also require a small amount of memory because 
they usually use a “greedy” approach where only part of the weights is trained at once, 
whereas the remaining part is kept constant (Schmitz 2007). 
Cascade-Correlation, first introduced by Fahlman & Lebiere (1990), is one such supervised 
learning algorithm for NNs. Instead of just adjusting the weights in a network of fixed 
topology, Cascade-Correlation begins with a minimal network, then automatically trains 
and adds new hidden units one-by-one in a cascading manner. This architecture has several 
advantages over other algorithms: it learns very quickly; the network determines its own 
size and topology; it retains the structure it has built even if the training set changes; and it 
requires no back-propagation of error signals through the connections of the network. In 
addition, for a large number of inputs (design variables), the most widely used learning 
algorithm, back-propagation, is known to be very slow. Cascade-Correlation does not 
exhibit this limitation (Fahlman & Lebiere 1990).  

 
3. Modified Cascade Correlation Neural Networks 
 

As mentioned above, the constructive Cascade-Correlation algorithm begins with a minimal 
network consisting of the input and output layers and no hidden unit (neurons), then 
automatically trains and adds one hidden unit at a time until the error (Ep) between the 
targets (fp) of the training set and the outputs from the network (fNN,p) reaches a desired 
minimal value. Thus, it self-determines the number of neurons needed as well as their 
connectivity or weights.  
The original algorithm of Fahlman & Lebiere (1990) was geared towards pattern recognition 
and has been improved to make it a robust and accurate method for function approximation 
(Schmitz et al., 2002, Schmitz, 2007). Although the definitions used here assume that the NN 
has a single output, i.e. that the NN represents a single scalar function such as ship 
resistance, the process is easily extended to networks with multiple outputs (Schmitz et al., 
2002). In the applications considered in this paper, multiple functions, such as ship 
resistance and ship displacement, are each represented by a separate network, i.e. each uses 
multiple single-output networks rather than a single multiple-output network. It was found 
during the course of the study that it was more advantageous to train multiple single-output 
networks than one large multiple output network in terms of error on an unseen dataset 
(generalization error) and computing time (since multiple “single output” networks could 
be trained simultaneously faster than one single “multiple output” network.  
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The result is a NN which can estimate the function or functions over the design space it has 
been trained on. This ability to quickly evaluate new designs allows in turn for the use of 
global optimization tools such as genetic algorithms instead of having to rely on local 
optimization methods or exploring a restricted part of the design space. 
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Fig. 1. System design loop utilizing NNs. The NNs are generated outside the design loop 
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needs to have some information about the function to approximate and the latter leads to 
increasingly large CPU time requirements for training in the case of a large number of 
inputs.  
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best illustrated by Kwok & Yeung (1997a): “Consider a data set generated from a smooth 
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unable to capture the underlying function from which the data was generated, while a polynomial 
with too many coefficients will fit the noise in the data and again result in a poor representation of the 
underlying function. For an optimal number of coefficients the fitted polynomial will give the best 
representation of the function and also the best predictions for new data. A similar situation arises in 
the application of NN, where it is again necessary to match the network complexity to the problem 

being solved. Algorithms that can find an appropriate network architecture automatically are thus 
highly desirable.” 
There are essentially two approaches for training multilayer feedforward networks for 
function approximation which can lead to variable networks (Kwok and Yeung 1997a). The 
Pruning Algorithms start with a large network, trains the network weights until an 
acceptable solution is found, and then uses a pruning method to remove unnecessary units 
or weights (units connected with very small weights). On the other hand, Constructive 
Algorithms start with a minimal network, and then grow additional hidden units as needed.  
The primary advantage of constructive algorithms versus pruning algorithms is that the NN 
size is automatically determined. Constructive algorithms are computationally economical 
compared to pruning algorithms which spend most time training on networks larger than 
necessary. Also, they are likely to find smaller network solutions, thus requiring less 
training data for good generalization. They also require a small amount of memory because 
they usually use a “greedy” approach where only part of the weights is trained at once, 
whereas the remaining part is kept constant (Schmitz 2007). 
Cascade-Correlation, first introduced by Fahlman & Lebiere (1990), is one such supervised 
learning algorithm for NNs. Instead of just adjusting the weights in a network of fixed 
topology, Cascade-Correlation begins with a minimal network, then automatically trains 
and adds new hidden units one-by-one in a cascading manner. This architecture has several 
advantages over other algorithms: it learns very quickly; the network determines its own 
size and topology; it retains the structure it has built even if the training set changes; and it 
requires no back-propagation of error signals through the connections of the network. In 
addition, for a large number of inputs (design variables), the most widely used learning 
algorithm, back-propagation, is known to be very slow. Cascade-Correlation does not 
exhibit this limitation (Fahlman & Lebiere 1990).  
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network consisting of the input and output layers and no hidden unit (neurons), then 
automatically trains and adds one hidden unit at a time until the error (Ep) between the 
targets (fp) of the training set and the outputs from the network (fNN,p) reaches a desired 
minimal value. Thus, it self-determines the number of neurons needed as well as their 
connectivity or weights.  
The original algorithm of Fahlman & Lebiere (1990) was geared towards pattern recognition 
and has been improved to make it a robust and accurate method for function approximation 
(Schmitz et al., 2002, Schmitz, 2007). Although the definitions used here assume that the NN 
has a single output, i.e. that the NN represents a single scalar function such as ship 
resistance, the process is easily extended to networks with multiple outputs (Schmitz et al., 
2002). In the applications considered in this paper, multiple functions, such as ship 
resistance and ship displacement, are each represented by a separate network, i.e. each uses 
multiple single-output networks rather than a single multiple-output network. It was found 
during the course of the study that it was more advantageous to train multiple single-output 
networks than one large multiple output network in terms of error on an unseen dataset 
(generalization error) and computing time (since multiple “single output” networks could 
be trained simultaneously faster than one single “multiple output” network.  



Machine Learning306

3.1 Base Algorithm as Introduced by Fahlman and Lebiere 
The basic algorithm as introduced by Fahlman and Lebiere (1990) includes the following 11 
steps: 
Step 1: Start with the required input and output units; both layers are fully connected. The 
number of inputs and outputs is dictated by the problem. 
Step 2: Train all connections ending at an output unit with a common learning algorithm 
until the squared error Es of the NN no longer decreases.  
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Here m is the size of the outputs (or number of outputs), Np is the size of the training set, yi,p 
is the ith output from NN, and ti,p is the corresponding target. 
Step 3: Generate a candidate unit that receives trainable input connections from all of the 
network’s external inputs and from all pre-existing hidden units (if any). The output of this 
candidate unit is not yet connected to the active network (output). 
Step 4: Train the unit (its weight) to maximize the correlation referred to as SC (Eq. 2). 
Learning takes place with an ordinary learning algorithm; training is stopped when the 
correlation score no longer improves. The correlation formula is given by 
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Here zo,p is the output of the candidate hidden unit and Ei,p is the residual error of the 
outputs calculated at Step 2, Ei,p=yi,p-ti,p. The bar above a quantity denotes the average over 
the training set. 
Step 5: Connect the candidate unit with the outputs and freeze its input weights. The 
candidate unit acts now as an additional input unit.  
Step 6: Train again the input-outputs connections by minimizing the squared error Es as 
defined in Step 2.  
Steps 7 to 10: Repeat Steps three to six adding one hidden unit at a time.  
Step 11: Stop training when the error E of the net falls below a given value, . 
Instead of a single candidate unit, it is possible to use a pool of candidate units, each with a 
different set of random initial weights. All receive the same input signals and see the same 
residual error for each training pattern. Because they do not interact with one another, or 
affect the active network, they can be trained simultaneously. Only the candidate whose 
correlation score is the best is installed. The use of a pool of candidates greatly reduces the 
chances that a useless unit will be permanently installed because an individual candidate 
got stuck during training. Fahlman and Lebiere (1990) typically show that four to eight 
candidate units are enough to ensure good candidates in each pool. 
Steps 2 and 4 require the use of an optimization routine. Fahlman uses the so-called 
Quickprop algorithm. Quickprop computes the derivative of the error with respect to the 
weights as in standard back-propagation, but instead of simple gradient descent, Quickprop 
uses a second order method, related to Newton’s method, to update the weights (Fahlman, 
1988). 

3.2 Overview of Algorithm Modifications for Function Approximation 
While the basic CC algorithm described in the previous section provides a good foundation 
for regression applications, it also has areas which can be improved. This section presents 
the modifications that were developed and implemented to the CC algorithm described 
above. Fahlman introduced this algorithm for classification tasks which typically use a large 
number of inputs. The network is thus well suited for the application in mind in this 
research, i.e. approximation of functions with a large number of variables. Practical 
optimization problems require a large number of design variables which define the 
configuration to be optimized. CC algorithm learns very quickly and uses minimal 
computer memory as it only trains some of the network weights while others are frozen. It 
has been shown to work well for regression tasks (Kwok & Yeung, 1993, 1997a and 1997b, 
Prechelt, 1997, Treagold & Gedeon, 1999, Lehtokangas, 1999, Lahnajärvi et al., 2002). Each 
author, however, points out some potential downfalls of the algorithm and proposes some 
possible fixes. These problems are primarily:  
 Maximizing Fahlman’s correlation formula trains candidate neurons to have a large 

activation (weight) whenever the error at their output is not equal to the average error. 
Cascade correlation has a tendency to overcompensate errors. (Prechelt, 1997) 

 The candidate unit weight optimization might get stuck in a local maximum, and thus 
units which are not correlating well with the error are installed on the NN, leading to 
more units than necessary to reach the desired level of accuracy (deeper network) 
(Lehtokangas, 1999, Kwok & Yeung, 1997b, Lahnajärvi et al.,2002). 

 Cascading units can result in a network that can exhibit very strong non-linearities, thus 
affecting generalization (Kwok & Yeung 1993, 1997a).  

The critical issue in developing a neural network for regression tasks is generalization: how 
well will the network make predictions for cases that are not in the training set? Neural 
networks, like other nonlinear estimation methods such as kernel regression and even linear 
methods like polynomial regression, can suffer from either underfitting or overfitting. As 
stated in Sarle (2002): “A network that is not sufficiently complex can fail to detect fully the signal 
in a complicated data set, leading to underfitting. A network that is too complex may fit the noise, not 
just the signal, leading to overfitting. Overfitting is especially dangerous because it can easily lead to 
predictions that are far beyond the range of the training data with many of the common types of 
NNs.” 
Model selection plays an important role in the generalization ability of the network. As 
explained above, constructive methods, like cascade correlation, are usually better methods 
than fixed network topologies trained with back-propagation or pruning methods because 
they automatically find the number of hidden units that matches the complexity of the 
problem. They also find smaller network solutions. Smaller networks mean less connections 
or weights to adjust and thus usually require smaller training sets for similar generalization 
ability (Kwok & Yeung, 1997b).  
The generalization ability of the NN has been addressed in the Modified Cascade 
Correlation algorithm. Various improvements to the original CC based on some of the 
solutions proposed by the above-referenced works have been implemented. Extensive 
research has been conducted that demonstrates the clear advantages of using the MCC on a 
test function for dimensions varying from 2 to 30 inputs (Schmitz 2007). 
In the MCC, inputs and outputs to the NN are non-dimensionalized, weights are 
constrained to a maximum value in order to limit strong non-linearities of the response 
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3.1 Base Algorithm as Introduced by Fahlman and Lebiere 
The basic algorithm as introduced by Fahlman and Lebiere (1990) includes the following 11 
steps: 
Step 1: Start with the required input and output units; both layers are fully connected. The 
number of inputs and outputs is dictated by the problem. 
Step 2: Train all connections ending at an output unit with a common learning algorithm 
until the squared error Es of the NN no longer decreases.  
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Here m is the size of the outputs (or number of outputs), Np is the size of the training set, yi,p 
is the ith output from NN, and ti,p is the corresponding target. 
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network’s external inputs and from all pre-existing hidden units (if any). The output of this 
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Here zo,p is the output of the candidate hidden unit and Ei,p is the residual error of the 
outputs calculated at Step 2, Ei,p=yi,p-ti,p. The bar above a quantity denotes the average over 
the training set. 
Step 5: Connect the candidate unit with the outputs and freeze its input weights. The 
candidate unit acts now as an additional input unit.  
Step 6: Train again the input-outputs connections by minimizing the squared error Es as 
defined in Step 2.  
Steps 7 to 10: Repeat Steps three to six adding one hidden unit at a time.  
Step 11: Stop training when the error E of the net falls below a given value, . 
Instead of a single candidate unit, it is possible to use a pool of candidate units, each with a 
different set of random initial weights. All receive the same input signals and see the same 
residual error for each training pattern. Because they do not interact with one another, or 
affect the active network, they can be trained simultaneously. Only the candidate whose 
correlation score is the best is installed. The use of a pool of candidates greatly reduces the 
chances that a useless unit will be permanently installed because an individual candidate 
got stuck during training. Fahlman and Lebiere (1990) typically show that four to eight 
candidate units are enough to ensure good candidates in each pool. 
Steps 2 and 4 require the use of an optimization routine. Fahlman uses the so-called 
Quickprop algorithm. Quickprop computes the derivative of the error with respect to the 
weights as in standard back-propagation, but instead of simple gradient descent, Quickprop 
uses a second order method, related to Newton’s method, to update the weights (Fahlman, 
1988). 
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While the basic CC algorithm described in the previous section provides a good foundation 
for regression applications, it also has areas which can be improved. This section presents 
the modifications that were developed and implemented to the CC algorithm described 
above. Fahlman introduced this algorithm for classification tasks which typically use a large 
number of inputs. The network is thus well suited for the application in mind in this 
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optimization problems require a large number of design variables which define the 
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 The candidate unit weight optimization might get stuck in a local maximum, and thus 
units which are not correlating well with the error are installed on the NN, leading to 
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well will the network make predictions for cases that are not in the training set? Neural 
networks, like other nonlinear estimation methods such as kernel regression and even linear 
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stated in Sarle (2002): “A network that is not sufficiently complex can fail to detect fully the signal 
in a complicated data set, leading to underfitting. A network that is too complex may fit the noise, not 
just the signal, leading to overfitting. Overfitting is especially dangerous because it can easily lead to 
predictions that are far beyond the range of the training data with many of the common types of 
NNs.” 
Model selection plays an important role in the generalization ability of the network. As 
explained above, constructive methods, like cascade correlation, are usually better methods 
than fixed network topologies trained with back-propagation or pruning methods because 
they automatically find the number of hidden units that matches the complexity of the 
problem. They also find smaller network solutions. Smaller networks mean less connections 
or weights to adjust and thus usually require smaller training sets for similar generalization 
ability (Kwok & Yeung, 1997b).  
The generalization ability of the NN has been addressed in the Modified Cascade 
Correlation algorithm. Various improvements to the original CC based on some of the 
solutions proposed by the above-referenced works have been implemented. Extensive 
research has been conducted that demonstrates the clear advantages of using the MCC on a 
test function for dimensions varying from 2 to 30 inputs (Schmitz 2007). 
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constrained to a maximum value in order to limit strong non-linearities of the response 
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surface, training of the input-to-hidden-unit weights and hidden-to-output weights is 
performed with a second order optimization method (Sequential Quadratic Programming) 
instead of the Quickprop algorithm introduced by the original authors. Several stopping 
criteria are also available to limit overfitting of the network; they all continue training 
slightly past the minimum validation error (error measured on the Validation Set) and the 
resulting network is that which has the smallest squared error on the VS, whereas the 
original authors stop when the error on the training set reaches a predetermined value.  
Also, ensemble averaging, a well known technique for reducing overfitting is available 
when training with the MCC. These improvements are described in more detail in the 
following sections.   

 
3.2.1 Normalization of Inputs 
The activation function of the hidden units is usually highly nonlinear. In this research, the 
activation function chosen is the sigmoid function which varies between zero and one.  
During training, weights are initialized with small random values. It is commonly known 
that optimization algorithms will perform faster if optimization is started in an area where 
the objective function varies rapidly. It is thus better to ensure that the hidden units are not 
in their saturated portion but rather in the area of the sigmoid which is quasi-linearly 
varying when optimization is started. Along with using small initial weights, it was also 
decided to normalize the inputs to the NN. The training set minimum and maximum values 
are first calculated for each input i. 
 
  

1
mini ipp Np

MinInput z
 

  (3) 

  
1
maxi ipp Np

MaxInput z
 

  (4) 

 
where Np is the size of the training set and zip is the ith input for the pth point of the training 
set. 
The training set is next rescaled from zero to one according to the equation below.  
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Also the validation and generalization sets are rescaled using the same minimum and 
maximum values found for the training set, so they will vary from around zero to one (but 
not exactly between 0 and 1).  

 
3.2.2 Weights Initialization 
In any nonlinear optimization problem, the initialization of the parameters has an important 
influence on the ability of the training program to converge and the speed of that 

convergence. The training of weights in NNs can be viewed as a nonlinear optimization 
problem in which the goal is to find a set of network weights that optimizes a cost function. 
In the MCC algorithm, there are two separate optimization problems. The first one is to 
maximize a correlation function to train the candidate hidden unit newly added to the 
network; the other is to minimize the error on the training set.  Both describe a surface in the 
weight space. Training algorithms are simply methods used to find the minimum of this 
surface. The complexity of the search is governed by the nature of this surface. Error 
surfaces for multilayer NNs have typically many flat regions where learning is slow and 
long narrow “canyons” that are flat in one direction and steep in the other directions. This 
makes it very difficult to search the surface efficiently using gradient-based routines. In 
addition, the cost function is characterized by a large number of local minima with values in 
the vicinity of the best global minimum. The efficiency of the search method depends much 
on the initial weight distribution. The simplest category among the weight initialization 
methods is random weight initialization. It is commonly known that if all the weights of an 
NN are initialized with a zero, they cannot change to any other value during training if 
some simple training algorithms are used. Random initialization has been proposed to avoid 
this undesired situation and its ability to break the symmetry. Very little research has been 
reported on weight initialization in the literature (Lehtokangas, 1999 and Lahnajärvi et al., 
2002).  
In the cascade correlation algorithm, there are three separate weight optimization problems 
to investigate: 
1. The first optimization problem is the squared error minimization between input and 

output units before any hidden unit is added to the network.  A previous study showed 
that the weights between the inputs and the outputs should be initialized randomly 
between -0.5 and +0.5 (Hefazi et al., 2003).  

2. The second optimization problem consists of finding the best candidate hidden unit by 
maximizing the correlation formula. The weight initialization consists in calculating the 
norm of the input vector Zp, pZ , for each training set point p (also called pattern), and 

then initializing the weights for the new candidate unit wj so that: 
3.  
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Also during the optimization, the weights values are limited between -10 and +10, as 
lower values lead to very deep networks and higher values lead to severe overfitting of 
the data. 

4. A third optimization consists of minimizing again the squared error after a new hidden 
unit (hth hidden unit) has been added to the network and connected to the outputs. 
Hefazi et al. (2003) showed that the weights vij found at the previous step (unit h-1) are 
already close to the optimal value with this new hidden unit added to the network. For 
this weight initialization problem, it is then best to use, as initial weights, the ones 
found at the previous iteration (weights between the inputs and previous hidden units 
to hidden unit h-1) and to initialize at zero the new weights between the inputs and 
previous hidden unit to hidden unit h. This method leads to the fastest search for the 
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surface, training of the input-to-hidden-unit weights and hidden-to-output weights is 
performed with a second order optimization method (Sequential Quadratic Programming) 
instead of the Quickprop algorithm introduced by the original authors. Several stopping 
criteria are also available to limit overfitting of the network; they all continue training 
slightly past the minimum validation error (error measured on the Validation Set) and the 
resulting network is that which has the smallest squared error on the VS, whereas the 
original authors stop when the error on the training set reaches a predetermined value.  
Also, ensemble averaging, a well known technique for reducing overfitting is available 
when training with the MCC. These improvements are described in more detail in the 
following sections.   
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the objective function varies rapidly. It is thus better to ensure that the hidden units are not 
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decided to normalize the inputs to the NN. The training set minimum and maximum values 
are first calculated for each input i. 
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where Np is the size of the training set and zip is the ith input for the pth point of the training 
set. 
The training set is next rescaled from zero to one according to the equation below.  
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Also the validation and generalization sets are rescaled using the same minimum and 
maximum values found for the training set, so they will vary from around zero to one (but 
not exactly between 0 and 1).  

 
3.2.2 Weights Initialization 
In any nonlinear optimization problem, the initialization of the parameters has an important 
influence on the ability of the training program to converge and the speed of that 

convergence. The training of weights in NNs can be viewed as a nonlinear optimization 
problem in which the goal is to find a set of network weights that optimizes a cost function. 
In the MCC algorithm, there are two separate optimization problems. The first one is to 
maximize a correlation function to train the candidate hidden unit newly added to the 
network; the other is to minimize the error on the training set.  Both describe a surface in the 
weight space. Training algorithms are simply methods used to find the minimum of this 
surface. The complexity of the search is governed by the nature of this surface. Error 
surfaces for multilayer NNs have typically many flat regions where learning is slow and 
long narrow “canyons” that are flat in one direction and steep in the other directions. This 
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addition, the cost function is characterized by a large number of local minima with values in 
the vicinity of the best global minimum. The efficiency of the search method depends much 
on the initial weight distribution. The simplest category among the weight initialization 
methods is random weight initialization. It is commonly known that if all the weights of an 
NN are initialized with a zero, they cannot change to any other value during training if 
some simple training algorithms are used. Random initialization has been proposed to avoid 
this undesired situation and its ability to break the symmetry. Very little research has been 
reported on weight initialization in the literature (Lehtokangas, 1999 and Lahnajärvi et al., 
2002).  
In the cascade correlation algorithm, there are three separate weight optimization problems 
to investigate: 
1. The first optimization problem is the squared error minimization between input and 

output units before any hidden unit is added to the network.  A previous study showed 
that the weights between the inputs and the outputs should be initialized randomly 
between -0.5 and +0.5 (Hefazi et al., 2003).  

2. The second optimization problem consists of finding the best candidate hidden unit by 
maximizing the correlation formula. The weight initialization consists in calculating the 
norm of the input vector Zp, pZ , for each training set point p (also called pattern), and 

then initializing the weights for the new candidate unit wj so that: 
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Also during the optimization, the weights values are limited between -10 and +10, as 
lower values lead to very deep networks and higher values lead to severe overfitting of 
the data. 

4. A third optimization consists of minimizing again the squared error after a new hidden 
unit (hth hidden unit) has been added to the network and connected to the outputs. 
Hefazi et al. (2003) showed that the weights vij found at the previous step (unit h-1) are 
already close to the optimal value with this new hidden unit added to the network. For 
this weight initialization problem, it is then best to use, as initial weights, the ones 
found at the previous iteration (weights between the inputs and previous hidden units 
to hidden unit h-1) and to initialize at zero the new weights between the inputs and 
previous hidden unit to hidden unit h. This method leads to the fastest search for the 
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optimum as well as the smallest overfitting. Similarly, the weights are allowed to vary 
only between -10 and +10 during optimization.  

 
3.2.3 Choice of optimization routine 
The weight optimization must be solved by using some optimization software. Kwok & 
Yeung (1993) demonstrate that the CC algorithm can always reach Es< for a given >0 for 
L2 functions, even when using a local optimizer.  Fahlman (1988) uses its own optimization 
routine to update the weights; the Quickprop algorithm, a second order local search method 
related to Newton’s method.  In this research, a commercially available software DOT, 
developed by Vanderplaats (1995) was chosen. This software contains a choice of the latest 
state-of-the-art optimization methods. Therefore the Broydon-Fletcher-Goldfarb-Shanno 
(BFGS) method from DOT software was chosen for its proven efficiency and accuracy for 
unconstrained optimization problems. It is also a quasi-Newtonian method because it 
creates an approximation of the inverse of the Hessian matrix.  The details of the method are 
explained in Vanderplaats (1995). One advantage of using this software is that the gradient 
of the squared error and the correlation formula can be supplied directly to DOT and, thus, 
considerably speed up the weight optimization. 

 
3.2.4 Candidate Hidden Unit Training 
Fahlman’s original algorithm calls for randomly initializing a pool of four to eight candidate 
units and then maximizing all candidate units. The candidate whose correlation score is the 
highest is then added to the network. This is done because, as explained in 0, the weight 
surface has many local maxima. And since the method used for finding the best weights is a 
gradient search, i.e. local search, the optimization may get stuck in a local maxima and fail 
to find the global one. So doing several searches starting with different initial weight values 
increases the chance of finding the “global” optimum. One might want to use a global 
search method, but this becomes prohibitive in terms of computer time requirements. 
Another idea is to use a much larger pool, of the order of 100-500 candidates, initialized at 
random and then only optimizing the one whose correlation after random initialization is 
best. Random initialization is very fast, and increases the chance of starting the optimization 
with a unit close to the global optimum and only one candidate is trained using the time 
consuming optimization algorithm. Lehtokangas (1999) has applied this method 
successfully to his constructive algorithm and found it beneficial in terms of time 
requirements and performance of the NN. Both options are implemented in the algorithm. 
A study in Schmitz (2007) shows that for a number of inputs greater than 5 or 10, it is 
advantageous to use the method using a large pool of candidate units. 

 
3.2.5 Stopping Criterion 
When training a NN, one is usually interested in obtaining a network with optimal 
generalization performance. Generalization performance means small errors on examples 
not seen during training. As hidden units are added to the network, the error on the TS 
decreases, i.e. the network is able to fit the training data better. However, when looking at 
the error on an unseen data set, the error initially decreases but at some point during 
training it increases. The network starts to overfit the training data and the generalization 
ability of the network gets worse. This is even more pronounced when the data is noisy 

(Bishop, 1995). This phenomenon is called the bias variance tradeoff; underfitting produces 
excessive bias in the outputs, whereas overfitting produces excessive variance. To our 
knowledge, Fahlman and Lebiere did not study the generalization properties of their CC 
network and looked only at the convergence of their network on the training data.  
An easy way to find a network having the best performance on new data is to evaluate the 
error function using data which is independent of that used for training, i.e. on the 
validation set (VS) and to stop training when the error is minimum on the VS. This method 
is called early stopping or stopping the learning procedure before full convergence of the 
network on the training set (TS) to obtain optimal generalization properties. It is widely 
used in all feedforward NN architectures. Because of the stochastic nature of the CC 
algorithm, the minimum validation error might exhibit several local minima as hidden units 
are added one by one before the global minimum can be attained. This implies that one 
must continue training the NN past each local minimum to make sure that the global 
minimum has been found and then choose the network with the number of hidden units 
which correspond to this minimum validation error. Prechelt (1998a & 1998b) has derived 
several classes of stopping criteria which may be used to determine how long training 
should be continued to make sure that the global minimum has been found. These criteria 
are described in detail in Schmitz (2007). Only the criterion used in the applications 
presented in this chapter is described in Section 0. 

 
3.2.6 Ensemble Averaging 
Because of the stochastic nature of the process in building NNs, it is a common practice to 
train many different candidate networks and then to keep only the one with best 
performance. Each network leads to different weight values, different numbers of HUs and 
different errors. Usually, the one with the best performance is chosen. Performance is 
usually measured by how the network predicts data on an independent validation set. There 
are two disadvantages in this approach. First, the effort involved in training the remaining 
networks is wasted. Second, the generalization performance on the validation set has a 
random component since it is a relatively small set and so the network which had best 
performance on the validation set might not be the one with the best generalization, i.e. 
performance on the rest of the computational domain. These drawbacks can be overcome by 
combining the networks together by forming a committee. There are several ways of 
combining networks; one simple way is to take the output of the committee to be the 
average output of each individual network. This method, called ensemble averaging, appears 
to be a very simple way to limit the overfitting of the network. According to Bishop (1995), 
the error on the committee is always less than the average error calculated by averaging the 
error on each individual network. Also, networks trained with the CC algorithm usually 
show strong non-linearities in their response because the hidden units are added in cascade, 
making a network with many layers and one hidden unit in each layer. In the application in 
mind involving approximation of smooth functions, the idea of using all the networks 
constructed, and average them out to “smooth out” the response surface, appears 
promising. Tekto & Villa (1997) have done some preliminary research on ensemble 
averaging combined with early stopping (ESE) for NNs trained according to the cascade 
correlation algorithm for simple single input/single output functions. Their work shows 
that the technique they call ESE provides an improvement in the generalization ability of the 
network for those test cases. An extensive study in Schmitz (2007) has shown that ensemble 



Modified Cascade Correlation Neural Network and its Applications	
 to Multidisciplinary Analysis Design and Optimization in Ship Design 311

optimum as well as the smallest overfitting. Similarly, the weights are allowed to vary 
only between -10 and +10 during optimization.  

 
3.2.3 Choice of optimization routine 
The weight optimization must be solved by using some optimization software. Kwok & 
Yeung (1993) demonstrate that the CC algorithm can always reach Es< for a given >0 for 
L2 functions, even when using a local optimizer.  Fahlman (1988) uses its own optimization 
routine to update the weights; the Quickprop algorithm, a second order local search method 
related to Newton’s method.  In this research, a commercially available software DOT, 
developed by Vanderplaats (1995) was chosen. This software contains a choice of the latest 
state-of-the-art optimization methods. Therefore the Broydon-Fletcher-Goldfarb-Shanno 
(BFGS) method from DOT software was chosen for its proven efficiency and accuracy for 
unconstrained optimization problems. It is also a quasi-Newtonian method because it 
creates an approximation of the inverse of the Hessian matrix.  The details of the method are 
explained in Vanderplaats (1995). One advantage of using this software is that the gradient 
of the squared error and the correlation formula can be supplied directly to DOT and, thus, 
considerably speed up the weight optimization. 

 
3.2.4 Candidate Hidden Unit Training 
Fahlman’s original algorithm calls for randomly initializing a pool of four to eight candidate 
units and then maximizing all candidate units. The candidate whose correlation score is the 
highest is then added to the network. This is done because, as explained in 0, the weight 
surface has many local maxima. And since the method used for finding the best weights is a 
gradient search, i.e. local search, the optimization may get stuck in a local maxima and fail 
to find the global one. So doing several searches starting with different initial weight values 
increases the chance of finding the “global” optimum. One might want to use a global 
search method, but this becomes prohibitive in terms of computer time requirements. 
Another idea is to use a much larger pool, of the order of 100-500 candidates, initialized at 
random and then only optimizing the one whose correlation after random initialization is 
best. Random initialization is very fast, and increases the chance of starting the optimization 
with a unit close to the global optimum and only one candidate is trained using the time 
consuming optimization algorithm. Lehtokangas (1999) has applied this method 
successfully to his constructive algorithm and found it beneficial in terms of time 
requirements and performance of the NN. Both options are implemented in the algorithm. 
A study in Schmitz (2007) shows that for a number of inputs greater than 5 or 10, it is 
advantageous to use the method using a large pool of candidate units. 

 
3.2.5 Stopping Criterion 
When training a NN, one is usually interested in obtaining a network with optimal 
generalization performance. Generalization performance means small errors on examples 
not seen during training. As hidden units are added to the network, the error on the TS 
decreases, i.e. the network is able to fit the training data better. However, when looking at 
the error on an unseen data set, the error initially decreases but at some point during 
training it increases. The network starts to overfit the training data and the generalization 
ability of the network gets worse. This is even more pronounced when the data is noisy 

(Bishop, 1995). This phenomenon is called the bias variance tradeoff; underfitting produces 
excessive bias in the outputs, whereas overfitting produces excessive variance. To our 
knowledge, Fahlman and Lebiere did not study the generalization properties of their CC 
network and looked only at the convergence of their network on the training data.  
An easy way to find a network having the best performance on new data is to evaluate the 
error function using data which is independent of that used for training, i.e. on the 
validation set (VS) and to stop training when the error is minimum on the VS. This method 
is called early stopping or stopping the learning procedure before full convergence of the 
network on the training set (TS) to obtain optimal generalization properties. It is widely 
used in all feedforward NN architectures. Because of the stochastic nature of the CC 
algorithm, the minimum validation error might exhibit several local minima as hidden units 
are added one by one before the global minimum can be attained. This implies that one 
must continue training the NN past each local minimum to make sure that the global 
minimum has been found and then choose the network with the number of hidden units 
which correspond to this minimum validation error. Prechelt (1998a & 1998b) has derived 
several classes of stopping criteria which may be used to determine how long training 
should be continued to make sure that the global minimum has been found. These criteria 
are described in detail in Schmitz (2007). Only the criterion used in the applications 
presented in this chapter is described in Section 0. 

 
3.2.6 Ensemble Averaging 
Because of the stochastic nature of the process in building NNs, it is a common practice to 
train many different candidate networks and then to keep only the one with best 
performance. Each network leads to different weight values, different numbers of HUs and 
different errors. Usually, the one with the best performance is chosen. Performance is 
usually measured by how the network predicts data on an independent validation set. There 
are two disadvantages in this approach. First, the effort involved in training the remaining 
networks is wasted. Second, the generalization performance on the validation set has a 
random component since it is a relatively small set and so the network which had best 
performance on the validation set might not be the one with the best generalization, i.e. 
performance on the rest of the computational domain. These drawbacks can be overcome by 
combining the networks together by forming a committee. There are several ways of 
combining networks; one simple way is to take the output of the committee to be the 
average output of each individual network. This method, called ensemble averaging, appears 
to be a very simple way to limit the overfitting of the network. According to Bishop (1995), 
the error on the committee is always less than the average error calculated by averaging the 
error on each individual network. Also, networks trained with the CC algorithm usually 
show strong non-linearities in their response because the hidden units are added in cascade, 
making a network with many layers and one hidden unit in each layer. In the application in 
mind involving approximation of smooth functions, the idea of using all the networks 
constructed, and average them out to “smooth out” the response surface, appears 
promising. Tekto & Villa (1997) have done some preliminary research on ensemble 
averaging combined with early stopping (ESE) for NNs trained according to the cascade 
correlation algorithm for simple single input/single output functions. Their work shows 
that the technique they call ESE provides an improvement in the generalization ability of the 
network for those test cases. An extensive study in Schmitz (2007) has shown that ensemble 
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averaging always improves the generalization ability of the NN and should indeed be used 
each time an NN is constructed with the MCC algorithm.  

 
3.3 Equations/Mathematical Formulation/Algorithm 
This section describes the mathematical formulation the modified CC algorithm for function 
approximation. The training algorithm was programmed in C++ language and coupled with 
the DOT software which uses FORTRAN language. 

 
3.3.1 Step 1: No Hidden Units/Linear Inputs to Outputs Connection 
In the first step of building the network with the cascade correlation algorithm, there are no 
hidden units. Inputs and outputs are fully connected, the weights, vij, determine the strength 
of the connection from the ith input to the jth output. These will need to be adjusted to 
minimize the squared error Es. Fig. 2 shows a schematic of the input-outputs connections 
without hidden units. The vertical lines sum all incoming activation. X connections 
correspond to weights to be trained. Square boxes represent neurons; input-output neurons 
have a linear activation function. 
The bias term can be modelled in the equations as an additional input unit of value one and 
with weighted connections to the outputs. Without loss of generality, the output neurons 
can have a linear activation function of slope one (i.e. (z)=z) because there is always a linear 
component to a nonlinear function, thus a linear link between inputs and outputs. This 
greatly simplifies the equations for training the NN. The bias parameter is useful to 
compensate for the difference between the mean (over the training set) of the output vector 
and the corresponding mean of the target data.  
Based on this NN, the relationship between input and output is given by 
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Fig. 2. Schematic of input-output connections without hidden units. The vertical lines sum 
all incoming activation. X connections or weights must be trained.  

 

3.3.2 Step 2: Minimize Squared Error without Hidden Unit 
The next step consists of adjusting the weights to fit the training data. The squared error 
between the targets and the outputs is used as the standard error measure and must be 
minimized. The squared error for the neural network without hidden unit is given by the 
following equation:  
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The weights vij are initialized randomly between [-0.5, +0.5] as discussed in Section 0. The 
error is then minimized by adjusting the weights using the BFGS method from DOT 
optimization software (Vanderplaats, 1995).  DOT allows the user to directly input the 
gradient of the function to optimize, if known, and to speed up the optimization process. 
The gradient of squared error with respect to the weights klEs v   can be calculated 
analytically as follow: 
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with k  {1…m}, l  {1…n+1} and j  {1…n}. 
It is noteworthy to point out here that a pseudo inverse method could also be used to find 
the minimum error since it is a linear system. However BFGS works fast on linear systems 
and is subsequently used to find the candidate units weights once hidden units have been 
added and the system is no longer linear. This approach was used here instead of 
calculating the pseudo inverse matrix.  

 
3.3.3 Step 3: Adding a First Hidden Unit Connected to Inputs only 
After optimizing the matrix of weights, V, a first hidden unit is connected to the inputs as 
shown in Fig. 3. Its output is noted zn+2, p. 
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Fig. 3. Schematic of input to first hidden unit connections. Hidden unit not yet connected to 
outputs. Diamond connections to be trained. 
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averaging always improves the generalization ability of the NN and should indeed be used 
each time an NN is constructed with the MCC algorithm.  

 
3.3 Equations/Mathematical Formulation/Algorithm 
This section describes the mathematical formulation the modified CC algorithm for function 
approximation. The training algorithm was programmed in C++ language and coupled with 
the DOT software which uses FORTRAN language. 

 
3.3.1 Step 1: No Hidden Units/Linear Inputs to Outputs Connection 
In the first step of building the network with the cascade correlation algorithm, there are no 
hidden units. Inputs and outputs are fully connected, the weights, vij, determine the strength 
of the connection from the ith input to the jth output. These will need to be adjusted to 
minimize the squared error Es. Fig. 2 shows a schematic of the input-outputs connections 
without hidden units. The vertical lines sum all incoming activation. X connections 
correspond to weights to be trained. Square boxes represent neurons; input-output neurons 
have a linear activation function. 
The bias term can be modelled in the equations as an additional input unit of value one and 
with weighted connections to the outputs. Without loss of generality, the output neurons 
can have a linear activation function of slope one (i.e. (z)=z) because there is always a linear 
component to a nonlinear function, thus a linear link between inputs and outputs. This 
greatly simplifies the equations for training the NN. The bias parameter is useful to 
compensate for the difference between the mean (over the training set) of the output vector 
and the corresponding mean of the target data.  
Based on this NN, the relationship between input and output is given by 

   
1 11 1, 1 1

1 , 1

1...

1

p n p

np

mp m m n

y v v z

p Np
z

y v v





     
     
            
     

      

 
   
  

 

 (7) 

 
Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

Linear input-
output neurons 

znp

z2p

z1p

zn+1,p

…

…

 
Fig. 2. Schematic of input-output connections without hidden units. The vertical lines sum 
all incoming activation. X connections or weights must be trained.  

 

3.3.2 Step 2: Minimize Squared Error without Hidden Unit 
The next step consists of adjusting the weights to fit the training data. The squared error 
between the targets and the outputs is used as the standard error measure and must be 
minimized. The squared error for the neural network without hidden unit is given by the 
following equation:  
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The weights vij are initialized randomly between [-0.5, +0.5] as discussed in Section 0. The 
error is then minimized by adjusting the weights using the BFGS method from DOT 
optimization software (Vanderplaats, 1995).  DOT allows the user to directly input the 
gradient of the function to optimize, if known, and to speed up the optimization process. 
The gradient of squared error with respect to the weights klEs v   can be calculated 
analytically as follow: 

 , 1
1 1

Np n

kj jp k n kp lp
p jkl

Es v z v t z
v 

 

 
   

   
   (9) 

 
with k  {1…m}, l  {1…n+1} and j  {1…n}. 
It is noteworthy to point out here that a pseudo inverse method could also be used to find 
the minimum error since it is a linear system. However BFGS works fast on linear systems 
and is subsequently used to find the candidate units weights once hidden units have been 
added and the system is no longer linear. This approach was used here instead of 
calculating the pseudo inverse matrix.  

 
3.3.3 Step 3: Adding a First Hidden Unit Connected to Inputs only 
After optimizing the matrix of weights, V, a first hidden unit is connected to the inputs as 
shown in Fig. 3. Its output is noted zn+2, p. 
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Fig. 3. Schematic of input to first hidden unit connections. Hidden unit not yet connected to 
outputs. Diamond connections to be trained. 
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The connections (weights) between inputs and the hidden unit are noted wj in 
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where j = 1,…,n+1 and  is the sigmoid function. Also, to simplify the notation, the +1 of the 
bias is replaced by the notation zn+1, p in the equations. 

 
3.3.4 Step 4: Maximize Correlation Formula for First Hidden Unit 
The next step in the CC algorithm is to maximize the correlation for the new hidden unit 
installed on the network. Optimization is performed with the BFGS method from DOT 
(Vanderplaats, 1995).  
For this weight initialization, the norm of the input vector Zp, pZ , is calculated for each 

training set point p (also called pattern). And the weights for the new candidate unit wj are 
initialized so that: 
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to avoid starting the optimization in the highly saturated part of the sigmoid, and thus 
getting a null derivative of the correlation formula with respect to the weights wj. In fact, a 
pool of candidate hidden units is generated with different random initial weights, and two 
options are available to train the candidates depending on the size of the pool chosen. If this 
number is less than 10, the algorithm is programmed so that all candidate units in the pool 
are trained to maximize the chosen correlation formula using the BFGS algorithm. Only the 
unit with the largest correlation value after training is next installed on the network. This 
method is the same as Fahlman’s algorithm except for the use of the BFGS instead of the 
Quickprop (Fahlman, 1988) algorithm. If the size of the pool is greater than 10, then only the 
candidate unit which exhibits the largest correlation value after random initialization is 
trained with the BFGS method and next permanently installed on the NN. This builds the 
network faster since the time-consuming operation of optimizing the weights is done only 
once. The other option implies optimizing several candidates.  For this method to work well, 
it is recommended to use a large pool, say 100 to 500 candidates. Only the candidate whose 
correlation is the highest is kept in memory. Its weights are saved in a separate matrix WH: 
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Those connections are now permanently frozen.  
The following equation describes the correlation formula, denoted SC, between the 
candidate unit’s value and the residual output error observed at the first unit.  
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where Eip is the residual error Eip = yip – tip calculated with the outputs yip from the previous 
step. Strictly speaking, SC, is actually a covariance, not a true correlation because the formula 
leaves out some of the normalization terms. 
The gradient of SC with respect to the wl can again be calculated analytically and is supplied 
to the optimizer to speed up the process.   
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and 
  x x       (17) 

 
is the derivative of the activation function (sigmoid). 

 
3.3.5 Step 5: Connect First Hidden Unit to Outputs 
Once trained, the new hidden unit is connected to the outputs with the weights saved in 
matrix WH. The output zn+2,p is now fixed; it acts as an additional input to the NN.  The NN 
equation can be written as: 
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A schematic of the connections is represented in Fig. 4, the weights that connect the input-
to-outputs weights and the first HU-to-output weights are still unknown and must be 
trained in Step 6.  
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where Eip is the residual error Eip = yip – tip calculated with the outputs yip from the previous 
step. Strictly speaking, SC, is actually a covariance, not a true correlation because the formula 
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3.3.5 Step 5: Connect First Hidden Unit to Outputs 
Once trained, the new hidden unit is connected to the outputs with the weights saved in 
matrix WH. The output zn+2,p is now fixed; it acts as an additional input to the NN.  The NN 
equation can be written as: 
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A schematic of the connections is represented in Fig. 4, the weights that connect the input-
to-outputs weights and the first HU-to-output weights are still unknown and must be 
trained in Step 6.  
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Fig. 4. Schematic of first hidden unit connected to the outputs. Diamond connections are 
permanently frozen. X connections must be trained again. 

 
3.3.6 Step 6: Minimize Squared Error with first Hidden Unit 
Once the new HU is installed on the network, the matrix V must be optimized to minimize 
the squared error on the TS using the BFGS algorithm from DOT. 
The squared error is calculated as: 
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The gradient, which is also supplied to the optimizer, is given by: 
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for k  {1…m} and l  {1…n+2}. 
Weights are initialized by taking former weights calculated above for j  {1…n+1} and set to 
zero for j = n+2. Indeed, the first n+1 columns of the V matrix represent the input-to-output 
weights. Those have already been adjusted at Step 2 to minimize the squared error. It is 
therefore expected that a good initial guess for the solution with the additional HU in the 
network is to take the former weights calculated at Step 2 and to set to zero the weights that 
connect the new hidden unit to the outputs. These weights correspond to column n+2 in the 
weights matrix V.  
After the squared error is minimized for the training set, it is next evaluated on the 
validation and the generalization set if they have been specified. Either the epsilon stopping 

criterion or one of the early stopping criteria can be chosen. (see Section 0). The chosen 
criterion for stopping is checked. If it is met the program stops. If it is not met, the program 
continues adding hidden units one at a time.  

 
3.3.7 Step 7: Connect hth Hidden Unit to Inputs 
Each time a new hidden unit is added, a link from this neuron to all the inputs (and bias) 
and the former hidden units is created (see Fig. 5).  
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Fig. 5. Schematic after adding hth hidden unit. Hidden unit connected to former HUs and 
inputs only. Diamond connections to the hth hidden unit only must be trained (wj weights) 
 
The equation for the output of the hth hidden unit added on to the NN, zn+1+h,p, is: 
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The zjp are the inputs to the network for j=1…n+1 and the outputs from the h-1 previous 
hidden units for j=n+2, … n+h. Since the input-to-hidden unit weights are frozen for the h-1 
previous HUs, they can be viewed as additional inputs to the network. The weights wj from 
the inputs and the previous HUs to the hth hidden unit are unknown and must be adjusted.  

 
3.3.8 Step 8: Maximize Correlation Formula for hth Hidden Unit 
Next, the wj weights are adjusted to maximize the correlation formula. Again a pool of 
candidate units is created by initializing the weights wj for each candidate at random and 
Step 4 is repeated. The candidate whose correlation is the highest is kept in memory as wjh. 
Those weights are saved on row h of the matrix WH.  Each line of this matrix contains the 



Modified Cascade Correlation Neural Network and its Applications	
 to Multidisciplinary Analysis Design and Optimization in Ship Design 317

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1
zn+2,p 

w1
1

wn+1
1

vm,n+2v1,n+2

 
Fig. 4. Schematic of first hidden unit connected to the outputs. Diamond connections are 
permanently frozen. X connections must be trained again. 

 
3.3.6 Step 6: Minimize Squared Error with first Hidden Unit 
Once the new HU is installed on the network, the matrix V must be optimized to minimize 
the squared error on the TS using the BFGS algorithm from DOT. 
The squared error is calculated as: 
 

 
2

22

1 1 1 1 1

1 1
2 2

Np Npm m n

ip ip ij jp ip
i p i p j

Es y t v z t


    

 
    

  
    (19) 

 
The gradient, which is also supplied to the optimizer, is given by: 
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inputs only. Diamond connections to the hth hidden unit only must be trained (wj weights) 
 
The equation for the output of the hth hidden unit added on to the NN, zn+1+h,p, is: 
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The zjp are the inputs to the network for j=1…n+1 and the outputs from the h-1 previous 
hidden units for j=n+2, … n+h. Since the input-to-hidden unit weights are frozen for the h-1 
previous HUs, they can be viewed as additional inputs to the network. The weights wj from 
the inputs and the previous HUs to the hth hidden unit are unknown and must be adjusted.  

 
3.3.8 Step 8: Maximize Correlation Formula for hth Hidden Unit 
Next, the wj weights are adjusted to maximize the correlation formula. Again a pool of 
candidate units is created by initializing the weights wj for each candidate at random and 
Step 4 is repeated. The candidate whose correlation is the highest is kept in memory as wjh. 
Those weights are saved on row h of the matrix WH.  Each line of this matrix contains the 
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weights wji saved for each HU. Its dimension is increased by one row and one column each 
time a new HU is added.  
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Again, the equation for the correlation can be written as: 
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and 
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For simplicity, in the equations the output to the hth hidden unit is denoted zo,p instead of 
zn+h+1,p. Also as before, Eip is the residual error Eip = |yip – tip| calculated with the outputs yip 
for the network with h-1 hidden units.  
The gradient of SC is given by  
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3.3.9 Step 9: Connect hth Hidden Unit to Outputs 
The candidate HU with the highest correlation is added on to the network and connected to 
the output (see Fig. 6). The matrix V connects the inputs and all hidden units installed to the 
network to the outputs. The outputs can be calculated with the following equation.  
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Fig. 6. Connecting hth hidden unit to the outputs. X connections must be trained again. 

 
3.3.10 Step 10: Minimize Squared Error for hth Hidden Unit 
Similarly to Step 6, weights vij are initialized by taking former weights calculated for the NN 
with h-1 HUs for columns j  {1,…, n+h} and set to zero for column j = n+1+h. The squared 
error is calculated over the training set and is minimized using the BFGS algorithm.  
The squared error and its gradient are both supplied to the optimizer, their equations are:  
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for k  {1,…,m} and l  {1,…,n+1+h}. 

 
3.3.11 Step 11: Stop Training when Stopping Criterion is met 
Steps seven through ten are repeated and the cascade correlation algorithm stops when the 
stopping criterion is met. Several stopping criteria are available to the user in the modified 
algorithm. The first one, the epsilon stopping criterion, is used in Fahlman’s original 
algorithm (Fahlman & Lebiere, 1990). However, this criterion does not prevent overfitting 
and therefore, was later replaced by the early stopping criteria as described below.  
The Epsilon Stopping Criterion 
The epsilon stopping criterion stops the algorithm when the square error on the training set 
has reached a predetermined  value. The problem with this criterion is that the user must 
determine in advance which  value to use. Also the squared error can vary significantly 
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weights wji saved for each HU. Its dimension is increased by one row and one column each 
time a new HU is added.  
 

 

1 1
1 1

2 2
1 2

1

0 0

0

n

n

h h
n h

w w
w w

w w







 
 
   
 
  

WH

 
  

 
 

 (22) 

 
Again, the equation for the correlation can be written as: 
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For simplicity, in the equations the output to the hth hidden unit is denoted zo,p instead of 
zn+h+1,p. Also as before, Eip is the residual error Eip = |yip – tip| calculated with the outputs yip 
for the network with h-1 hidden units.  
The gradient of SC is given by  
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3.3.9 Step 9: Connect hth Hidden Unit to Outputs 
The candidate HU with the highest correlation is added on to the network and connected to 
the output (see Fig. 6). The matrix V connects the inputs and all hidden units installed to the 
network to the outputs. The outputs can be calculated with the following equation.  
 

 
1 11 1, 1 1

1 , 1 1 ,

p n h p

mp m m n h n h p

y v v z

y v v z

 

   

    
        
        


   


 (28) 

  

Outputs

Inputs

Bias +1

vm1v11

vm,n+1v1,n+1

y1p ymp

znp

z2p

z1p

zn+1,p

…

…

HU 1 
zn+2,p 

w1
1

wn+1
1

vm,n+2v1,n+2

HU 2

zn+3,p 

wn+1
2

w1
2

wn+2
2

HU h 

zn+h+1,p 

w1
h

wn+1
h

wn+h+1
h

wn+2
h

v1,n+3 vm,n+3

…
vm,n+hv1,n+h

 
Fig. 6. Connecting hth hidden unit to the outputs. X connections must be trained again. 

 
3.3.10 Step 10: Minimize Squared Error for hth Hidden Unit 
Similarly to Step 6, weights vij are initialized by taking former weights calculated for the NN 
with h-1 HUs for columns j  {1,…, n+h} and set to zero for column j = n+1+h. The squared 
error is calculated over the training set and is minimized using the BFGS algorithm.  
The squared error and its gradient are both supplied to the optimizer, their equations are:  
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for k  {1,…,m} and l  {1,…,n+1+h}. 

 
3.3.11 Step 11: Stop Training when Stopping Criterion is met 
Steps seven through ten are repeated and the cascade correlation algorithm stops when the 
stopping criterion is met. Several stopping criteria are available to the user in the modified 
algorithm. The first one, the epsilon stopping criterion, is used in Fahlman’s original 
algorithm (Fahlman & Lebiere, 1990). However, this criterion does not prevent overfitting 
and therefore, was later replaced by the early stopping criteria as described below.  
The Epsilon Stopping Criterion 
The epsilon stopping criterion stops the algorithm when the square error on the training set 
has reached a predetermined  value. The problem with this criterion is that the user must 
determine in advance which  value to use. Also the squared error can vary significantly 
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from one function to another. The average value of the outputs changes the error as defined 
by Eq. 1. Also the number of points used in the training will change the value of the error. 
So, this  value should be adjusted by the user manually every time a network needs to be 
trained. Also this stopping criterion does not give any information on the generalization 
ability of the network, i.e. how the network performs for points not in the training set. This 
criterion is thus replaced by the early stopping criteria described in the next subsection, 
which monitor the error on an unseen dataset, the validation set.  
The Early Stopping Criteria 
As alluded to earlier, these criteria allow to limit overfitting of the network by checking how 
the error decreases on the validation set. It is commonly know that as more units are added, 
the network is able to fit training data better since additional degrees of freedom are added. 
However, the error on data not used during training decreases at first but then later 
increases, showing signs of overfitting or overtraining. The idea of early stopping is to stop 
training early, before full convergence of the network on the training set, or when the error 
on the unseen dataset, the VS, is minimum. However in order to find the minimum of the 
error on the VS, one must continue training the network some time past this minimum and 
then stop and choose the network with the number of hidden units which correspond to 
that minimum error. This leads to several stopping criteria to decide how long to continue 
training after a minimum of the error is found.  
Three classes of stopping criteria are available in the MCC. They are described in detail in 
Schmitz (2007) and are not repeated here. The criterion used in both applications described 
in this chapter is the PQ0.75 criterion. This criterion is relatively efficient and accurate in 
finding the true minimum error on the VS.  
A few definitions are required before the PQ criterion can be derived.  The squared error 
calculated on the TS for h hidden units added on the network will be noted EsTS(h) and 
called training set error at epoch h, or training error for short. The epoch h corresponds to a 
network trained with h hidden units, with h varying from 0 to the maximum number of 
hidden units (namely 70 in the MCC).  EsVS(h), the validation error, is the corresponding 
error on the VS. Let EsOPT-VS(h) be the lowest validation error obtained in epochs up to h:  
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The generalization loss (GL(h)) at epoch h is defined as the relative increase of the validation 
error over the minimum so far, in percent:  
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The training progress, denoted Pk(h), measures how large the average training error is 
during a training strip of length k (epochs from h-k+1 to h) with respect to the minimum 
error during that same strip.  
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The PQ0.75 criterion can be defined as following: training stops when the quotient of 
generalization loss and progress exceeds a threshold α=0.75, such that: 
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Note that this criterion is only checked after every end-of-strip epoch h, where the length of 
the strip is k epochs. In the following study we will always assume length of strips k=5. 
When the criterion is met, the training is stopped at some value of h and the resulting set of 
weights is the one that corresponds to the lowest validation error EsOPT-VS(h). So, the 
corresponding network usually has a number of hidden units h’<h. Note that the criterion 
does not ensures stopping, so a large maximum number of hidden units (hmax  = 70) was 
chosen to avoid training indefinitely.  

 
3.3.12 Resulting Single Network 
Once the stopping criterion is met, the algorithm stops. If the epsilon criterion is used, the 
resulting network is the last trained. If one of the early stopping criteria is used, the program 
chooses the network with the number of hidden units corresponding to the minimum 
validation error. The program keeps several matrices in memory: WH=[whj], the weights 
between inputs and each hidden unit saved after adding each unit is added to the NN. Also, 
it keeps two sets of vij weights; the one between inputs, plus all hidden units and outputs 
after the last hidden unit has been added to the network and the set of vij weights which 
correspond the minimum validation error (if needed).   
The function, approximating f is thus given by the equations below and can be evaluated by 
recurrence, so that: 
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where xl (l {1,…,n}) are inputs to the neural network, yi (i {1,…,m}) outputs and uk (k 
{1,…,h}) intermediate states, calculated by recurrence. Also, h is the number of hidden 
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from one function to another. The average value of the outputs changes the error as defined 
by Eq. 1. Also the number of points used in the training will change the value of the error. 
So, this  value should be adjusted by the user manually every time a network needs to be 
trained. Also this stopping criterion does not give any information on the generalization 
ability of the network, i.e. how the network performs for points not in the training set. This 
criterion is thus replaced by the early stopping criteria described in the next subsection, 
which monitor the error on an unseen dataset, the validation set.  
The Early Stopping Criteria 
As alluded to earlier, these criteria allow to limit overfitting of the network by checking how 
the error decreases on the validation set. It is commonly know that as more units are added, 
the network is able to fit training data better since additional degrees of freedom are added. 
However, the error on data not used during training decreases at first but then later 
increases, showing signs of overfitting or overtraining. The idea of early stopping is to stop 
training early, before full convergence of the network on the training set, or when the error 
on the unseen dataset, the VS, is minimum. However in order to find the minimum of the 
error on the VS, one must continue training the network some time past this minimum and 
then stop and choose the network with the number of hidden units which correspond to 
that minimum error. This leads to several stopping criteria to decide how long to continue 
training after a minimum of the error is found.  
Three classes of stopping criteria are available in the MCC. They are described in detail in 
Schmitz (2007) and are not repeated here. The criterion used in both applications described 
in this chapter is the PQ0.75 criterion. This criterion is relatively efficient and accurate in 
finding the true minimum error on the VS.  
A few definitions are required before the PQ criterion can be derived.  The squared error 
calculated on the TS for h hidden units added on the network will be noted EsTS(h) and 
called training set error at epoch h, or training error for short. The epoch h corresponds to a 
network trained with h hidden units, with h varying from 0 to the maximum number of 
hidden units (namely 70 in the MCC).  EsVS(h), the validation error, is the corresponding 
error on the VS. Let EsOPT-VS(h) be the lowest validation error obtained in epochs up to h:  
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The generalization loss (GL(h)) at epoch h is defined as the relative increase of the validation 
error over the minimum so far, in percent:  
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The training progress, denoted Pk(h), measures how large the average training error is 
during a training strip of length k (epochs from h-k+1 to h) with respect to the minimum 
error during that same strip.  
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The PQ0.75 criterion can be defined as following: training stops when the quotient of 
generalization loss and progress exceeds a threshold α=0.75, such that: 
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Note that this criterion is only checked after every end-of-strip epoch h, where the length of 
the strip is k epochs. In the following study we will always assume length of strips k=5. 
When the criterion is met, the training is stopped at some value of h and the resulting set of 
weights is the one that corresponds to the lowest validation error EsOPT-VS(h). So, the 
corresponding network usually has a number of hidden units h’<h. Note that the criterion 
does not ensures stopping, so a large maximum number of hidden units (hmax  = 70) was 
chosen to avoid training indefinitely.  

 
3.3.12 Resulting Single Network 
Once the stopping criterion is met, the algorithm stops. If the epsilon criterion is used, the 
resulting network is the last trained. If one of the early stopping criteria is used, the program 
chooses the network with the number of hidden units corresponding to the minimum 
validation error. The program keeps several matrices in memory: WH=[whj], the weights 
between inputs and each hidden unit saved after adding each unit is added to the NN. Also, 
it keeps two sets of vij weights; the one between inputs, plus all hidden units and outputs 
after the last hidden unit has been added to the network and the set of vij weights which 
correspond the minimum validation error (if needed).   
The function, approximating f is thus given by the equations below and can be evaluated by 
recurrence, so that: 
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where xl (l {1,…,n}) are inputs to the neural network, yi (i {1,…,m}) outputs and uk (k 
{1,…,h}) intermediate states, calculated by recurrence. Also, h is the number of hidden 
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units corresponding to the last hidden unit added to the network, if the epsilon stopping 
criterion is used, or the one corresponding to the minimum validation error.  
Note that the network has been trained with inputs normalized according to the TS and 
outputs rescaled so that the TS average is one. Therefore, the datapoint X, must be linearly 
transformed before evaluating the output of the network according to the following 
equation.  
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where MinInputi and MaxInputi are the minimum and maximum values obtained from Eq. 3 
and 4.  
When using the early stopping criterion, several networks are trained sequentially using the 
same TS and VS. Because the weight surfaces have many local minima and maxima and the 
weights are initialized at random, the networks will all be different. Only the network which 
leads to the smaller validation error is retained.  

 
3.3.13 Resulting Ensemble Network 
If ensemble averaging is chosen, all networks built are kept in memory and the output of the 
committee network is taken as the average output of each individual network. A simple 
average according to  
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is used to calculate the prediction ability of the ensemble. The output YEnsemble_NN is average 
of output values of each individual network Y(k) where k=1,….,M is the index of the network 
belonging to the ensemble. 

 
4. Application to Fast Ship Multi Disciplinary Design Optimization 
 

This section describes an MDO optimization of an underwater hull configuration. The 
optimization is performed using both a “classical approach”, in which the CFD analysis is 
integrated directly inside the optimization loop, and an “NN approach”, in which the CFD 
analyses are used for TS generation, i.e. outside of the optimization loop. 

 
4.1 Design Problem Description 
The problem consists of optimizing one of Pacific Marine’s advanced lifting bodies. This 
patented underwater hull is made of two displacement bodies, called H-bodies, linked with a 
thin foil, referred to as cross-foil, and attached to the ship by two struts as shown in Fig. 7. 
The entire arrangement is referred to as the twin H-body configuration and can be fitted to 

catamaran or pentamaran hull forms. The displacement bodies are designed to provide 
good sea-keeping properties at lower speeds when the hulls of the catamaran or 
pentamaran are partially submerged, while the cross-foil is designed to provide additional 
lift at higher speed when the multiple hulls are lifted out of the water in order to reduce 
drag.  
A very similar configuration was optimized under a previous work reported by Hefazi  et al. 
(2002), using the classical optimization process. Sea trials of a half-scale replica of this 
configuration on a 44 ft test platform were conducted to provide data for the validation and 
demonstrate the application of lifting body technology on a real test platform (Hefazi et al., 
2003). The resulting optimized geometry was integrated into the first US-built “fast ship”, 
the HDV-100 technology demonstrator (Fig. 8). 

 
Fig. 7. Twin H-body configuration, baseline 
 

 
Fig. 8. Blended-wing-body configuration sketch and picture of the HDV-100 technology 
demonstrator (shown here at low speed) 
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units corresponding to the last hidden unit added to the network, if the epsilon stopping 
criterion is used, or the one corresponding to the minimum validation error.  
Note that the network has been trained with inputs normalized according to the TS and 
outputs rescaled so that the TS average is one. Therefore, the datapoint X, must be linearly 
transformed before evaluating the output of the network according to the following 
equation.  
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where MinInputi and MaxInputi are the minimum and maximum values obtained from Eq. 3 
and 4.  
When using the early stopping criterion, several networks are trained sequentially using the 
same TS and VS. Because the weight surfaces have many local minima and maxima and the 
weights are initialized at random, the networks will all be different. Only the network which 
leads to the smaller validation error is retained.  

 
3.3.13 Resulting Ensemble Network 
If ensemble averaging is chosen, all networks built are kept in memory and the output of the 
committee network is taken as the average output of each individual network. A simple 
average according to  
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is used to calculate the prediction ability of the ensemble. The output YEnsemble_NN is average 
of output values of each individual network Y(k) where k=1,….,M is the index of the network 
belonging to the ensemble. 

 
4. Application to Fast Ship Multi Disciplinary Design Optimization 
 

This section describes an MDO optimization of an underwater hull configuration. The 
optimization is performed using both a “classical approach”, in which the CFD analysis is 
integrated directly inside the optimization loop, and an “NN approach”, in which the CFD 
analyses are used for TS generation, i.e. outside of the optimization loop. 

 
4.1 Design Problem Description 
The problem consists of optimizing one of Pacific Marine’s advanced lifting bodies. This 
patented underwater hull is made of two displacement bodies, called H-bodies, linked with a 
thin foil, referred to as cross-foil, and attached to the ship by two struts as shown in Fig. 7. 
The entire arrangement is referred to as the twin H-body configuration and can be fitted to 

catamaran or pentamaran hull forms. The displacement bodies are designed to provide 
good sea-keeping properties at lower speeds when the hulls of the catamaran or 
pentamaran are partially submerged, while the cross-foil is designed to provide additional 
lift at higher speed when the multiple hulls are lifted out of the water in order to reduce 
drag.  
A very similar configuration was optimized under a previous work reported by Hefazi  et al. 
(2002), using the classical optimization process. Sea trials of a half-scale replica of this 
configuration on a 44 ft test platform were conducted to provide data for the validation and 
demonstrate the application of lifting body technology on a real test platform (Hefazi et al., 
2003). The resulting optimized geometry was integrated into the first US-built “fast ship”, 
the HDV-100 technology demonstrator (Fig. 8). 

 
Fig. 7. Twin H-body configuration, baseline 
 

 
Fig. 8. Blended-wing-body configuration sketch and picture of the HDV-100 technology 
demonstrator (shown here at low speed) 
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The optimization is performed for a boat speed of 47 knots (24.2 m/s). At this velocity, the 
parent hull will run dry. The whole configuration must be able to generate a total lift of 80 
LT, including a minimum of 16 LT by displacement effect.  
The objective is to maximize range, i.e. lift-to-drag ratio, which corresponds to minimizing 
drag at constant lift. In addition, the configuration is to be designed such that it can operate 
cavitation free at 52 knots. Additionally, the operating draft is to be 2.74 m (waterline to 
lowest point - 9 ft) and a structural constraint is to be imposed to prevent yield of the cross-
foil. Also, the maximum width of configuration shall not exceed 10.36 m (34 ft) and the 
strut-to-strut distance is fixed by requirements for mating to the upper hull. 
From an optimization problem point of view, the objective function and design constraints 
can be summarized as: 
 Objective: Maximize lift-to-drag (LOD) 
 Constraints: 
 Operational speed of 47 knots (i.e. Reynolds number is 211.63106 based on a reference 

chord of 8.69 m in 75 F Hawaii waters) 
 Cavitation free at 52 knots, i.e. 0.269pC    (Hawaii water at 75 F) 
 Total lift (TL) equal to 80 LT 
 Displacement or buoyant lift (BL) greater that 16 LT 
 2.74 m (9 ft) operating draft 
 Strut centerline to strut centerline distance is fixed at 9.14 m (30 ft) for mating with 

upper hull 
 Overall beam length should not exceed 10.36 m (34 ft)  
 Minimum strut thickness 0.2286 m (0.75 ft) 
 Minimum strut chord of 1.524 m (5 ft) 
 The cross foil should have the structural integrity, not to yield using a material of yield 

strength of 344.7379 Mpa (50 ksi), assuming solid section. 
 Displacement pod length should not exceed by more than 20% the parent body (defined 

as optimized configuration (Hefazi, 2002)), i.e. 7.81 m. 

 
4.2 Classical Optimization  
4.2.1 Objectives, Constraints and Optimization Implementation 
Nowadays, all design engineers are accustomed to designing their vehicles using some 
computer aided design (CAD) or solid modeling package, such as Pro-Engineer, CATIA, 
UniGraphics, IDEAS. In addition, the designer usually represents the configuration by a set 
of parameters, or design variables, which can be varied to improve the design by linking the 
CAD software with an appropriate analysis module. This approach is routinely used for 
structural design, for example, by linking the CAD software with a finite element (FE) 
method. Such an approach is not yet routinely used, however, in the case of hydrodynamic 
shape optimization, because additional challenges face the designer. Among these issues are 
 The cost and accuracies associated with flow analysis using CFD 
 The grid requirements for CFD methods 
In order to address the issue of CFD shape optimization, one must be able to automatically 
vary the shape of various elements of the configuration in the CAD method, generate a 
mesh of sufficient quality for the CFD method, and use an efficient and accurate CFD 
method to obtain the hydrodynamic performance of the configuration being analyzed. The 

driver in the selection of the components of the CFD optimization method is the ability to 
link these tools together in an automated fashion, without user intervention, while ensuring 
that the flow analysis is both efficient and accurate for the problem at hand. For this reason, 
several options for each tool were considered and the following set of tools was selected: 

 CAD software: Pro-Engineer (Parametric Technology Corporation, 2009) 
 Grid generation software: ICEM CFD (ANSYS, Inc., 2009) 
 CFD software: CSULB-developed interactive boundary layer (IBL) approach with 

free surface modeled by negative images (Besnard, 1998, and Hefazi et al., 2002) 
 Optimization software: iSIGHT (Dassault Systèmes SIMULIA, 2009) 

Pro-Engineer and ICEM CFD were selected because of the existence of a module which does 
allow for automatic data transfer between the CAD and grid generation package. The IBL 
approach was chosen because at high Reynolds numbers and low angles of attack, it is a 
very accurate and efficient approach. In addition, because of the large Froude number for 
the case at hand, the free surface can be modelled with negative images. Finally, the 
numerical optimizer iSIGHT offers an easy to use platform for the optimization and/or 
design of experiments. The method, controlled by iSIGHT, integrates the different software 
packages with several scripts, which, once set up, performs all tasks automatically, without 
user intervention. This automatic setup is critical in the optimization process. iSIGHT 
controls the process and calls the various scripts; 
 Define and generate the new geometry (Pro-Engineer); 
 Check for any constraint violation (from output of Pro-Engineer); 
 Generates a mesh suitable for the CFD method (ICEM CFD); 
 Executes the CFD method (IBL code); and  
 Extracts the data needed by iSIGHT (objective function and constraint values) and 

calculate the constrained objective function for the next iteration.  
The process implemented for the Twin-H body optimization is shown in Fig. 9. The 
configuration is represented by a total of 28 design variables which control the size and 
shape of each component, which, once assembled, describe the entire configuration. The first 
step involves generating a geometrically feasible configuration from the selected set of 
design variables. Simple geometrical parameters, such as width, length, chord, etc., are used 
to characterize the elements. Foil cross-sections are defined by their mean camber line and 
thickness distributions. Camber line is parameterized by the classical NACA two-parameter 
set. The thickness distribution, yth, is represented by a 6-deg. polynomial, with an additional 
term, a0, for controlling the leading edge radius:  
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This configuration is automatically generated by the CAD-based solid modeler, Pro-
Engineer, based on the 28 design variables using scripts. This process involves two parts: 
 Airfoil shape definitions (“shape.in” files) 
 Configuration parameterization (“.ptr” files) 
Several independent scripts using the different “shape.in” files are used to regenerate 
updated Pro-Engineer files (“.ptr” files). Then, Pro-Engineer automatically updates the 
geometry based on the revised data. 
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The optimization is performed for a boat speed of 47 knots (24.2 m/s). At this velocity, the 
parent hull will run dry. The whole configuration must be able to generate a total lift of 80 
LT, including a minimum of 16 LT by displacement effect.  
The objective is to maximize range, i.e. lift-to-drag ratio, which corresponds to minimizing 
drag at constant lift. In addition, the configuration is to be designed such that it can operate 
cavitation free at 52 knots. Additionally, the operating draft is to be 2.74 m (waterline to 
lowest point - 9 ft) and a structural constraint is to be imposed to prevent yield of the cross-
foil. Also, the maximum width of configuration shall not exceed 10.36 m (34 ft) and the 
strut-to-strut distance is fixed by requirements for mating to the upper hull. 
From an optimization problem point of view, the objective function and design constraints 
can be summarized as: 
 Objective: Maximize lift-to-drag (LOD) 
 Constraints: 
 Operational speed of 47 knots (i.e. Reynolds number is 211.63106 based on a reference 

chord of 8.69 m in 75 F Hawaii waters) 
 Cavitation free at 52 knots, i.e. 0.269pC    (Hawaii water at 75 F) 
 Total lift (TL) equal to 80 LT 
 Displacement or buoyant lift (BL) greater that 16 LT 
 2.74 m (9 ft) operating draft 
 Strut centerline to strut centerline distance is fixed at 9.14 m (30 ft) for mating with 

upper hull 
 Overall beam length should not exceed 10.36 m (34 ft)  
 Minimum strut thickness 0.2286 m (0.75 ft) 
 Minimum strut chord of 1.524 m (5 ft) 
 The cross foil should have the structural integrity, not to yield using a material of yield 

strength of 344.7379 Mpa (50 ksi), assuming solid section. 
 Displacement pod length should not exceed by more than 20% the parent body (defined 

as optimized configuration (Hefazi, 2002)), i.e. 7.81 m. 

 
4.2 Classical Optimization  
4.2.1 Objectives, Constraints and Optimization Implementation 
Nowadays, all design engineers are accustomed to designing their vehicles using some 
computer aided design (CAD) or solid modeling package, such as Pro-Engineer, CATIA, 
UniGraphics, IDEAS. In addition, the designer usually represents the configuration by a set 
of parameters, or design variables, which can be varied to improve the design by linking the 
CAD software with an appropriate analysis module. This approach is routinely used for 
structural design, for example, by linking the CAD software with a finite element (FE) 
method. Such an approach is not yet routinely used, however, in the case of hydrodynamic 
shape optimization, because additional challenges face the designer. Among these issues are 
 The cost and accuracies associated with flow analysis using CFD 
 The grid requirements for CFD methods 
In order to address the issue of CFD shape optimization, one must be able to automatically 
vary the shape of various elements of the configuration in the CAD method, generate a 
mesh of sufficient quality for the CFD method, and use an efficient and accurate CFD 
method to obtain the hydrodynamic performance of the configuration being analyzed. The 

driver in the selection of the components of the CFD optimization method is the ability to 
link these tools together in an automated fashion, without user intervention, while ensuring 
that the flow analysis is both efficient and accurate for the problem at hand. For this reason, 
several options for each tool were considered and the following set of tools was selected: 

 CAD software: Pro-Engineer (Parametric Technology Corporation, 2009) 
 Grid generation software: ICEM CFD (ANSYS, Inc., 2009) 
 CFD software: CSULB-developed interactive boundary layer (IBL) approach with 

free surface modeled by negative images (Besnard, 1998, and Hefazi et al., 2002) 
 Optimization software: iSIGHT (Dassault Systèmes SIMULIA, 2009) 

Pro-Engineer and ICEM CFD were selected because of the existence of a module which does 
allow for automatic data transfer between the CAD and grid generation package. The IBL 
approach was chosen because at high Reynolds numbers and low angles of attack, it is a 
very accurate and efficient approach. In addition, because of the large Froude number for 
the case at hand, the free surface can be modelled with negative images. Finally, the 
numerical optimizer iSIGHT offers an easy to use platform for the optimization and/or 
design of experiments. The method, controlled by iSIGHT, integrates the different software 
packages with several scripts, which, once set up, performs all tasks automatically, without 
user intervention. This automatic setup is critical in the optimization process. iSIGHT 
controls the process and calls the various scripts; 
 Define and generate the new geometry (Pro-Engineer); 
 Check for any constraint violation (from output of Pro-Engineer); 
 Generates a mesh suitable for the CFD method (ICEM CFD); 
 Executes the CFD method (IBL code); and  
 Extracts the data needed by iSIGHT (objective function and constraint values) and 

calculate the constrained objective function for the next iteration.  
The process implemented for the Twin-H body optimization is shown in Fig. 9. The 
configuration is represented by a total of 28 design variables which control the size and 
shape of each component, which, once assembled, describe the entire configuration. The first 
step involves generating a geometrically feasible configuration from the selected set of 
design variables. Simple geometrical parameters, such as width, length, chord, etc., are used 
to characterize the elements. Foil cross-sections are defined by their mean camber line and 
thickness distributions. Camber line is parameterized by the classical NACA two-parameter 
set. The thickness distribution, yth, is represented by a 6-deg. polynomial, with an additional 
term, a0, for controlling the leading edge radius:  
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This configuration is automatically generated by the CAD-based solid modeler, Pro-
Engineer, based on the 28 design variables using scripts. This process involves two parts: 
 Airfoil shape definitions (“shape.in” files) 
 Configuration parameterization (“.ptr” files) 
Several independent scripts using the different “shape.in” files are used to regenerate 
updated Pro-Engineer files (“.ptr” files). Then, Pro-Engineer automatically updates the 
geometry based on the revised data. 
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In the second step, constraints which may be determined from the newly generated solid 
model, such as volume, structural constraint, etc., are evaluated. In third step, a suitable 
mesh is automatically generated using ICEM CFD. This mesh is then used along with the 
CFD input data file to execute the CFD code. The CFD tool used here makes use of the high 
Froude and Reynolds number approximations by employing a viscous-inviscid approach. 
The inviscid flow is solved by a higher order panel method with the free surface effects 
modeled by negative images and the viscous flow is solved using an inverse boundary layer 
approach which can treat large regions of flow separation. Viscous and inviscid methods are 
coupled using the blowing velocity/displacement concept and leads to accurate pressure, 
lift and drag predictions at minimal costs for this type of configuration and flow conditions 
(see, e.g., Hefazi et al. 2002). Hence, only a surface mesh is needed. The use of a Reynolds 
averaged Navier-Stokes (RANS) method would require the use of a volume mesh which 
could also be implemented with the tools used here (ICEM CFD).  
The last step involves the use of a constrained objective function, fc. Because a global 
optimization method is used (genetic algorithm), the objective function and constraints are 
integrated into a single “constrained objective function” which is to be minimized. The 
constrained objective function is such that, when at least one constraint is strongly violated, 
fc is set close to fmax. fmax is typically on the order of one and corresponds to a normalized 
value of the maximum objective function. The normalization value is given by the user and 
is typically chosen at the higher values of expected f over the search space. For example, 
with an optimization where L/D is the objective function on the order of 10-15, a 
normalization value of 10 to 20 can be chosen. Choosing 10 would mean that fc might reach 
1.5. 
Two positive parameters 1  and 2  are now defined. If 1, ii g    , then the constrained 
objective function is f. If 2    | ii g   , then the penalized cost function gets close to fmax 
depending on how the constraints are violated. In other words, 1  decides when constraints 
become active, and 2  when they become prohibitive. 
The generalized constraint G is defined as 
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For the NN based optimization, the generation of the training and validation sets is 
performed using the same approach, except that instead of using iSIGHT setup to run an 
optimization (genetic algorithms in the present case), it is designed to run Latin Hypercube 
samplings of the desired TS, VS and GS sizes.  
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Fig. 9. Optimization with the classical approach. This same loop is used for 
training/validation set generation but with Latin Hypercube sampling instead of 
optimization.  

 



Modified Cascade Correlation Neural Network and its Applications	
 to Multidisciplinary Analysis Design and Optimization in Ship Design 327

In the second step, constraints which may be determined from the newly generated solid 
model, such as volume, structural constraint, etc., are evaluated. In third step, a suitable 
mesh is automatically generated using ICEM CFD. This mesh is then used along with the 
CFD input data file to execute the CFD code. The CFD tool used here makes use of the high 
Froude and Reynolds number approximations by employing a viscous-inviscid approach. 
The inviscid flow is solved by a higher order panel method with the free surface effects 
modeled by negative images and the viscous flow is solved using an inverse boundary layer 
approach which can treat large regions of flow separation. Viscous and inviscid methods are 
coupled using the blowing velocity/displacement concept and leads to accurate pressure, 
lift and drag predictions at minimal costs for this type of configuration and flow conditions 
(see, e.g., Hefazi et al. 2002). Hence, only a surface mesh is needed. The use of a Reynolds 
averaged Navier-Stokes (RANS) method would require the use of a volume mesh which 
could also be implemented with the tools used here (ICEM CFD).  
The last step involves the use of a constrained objective function, fc. Because a global 
optimization method is used (genetic algorithm), the objective function and constraints are 
integrated into a single “constrained objective function” which is to be minimized. The 
constrained objective function is such that, when at least one constraint is strongly violated, 
fc is set close to fmax. fmax is typically on the order of one and corresponds to a normalized 
value of the maximum objective function. The normalization value is given by the user and 
is typically chosen at the higher values of expected f over the search space. For example, 
with an optimization where L/D is the objective function on the order of 10-15, a 
normalization value of 10 to 20 can be chosen. Choosing 10 would mean that fc might reach 
1.5. 
Two positive parameters 1  and 2  are now defined. If 1, ii g    , then the constrained 
objective function is f. If 2    | ii g   , then the penalized cost function gets close to fmax 
depending on how the constraints are violated. In other words, 1  decides when constraints 
become active, and 2  when they become prohibitive. 
The generalized constraint G is defined as 
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For the NN based optimization, the generation of the training and validation sets is 
performed using the same approach, except that instead of using iSIGHT setup to run an 
optimization (genetic algorithms in the present case), it is designed to run Latin Hypercube 
samplings of the desired TS, VS and GS sizes.  
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Fig. 9. Optimization with the classical approach. This same loop is used for 
training/validation set generation but with Latin Hypercube sampling instead of 
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4.2.2 Classical Optimization Results 
A genetic algorithm optimization was run over the 28-dimension design space for 5000 
iterations. The outcome was a configuration with an L/D of 12.92, which represents a 26 
percent improvement in L/D over the baseline design. A comparison of the performance of 
the baseline and optimum configurations is shown in Table 1. Note that the number of 
iterations used is small for a global search problem with 28 design variables, but it was 
limited to 5000 because of time requirements. One iteration takes about 10 min. to run on an 
Origin 3200 server. 5000 runs correspond to over a month of CPU time.  
 

 Baseline Optimum Objective 
Buoyant lift 18.4 LT 16.1 LT > 16 LT 
Total lift 80.2 LT 81.6 LT = 80 LT 
Cpmin -0.263 -0.250 > - 0.269 
LOD 10.23 12.92 Maximum 

Table 1. Performance of optimized vs. baseline configuration (28 design variables) 

 
4.3 Neural Network Optimization Approach 
The use of the neural network (NN) approach encompasses several steps: 

 Generation of the training set (TS) & validation set (VS)  
 NN training to obtain a NN “evaluator(s)” 
 Optimization with the NN evaluator(s) 

The first two steps are explained in detail in the next subsections. The third step is 
essentially the same as the classical optimization with the CFD code replaced by the neural 
network, and thus is not repeated here. 
The optimization approach specific to the twin H-body optimization problem calls for the 
use of five single output neural networks as shown in Fig. 10, one for the objective function 
and the others for the constraints: lift-to-drag ratio (LOD), minimum pressure (Cpmin), 
dynamic lift (DL), buoyant lift (BL) and maximum stress value (Struc). Alternatively, a 
single NN with five outputs could have been used, but typically, the resulting network is 
much more complex than five individual networks (has more weights). Hence, it takes more 
time to generate, i.e. train, and usually needs a larger training set than five single output 
networks to generalize well. Also the five networks can be trained in parallel on a 
multiprocessor machine, reducing the training time even more.  
 

LOD
NN

Optimizer 
(iSIGHT) 

New D.V.

Calculated value of fc
and LOD, Cpmin, DL, 

BL, Struc 

Cpmin
NN 

Dynamic
Lift (DL) 

NN

Buoyant 
Lift (BL) 

NN 

Structures 
(Struc) 

NN

fc calculator

Fig. 10. Optimization process with NN approach 

Also, although the optimization is performed on the constrained objective function, fc, it was 
not represented directly by a single NN because it would have required a very good training 
set definition in the small regions of the design space where the design was feasible. Instead, 
using five networks allows for accurate representation of each function over the design 
space and thus improved predictions for fc. 

 
4.3.1 Training and Validation Sets 
For the present analysis, a validation set (VS) of 300 points was generated with the iSIGHT 
setup of Fig. 9 and using the same 28 design variables as for the classical approach, but 
using a Latin Hypercube instead of an optimization algorithm. Two training sets (TS) were 
also generated using the same process, one with 1000 points, the second with 2000 points. A 
third set with 5000 points was also generated to be used as the Generalization Set (GS). 
Although a practical application may not involve the generation of multiple TS and 
certainly not a GS, this was done here to analyze the effect of TS size on the result quality.  
For each size of Latin Hypercube sampling in the design space, approximately 20 to 25 
percent of the points were geometrically unfeasible (i.e. the model could not be successfully 
reconstructed) and had to be removed from the training sets. Nevertheless, the VS, TS and 
GS will be referred to as 300-VS, 1000-TS, 2000-TS and 5000-GS subsequently. The exact sizes 
for each set are respectively, 228, 808, 1587, and 3852.  

 
4.3.2 Neural Network Training 
Each neural network (NN) was trained with 28 inputs (or design variables) and one output, 
i.e. one for each function: buoyant lift (BL), Cpmin, dynamic lift (DL), lift-to-drag ratio 
(LOD), structural constraint (Struc) and total lift (TL). For each function, 10 NNs were built 
and the one that had the best validation error was chosen. Typically, training each network 
takes from about an hour (for 1000-TS) to a day for the more complete data sets (5000-GS). 
Unlike CFD methods which are demanding in computing power (I/O, memory), training 
demands relatively little other than CPU time and thus, all training can be done in parallel 
on the same server without interfering with other ongoing computations. This feature is yet 
another advantage compared to training a single multiple-output network. 
The results for the different TS did not vary much from one to the other and are presented 
here for the 1000-TS. Also, in order to evaluate the quality of the training and compare the 
error on the 300 points VS. The GS of 5000 points was evaluated on the trained NN. Table 2 
shows the average errors and standard deviations over the TS, VS and GS. Errors and 
standard deviations are adequate for the problem at hand. For example, an average error of 
0.04 is expected for the displacement (BL) which has a value on the order of 18 and the 
corresponding standard deviation is also 0.04.  
 

 Typical TSE  VSE  GSE   std
TS

E   std
VS

E   std
GS

E  

BL (LT) 18 0.0275 0.0381 0.0419 0.0223 0.0314 0.0427 
Cpmin -0.269 0.0055 0.0065 0.0068 0.0066 0.0071 0.0080 
DL (LT) 60 0.1607 0.1847 0.1855 0.2002 0.1420 0.1874 
LOD 12 0.2270 0.2602 0.2646 0.1775 0.2074 0.2054 
Struc (MPa) 300 4.05 5.3 5.3 3.7 5.2 5.1 

Table 2. Average errors and standard deviations on TS, VS and GS for a 1000-pt. TS and a 
5000-pt. GS for the 28-design variable Twin H-body optimization 
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4.2.2 Classical Optimization Results 
A genetic algorithm optimization was run over the 28-dimension design space for 5000 
iterations. The outcome was a configuration with an L/D of 12.92, which represents a 26 
percent improvement in L/D over the baseline design. A comparison of the performance of 
the baseline and optimum configurations is shown in Table 1. Note that the number of 
iterations used is small for a global search problem with 28 design variables, but it was 
limited to 5000 because of time requirements. One iteration takes about 10 min. to run on an 
Origin 3200 server. 5000 runs correspond to over a month of CPU time.  
 

 Baseline Optimum Objective 
Buoyant lift 18.4 LT 16.1 LT > 16 LT 
Total lift 80.2 LT 81.6 LT = 80 LT 
Cpmin -0.263 -0.250 > - 0.269 
LOD 10.23 12.92 Maximum 

Table 1. Performance of optimized vs. baseline configuration (28 design variables) 

 
4.3 Neural Network Optimization Approach 
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on the same server without interfering with other ongoing computations. This feature is yet 
another advantage compared to training a single multiple-output network. 
The results for the different TS did not vary much from one to the other and are presented 
here for the 1000-TS. Also, in order to evaluate the quality of the training and compare the 
error on the 300 points VS. The GS of 5000 points was evaluated on the trained NN. Table 2 
shows the average errors and standard deviations over the TS, VS and GS. Errors and 
standard deviations are adequate for the problem at hand. For example, an average error of 
0.04 is expected for the displacement (BL) which has a value on the order of 18 and the 
corresponding standard deviation is also 0.04.  
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5000-pt. GS for the 28-design variable Twin H-body optimization 
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Also, average errors and standard deviations on the VS and GS are in excellent agreement, 
thus validating the VS approach despite the number of points used for the design space of 
28 dimensions. 

 
4.3.3 Neural Network Optimization Results 
The neural networks generated in the form of five executables for Cpmin, LOD, DL, BL and 
Struc using the different sizes of training sets (1000-TS and 2000-TS) were integrated in 
iSIGHT as shown in Fig. 10. A genetic algorithm (GA) optimization was used with an initial 
population of 50 and 35000 iterations were run based on the constrained objective function 
defined in Section 0.  
The best 100 runs resulting from the optimization with the five NNs (best fc) were then run 
using the Pro-Engineer model and the CFD code to compute the objective function and 
constraints and compare them with those of the NN near the optimum. Also, a few results 
from the optimization (i.e. as determined by the NN) with a slightly higher LOD than that of 
the best fc but with constraints closer to their limit (therefore resulting in a lower fc) were 
chosen and also run through the CFD package. A summary of the results is shown in Table 
3. For each size of training set, the table shows: 
 The best fc as determined by the optimizer (i.e. after 35000 GA iterations using the NN) 
 The best LOD based on the NN with minimal constraint violations: corresponds to 

some hand-picked results from the optimization showing a slightly better LOD but 
with constraints close to the acceptable limits resulting in a higher fc 

 The best fc based on CFD results from the 100 best NN points (as determined by the 
GA) 

 The best LOD based on CFD results from the 100 best NN points (as determined by the 
GA) 

In each case, buoyant lift (BL), total lift (TL), lift-to-drag ratio (LOD) and minimum pressure 
(Cpmin) values computed by the NN and the CFD method are shown. The stress value 
(Struc) is not shown because it exhibited little variations between points and because the 
constraint was not violated. Also, the dynamic lift (DL) can be directly calculated from total 
and buoyant lift values (the optimization actually uses DL and BL to determine TL, but the 
latter is presented because it corresponds to a primitive twin H-body requirement). It should 
also be noted that the constraints are not implemented as step functions but rather very 
steep functions which do vary near the constraint border. For example, the primitive 
requirement calls for a displacement or buoyant lift greater than 16 LT, but as implemented 
here, a value close to 15 is acceptable. For this reason, fc may vary in a counter-intuitive 
fashion, thus rendering the analysis of its values difficult. It is therefore not shown. 
The differences between using the NN and the direct CFD computation are within 
acceptable limits. They are very close in many instances. Also, differences between the 
values resulting from different selection processes for a particular TS are rather small. 
Finally, while one observes that the LOD is over-predicted by the NN, the differences 
between points are about the same for a given TS. Regardless of which TS is chosen, 
however, LOD is greatly improved from the 12.9 result obtained with the direct CFD 
method.  
 
 
 

TS Results 
Output from NN Same DV but with CFD 

BL TL LOD Cpmin BL TL LOD Cpmin 

1000 

Best fc optimized from 
NN 15.23 80.59 14.39 -0.265 15.24 81.59 13.76 -0.266 

Best LOD optimized 
from NN 14.75 79.94 14.44 -0.267 14.78 81.04 13.85 -0.268 

Best fc (using CFD) out 
of 100 best runs 15.49 80.81 14.30 -0.264 15.51 81.67 13.70 -0.266 

Best LOD (using CFD) 
out of 100 best 15.25 80.60 14.38 -0.265 15.25 81.64 13.78 -0.265 

2000 

Best fc optimized from 
NN 15.20 80.67 14.49 -0.265 15.13 80.86 13.70 -0.271 

Best LOD Optimized 
from NN 15.07 80.66 14.51 -0.265 15.01 80.78 13.81 -0.269 

Best fc (using CFD) out 
of 100 best runs 15.30 80.74 14.42 -0.263 15.23 80.96 13.71 -0.265 

Best LOD (using CFD) 
out of 100 best 15.17 80.59 14.47 -0.265 15.11 80.75 13.79 -0.270 

Table 3. Results from NN optimization and comparison with CFD 

 
4.4 Comparison between Classical and NN-based Methods 
Depending on which design is selected, L/D (LOD) ranges from 13.70 to 13.85, which is a 
definite improvement from the classical method which lead to 12.92. This improvement is 
due to the ability to increase the exploration of the design space within the time available in 
a given design project. For the classical optimization, the genetic algorithm was allowed to 
run for 5000 iterations, which corresponds to approximately one month of constant 
calculations on an Origin 3200 server. Because of the use of the CFD tool inside the design 
loop, CPU time available limited the design space exploration and did not lead to a true 
optimum. On the other hand, a much larger number of iterations could be performed with 
the NN approach leading to a greater L/D improvement. In this case, most of the CPU time 
is taken by the training set generation, with all other computations (training and GA 
iterations) representing a small fraction of the total CPU time. With as low as 1000 points 
generated to approximate the various functions over a design space with 28 design 
variables, an improvement of about 34 percent in L/D is achieved with the NN approach 
compared with the original baseline twin H-body, this at one fourth the cost needed to get a 
26 percent improvement when using the classical approach (with iterations limited because 
of CPU time constraints). 
The results also point to a few improvements which would need to be implemented to 
address non-differentiable functions (to improve Cpmin predictions, for example), the 
selection of constrained objective function, and the selection of mathematical optimization 
method. The latter comment is particularly pertinent for problems in which the optimizer 
(GA here) would focus its attention in a region of the design space where one (or more) 
function (objective or constraint) is not approximated as well as might be desired, thus 
potentially leading to unusable optimization results. One could benefit from having an 
optimization method which explores several regions of the design space, as illustrated in 
Lin and Wu (2002).  
Results do show, however, that the method can provide its user with a valuable tool for 
improving designs within a limited time frame and possibly at a lower cost than using 
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Also, average errors and standard deviations on the VS and GS are in excellent agreement, 
thus validating the VS approach despite the number of points used for the design space of 
28 dimensions. 
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Struc using the different sizes of training sets (1000-TS and 2000-TS) were integrated in 
iSIGHT as shown in Fig. 10. A genetic algorithm (GA) optimization was used with an initial 
population of 50 and 35000 iterations were run based on the constrained objective function 
defined in Section 0.  
The best 100 runs resulting from the optimization with the five NNs (best fc) were then run 
using the Pro-Engineer model and the CFD code to compute the objective function and 
constraints and compare them with those of the NN near the optimum. Also, a few results 
from the optimization (i.e. as determined by the NN) with a slightly higher LOD than that of 
the best fc but with constraints closer to their limit (therefore resulting in a lower fc) were 
chosen and also run through the CFD package. A summary of the results is shown in Table 
3. For each size of training set, the table shows: 
 The best fc as determined by the optimizer (i.e. after 35000 GA iterations using the NN) 
 The best LOD based on the NN with minimal constraint violations: corresponds to 

some hand-picked results from the optimization showing a slightly better LOD but 
with constraints close to the acceptable limits resulting in a higher fc 

 The best fc based on CFD results from the 100 best NN points (as determined by the 
GA) 

 The best LOD based on CFD results from the 100 best NN points (as determined by the 
GA) 

In each case, buoyant lift (BL), total lift (TL), lift-to-drag ratio (LOD) and minimum pressure 
(Cpmin) values computed by the NN and the CFD method are shown. The stress value 
(Struc) is not shown because it exhibited little variations between points and because the 
constraint was not violated. Also, the dynamic lift (DL) can be directly calculated from total 
and buoyant lift values (the optimization actually uses DL and BL to determine TL, but the 
latter is presented because it corresponds to a primitive twin H-body requirement). It should 
also be noted that the constraints are not implemented as step functions but rather very 
steep functions which do vary near the constraint border. For example, the primitive 
requirement calls for a displacement or buoyant lift greater than 16 LT, but as implemented 
here, a value close to 15 is acceptable. For this reason, fc may vary in a counter-intuitive 
fashion, thus rendering the analysis of its values difficult. It is therefore not shown. 
The differences between using the NN and the direct CFD computation are within 
acceptable limits. They are very close in many instances. Also, differences between the 
values resulting from different selection processes for a particular TS are rather small. 
Finally, while one observes that the LOD is over-predicted by the NN, the differences 
between points are about the same for a given TS. Regardless of which TS is chosen, 
however, LOD is greatly improved from the 12.9 result obtained with the direct CFD 
method.  
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Depending on which design is selected, L/D (LOD) ranges from 13.70 to 13.85, which is a 
definite improvement from the classical method which lead to 12.92. This improvement is 
due to the ability to increase the exploration of the design space within the time available in 
a given design project. For the classical optimization, the genetic algorithm was allowed to 
run for 5000 iterations, which corresponds to approximately one month of constant 
calculations on an Origin 3200 server. Because of the use of the CFD tool inside the design 
loop, CPU time available limited the design space exploration and did not lead to a true 
optimum. On the other hand, a much larger number of iterations could be performed with 
the NN approach leading to a greater L/D improvement. In this case, most of the CPU time 
is taken by the training set generation, with all other computations (training and GA 
iterations) representing a small fraction of the total CPU time. With as low as 1000 points 
generated to approximate the various functions over a design space with 28 design 
variables, an improvement of about 34 percent in L/D is achieved with the NN approach 
compared with the original baseline twin H-body, this at one fourth the cost needed to get a 
26 percent improvement when using the classical approach (with iterations limited because 
of CPU time constraints). 
The results also point to a few improvements which would need to be implemented to 
address non-differentiable functions (to improve Cpmin predictions, for example), the 
selection of constrained objective function, and the selection of mathematical optimization 
method. The latter comment is particularly pertinent for problems in which the optimizer 
(GA here) would focus its attention in a region of the design space where one (or more) 
function (objective or constraint) is not approximated as well as might be desired, thus 
potentially leading to unusable optimization results. One could benefit from having an 
optimization method which explores several regions of the design space, as illustrated in 
Lin and Wu (2002).  
Results do show, however, that the method can provide its user with a valuable tool for 
improving designs within a limited time frame and possibly at a lower cost than using 
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conventional analysis tools integrated in the optimization loop. In this latter case, similarly 
to the twin H-body configuration optimization presented here, the cost of the analyses limits 
the number of iterations which can be performed in a reasonable time leading likely to sub-
optimal solutions. On the other hand, with the NN approach, a large number of designs can 
be investigated quickly –almost instantaneously– once a training set has been made 
available and the NN has been trained. 

 
5. Application to an America’s Cup Class Yacht Analysis and Design 
 

In this section, we apply the NN approach to a case where one wishes to use large 
experimental datasets for detailed analysis and optimization of the performance of a system, 
here an America’s Cup class yacht. This case presents unique challenges associated with the 
fact that some data is not usable and that the data is usually not uniformly distributed over 
the design space. The objective here is to use an experimental database obtained with a 
yacht in at-sea trials to determine the fastest upwind speed the boat can have under 
prevalent wind conditions from the corresponding boat settings (including keel, rudder, 
sail, etc.). 

 
5.1 Parameters 
During trials, America’s Cup teams record their boat performance with very high accuracy 
to create a true dynamic picture of the boat response under various sailing conditions. This 
sailing data file recorded by the Wave Technology Processor (WTP) is used here as our 
experimental database. In our example, each sailing “point” is a vector with a total of 40 
parameters. Since the objective here is to optimize the upwind performance of the boat, the 
projected speed over the course is to be maximized: 
 
 cos( )VMG Vs TWA   (44) 

 
where Vs is the measured boat speed, VMG is the Velocity Made Good, and TWA is the true 
wind angle. This VMG becomes the objective function, and will be the output of the NN. 
Of the remaining 39 parameters, eight independent variables have been selected for the 
training based on their accuracy and their major influence on boat speed. Other dependent 
variables, parameters with calibration problems or with marginal impact on boat speed, 
have been discarded. The eight remaining independent variables to be used for the NN 
training are (with their variable name written in parenthesis): 

 Heel Angle (Heel) 
 Leeway Angle (Leeway) 
 True Wind Angle (TWA) 
 True Wind Speed (TWS) 
 Trim Tab Angle (Trim Tab) 
 Rudder Angle (Rudder) 
 Forestay Tension (Forestay) 
 Main Traveler Position (Main Traveler) 

The sailing database represents several hours of sailing and about 50 percent of that sailing 
time is the upwind direction, which is our targeted condition. This type of dataset based on 

experiments requires using a process to identify the data corresponding to the desired 
conditions (here upwind) among the entire database and to discard the downwind sailing 
and all transitional moments like tacking, rounding marks.  

 
5.2 Data filtering  
To filter or process the large WTP database several software packages such as Microsoft 
Access (M.A.) are available. M.A. is able to manipulate large series of data, with a good 
Microsoft Excel interface to generate plots from the output dataset for verification purposes. 
The queries technique for M.A. simplifies the experimental dataset filtering process in 
manipulating with a logical operator the variables and generates a new dataset without 
altering the original database. Once the queries (point selection criteria) are written, the 
system is automated to produce a new dataset in an instant from any other experimental 
database of similar type. M.A. is used first to discard all transitional and non-upwind sailing 
points. In a second step, since the upwind sailing data is a mix of port and starboard sailing 
with design variables being either positives or negatives, M.A. is used to convert the points 
to a single condition, here starboard sailing.  
Seven constraints capable of removing and altering the incorrect data are used: 

1. 0 ≤ absolute [Leeway] ≤ 2 
2. 0 ≤ absolute [Trim tab] ≤ 9 
3. 0 ≤ absolute [Rudder] ≤ 12 
4. if [AWA] > 0 then [Main Traveler] 
5. if [AWA] < 0 then [Main Traveler] x (-1) 
6. 16 < absolute [AWA] < 40  
7. [Boatspeed] / [Vs_target] ≥ 0.6 

where AWA corresponds to the apparent wind angle and Vs_target is the expected boat 
speed at such conditions.  
In our example, the number of points provided by the team was 21,200. The automated 
filtering system removed about 40% of points from the raw sailing database.  
 

 
Fig 11. Filtered database shown in terms of Heel vs. TWS resulting from imposing 7 
constraints 
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conventional analysis tools integrated in the optimization loop. In this latter case, similarly 
to the twin H-body configuration optimization presented here, the cost of the analyses limits 
the number of iterations which can be performed in a reasonable time leading likely to sub-
optimal solutions. On the other hand, with the NN approach, a large number of designs can 
be investigated quickly –almost instantaneously– once a training set has been made 
available and the NN has been trained. 

 
5. Application to an America’s Cup Class Yacht Analysis and Design 
 

In this section, we apply the NN approach to a case where one wishes to use large 
experimental datasets for detailed analysis and optimization of the performance of a system, 
here an America’s Cup class yacht. This case presents unique challenges associated with the 
fact that some data is not usable and that the data is usually not uniformly distributed over 
the design space. The objective here is to use an experimental database obtained with a 
yacht in at-sea trials to determine the fastest upwind speed the boat can have under 
prevalent wind conditions from the corresponding boat settings (including keel, rudder, 
sail, etc.). 

 
5.1 Parameters 
During trials, America’s Cup teams record their boat performance with very high accuracy 
to create a true dynamic picture of the boat response under various sailing conditions. This 
sailing data file recorded by the Wave Technology Processor (WTP) is used here as our 
experimental database. In our example, each sailing “point” is a vector with a total of 40 
parameters. Since the objective here is to optimize the upwind performance of the boat, the 
projected speed over the course is to be maximized: 
 
 cos( )VMG Vs TWA   (44) 

 
where Vs is the measured boat speed, VMG is the Velocity Made Good, and TWA is the true 
wind angle. This VMG becomes the objective function, and will be the output of the NN. 
Of the remaining 39 parameters, eight independent variables have been selected for the 
training based on their accuracy and their major influence on boat speed. Other dependent 
variables, parameters with calibration problems or with marginal impact on boat speed, 
have been discarded. The eight remaining independent variables to be used for the NN 
training are (with their variable name written in parenthesis): 
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 Leeway Angle (Leeway) 
 True Wind Angle (TWA) 
 True Wind Speed (TWS) 
 Trim Tab Angle (Trim Tab) 
 Rudder Angle (Rudder) 
 Forestay Tension (Forestay) 
 Main Traveler Position (Main Traveler) 

The sailing database represents several hours of sailing and about 50 percent of that sailing 
time is the upwind direction, which is our targeted condition. This type of dataset based on 

experiments requires using a process to identify the data corresponding to the desired 
conditions (here upwind) among the entire database and to discard the downwind sailing 
and all transitional moments like tacking, rounding marks.  

 
5.2 Data filtering  
To filter or process the large WTP database several software packages such as Microsoft 
Access (M.A.) are available. M.A. is able to manipulate large series of data, with a good 
Microsoft Excel interface to generate plots from the output dataset for verification purposes. 
The queries technique for M.A. simplifies the experimental dataset filtering process in 
manipulating with a logical operator the variables and generates a new dataset without 
altering the original database. Once the queries (point selection criteria) are written, the 
system is automated to produce a new dataset in an instant from any other experimental 
database of similar type. M.A. is used first to discard all transitional and non-upwind sailing 
points. In a second step, since the upwind sailing data is a mix of port and starboard sailing 
with design variables being either positives or negatives, M.A. is used to convert the points 
to a single condition, here starboard sailing.  
Seven constraints capable of removing and altering the incorrect data are used: 

1. 0 ≤ absolute [Leeway] ≤ 2 
2. 0 ≤ absolute [Trim tab] ≤ 9 
3. 0 ≤ absolute [Rudder] ≤ 12 
4. if [AWA] > 0 then [Main Traveler] 
5. if [AWA] < 0 then [Main Traveler] x (-1) 
6. 16 < absolute [AWA] < 40  
7. [Boatspeed] / [Vs_target] ≥ 0.6 

where AWA corresponds to the apparent wind angle and Vs_target is the expected boat 
speed at such conditions.  
In our example, the number of points provided by the team was 21,200. The automated 
filtering system removed about 40% of points from the raw sailing database.  
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Fig 11 shows a sample point distribution (here Heel vs TWS) over the design space; the 
filtered points (shown in blue) are mainly gathered in a dense area but a few points are still 
“unrealistic” by their location in the plot, away from the main cloud area. 
Based on experience, a sailing limit base line (in pink) has been drawn and all records 
located below the pink limit line are non-valid, non-representative sailing points. They 
represent 1 to 2 % of initially filtered points and can be easily removed “manually” (non-
automated approach). 
Similarly, two other verification plots (TWA vs TWS and Forestay vs TWS) were made. The 
“unrealistic” point percentage is similar to that above, with only about 1% of them needing 
to be removed manually. This low percentage validates our constraints and filtering 
procedure. The resulting database has 6,386 points. 

 
5.3 Filling of the design/analysis space 
In this analysis, the wind range selected is from 10 to 15 knots. As illustrated in Fig. 12, the 
experimental data, shown here in terms of Heel and Forestay settings from 10 to 11 knots, is 
primarily dependent on the TWS values with most data points located in a cluster or 
“cloud” and areas around the cloud with few or no points. The objective is to have the NN 
trained to provide the boat performance over a range of operating condition. Since the 
location of these clusters is not a priori known, it is necessary to have an approach where the 
NN gives adequate results in the “empty regions” of the space. This is accomplished by 
filling in the remainder of the space with other points. The technique consists of generating 
artificial points in areas of low point density (i.e. “fill-in” the space) but with their objective 
function value equal to some fixed “unattractive” value. Therefore, any NN function 
evaluation away from the “cloud” area(s) will generate a lower objective function value (if 
the goal is maximization of the said function, such as boat speed) in the vicinity of the points 
added to the dataset; preventing the optimizer to search for solutions in that area.  
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The location and the quantity of these added points is the crucial element, as they need to 
surround the border zone of high density points without perturbing the well-defined zones 
of the domain, or clouds. 
A data point enclosing a number “n” of variables is interpreted as a vector of dimension n. 
In a first step, the additional points are generated randomly over the entire domain. In a 
second step, those that end up within a cloud are removed. The selection (decision to keep) 
each of the randomly generated points is based on geometric considerations. The selection 
criterion is based on the largest of the distance between closest points of the experimental 
database, δ. In other words, if the experimental dataset is  1i i N

x
 


 with ix

  a vector of 
dimension n, each vector or point has a closest neighbour and the distance between that 
point and its closest neighbour defined in Euclidian space is δi. Therefore, δ can be defined 
as: 
 

  
1 1 1i i ji N i N j N

MAX MAX MIN x x 
     
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 
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Specifically, a randomly added point iy

  will be discarded if there exists a point kx
  such that 

the distance between these two is less than k.δ, where k is a constant to be determined as 
discussed in the next section. 
The result of this process is an experimental database which has been filled in regions away 
from the “cloud” and usable for generating the NN. The two questions which arise are first, 
what is the best value to give to k, and second, what value to give to the NN output, or 
objective function since we use the NN for optimization, at that additional point. Courouble 
et al. (2008) present a detailed analysis which answers these questions and only a summary 
of the results is presented here.  
Since the NN is used for optimization (maximization of upwind boat speed and 
determination of the corresponding settings), ideally, the result obtained with the NN 
trained using the database including the automated filling process should be the same as 
that when an experienced yacht designer would restrict the sailing parameters to 
“appropriate ranges.” This latter case is used as a reference case for comparison with the 
results obtained from the automated filling process.  

 
5.3.1 Reference case 
To preset the correct search domain to be used in the optimization, one approach is to first 
represent the point locations graphically like in Fig 11 and then visually define the design 
space boundaries by selecting, for each variable, upper and lower values, values which may 
vary as functions of key parameters, such as TWS. This method of pre-restraining the 
domain is subjective as it relies on the reader’s ability to evaluate the boundary values, 
labor-intensive as it requires one plot for each design variable, and inadequate for complex 
cases where no single variable can be used to establish such bounds.  
In the case of the yacht, TWS plays a key role in the actual boat speed so that by focusing on 
1-knot increments in TWS, it becomes possible to define upper and lower value for the eight 
design variables by plotting seven similar two-dimensional graphs as functions of TWS, as 
in Fig.4. This approach enables us to define a reference case against which we can compare 
with the automated filling process where such parameter restrictions are not imposed. 
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Fig 11 shows a sample point distribution (here Heel vs TWS) over the design space; the 
filtered points (shown in blue) are mainly gathered in a dense area but a few points are still 
“unrealistic” by their location in the plot, away from the main cloud area. 
Based on experience, a sailing limit base line (in pink) has been drawn and all records 
located below the pink limit line are non-valid, non-representative sailing points. They 
represent 1 to 2 % of initially filtered points and can be easily removed “manually” (non-
automated approach). 
Similarly, two other verification plots (TWA vs TWS and Forestay vs TWS) were made. The 
“unrealistic” point percentage is similar to that above, with only about 1% of them needing 
to be removed manually. This low percentage validates our constraints and filtering 
procedure. The resulting database has 6,386 points. 

 
5.3 Filling of the design/analysis space 
In this analysis, the wind range selected is from 10 to 15 knots. As illustrated in Fig. 12, the 
experimental data, shown here in terms of Heel and Forestay settings from 10 to 11 knots, is 
primarily dependent on the TWS values with most data points located in a cluster or 
“cloud” and areas around the cloud with few or no points. The objective is to have the NN 
trained to provide the boat performance over a range of operating condition. Since the 
location of these clusters is not a priori known, it is necessary to have an approach where the 
NN gives adequate results in the “empty regions” of the space. This is accomplished by 
filling in the remainder of the space with other points. The technique consists of generating 
artificial points in areas of low point density (i.e. “fill-in” the space) but with their objective 
function value equal to some fixed “unattractive” value. Therefore, any NN function 
evaluation away from the “cloud” area(s) will generate a lower objective function value (if 
the goal is maximization of the said function, such as boat speed) in the vicinity of the points 
added to the dataset; preventing the optimizer to search for solutions in that area.  
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The location and the quantity of these added points is the crucial element, as they need to 
surround the border zone of high density points without perturbing the well-defined zones 
of the domain, or clouds. 
A data point enclosing a number “n” of variables is interpreted as a vector of dimension n. 
In a first step, the additional points are generated randomly over the entire domain. In a 
second step, those that end up within a cloud are removed. The selection (decision to keep) 
each of the randomly generated points is based on geometric considerations. The selection 
criterion is based on the largest of the distance between closest points of the experimental 
database, δ. In other words, if the experimental dataset is  1i i N
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  a vector of 
dimension n, each vector or point has a closest neighbour and the distance between that 
point and its closest neighbour defined in Euclidian space is δi. Therefore, δ can be defined 
as: 
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Specifically, a randomly added point iy

  will be discarded if there exists a point kx
  such that 

the distance between these two is less than k.δ, where k is a constant to be determined as 
discussed in the next section. 
The result of this process is an experimental database which has been filled in regions away 
from the “cloud” and usable for generating the NN. The two questions which arise are first, 
what is the best value to give to k, and second, what value to give to the NN output, or 
objective function since we use the NN for optimization, at that additional point. Courouble 
et al. (2008) present a detailed analysis which answers these questions and only a summary 
of the results is presented here.  
Since the NN is used for optimization (maximization of upwind boat speed and 
determination of the corresponding settings), ideally, the result obtained with the NN 
trained using the database including the automated filling process should be the same as 
that when an experienced yacht designer would restrict the sailing parameters to 
“appropriate ranges.” This latter case is used as a reference case for comparison with the 
results obtained from the automated filling process.  

 
5.3.1 Reference case 
To preset the correct search domain to be used in the optimization, one approach is to first 
represent the point locations graphically like in Fig 11 and then visually define the design 
space boundaries by selecting, for each variable, upper and lower values, values which may 
vary as functions of key parameters, such as TWS. This method of pre-restraining the 
domain is subjective as it relies on the reader’s ability to evaluate the boundary values, 
labor-intensive as it requires one plot for each design variable, and inadequate for complex 
cases where no single variable can be used to establish such bounds.  
In the case of the yacht, TWS plays a key role in the actual boat speed so that by focusing on 
1-knot increments in TWS, it becomes possible to define upper and lower value for the eight 
design variables by plotting seven similar two-dimensional graphs as functions of TWS, as 
in Fig.4. This approach enables us to define a reference case against which we can compare 
with the automated filling process where such parameter restrictions are not imposed. 
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5.3.2 Automated space filling  
The first step is to convert the sailing database independent variables to non-dimensional 
values so that the database is contained in a unit hypercube of dimension n, with n = 8 in 
our example. Second, we generate a random set of non-dimensional points/vectors in the 
same hypercube. The randomly generated points are added throughout the design space 
and those “too close” to a valid point of the database are removed following the approach 
described above; only the points populating the voids are kept.  
Courouble et al. (2008) show that 1,000 random points over the targeted space provide good 
accuracy. For the current dataset, the largest of the minimum distances expressed in terms of 
non-dimensional vectors is 0.698; for convenience we will choose δ=0.7 as the distance 
criterion. Therefore, the randomly generated points are kept only if they are at least at a 
distance of k x 0.7 from their neighbors. For example, for k = 1, about 40% of the 1000 
random points are rejected with the criterion of 0.70.  

 
5.4 Process overview 
Fig. 13 presents an overview of the automated process, starting with the database containing 
the filtered sailing data.  
Since the validation set (VS) is used for stopping the training and our interest is to train the 
function over the sailing telemetry, the VS will be composed of valid sailing data points 
only. In our case, the VS is about 300 points and all remaining points are used for the 
training set (TS) to which points are added following the approach described above (except 
in the reference case). The TS and VS are then used to train the NN, so that VMG can be 
determined instantaneously from given sailing parameters and wind conditions. 
The global optimization method used here us a Genetic Algorithm (GA). GA is a search and 
optimization method based on the process of biological evolution, in that they involve a 
search from a population of solutions and not from a single point. Each iteration of a GA 
involves a competitive selection that penalizes poor solutions. The solutions with high 
fitness are recombined with others to produce members of the next generation. 
Reproduction and mutations are used to generate new solutions which are biased towards 
regions of the space for which good solutions have already been seen. The strength of the 
GA is that they perform well in spaces where there may be multiple local optima. The 
typical drawback of GA is the requirement for a rather large number of function 
evaluations, a requirement easily met here with the use of the NN since objective functions 
can be evaluated instantaneously. 
The overall dataset is primarily based on the TWS going from 10 to 15 knots; consistent with 
sailing practice. In order to establish well defined reference cases to be used for evaluation of 
the automated approach (see above), the analysis is split in one-knot increments, starting at 
10 knots. In the general case, however, such splitting would not be necessary since the NN 
would be capable of representing the dependency of the boat speed on TWS (as long as TWS 
is an independent parameter). A summary of the results is presented in the next section. 
 

                    NO 

                                 YES 

WTP Sailing database  

Objective Function generated: 

“Boat Speed” 

TS Dataset 

Neural Network Training  

Data converted to regular value 

Generation of non dimensional Vectors 

with obj. function = min datatset Value

Distance 
Criteria 

Data conversion in 

Non Dimensional value 

VS Dataset 

Optimized solution  Instantaneous calculation 

 
Fig. 13. Automated process starting with the WTP sailing database and leading to a NN 
capable of instantaneously calculating boat speed, or which can be used to generate 
optimum sailing setups under varying conditions. 

 
5.5 Results and Discussion 
5.5.1 Effects of Optimum Distance Criterion and Number of Added Points 
All optimizations shown here are performed with a population size of 5000 with a stopping 
criterion of 100 generations. One optimum is obtained in about eight minutes on a regular 
personal computer, corresponding to half a million operations of the trained function.  
As noted above, the results obtained from the automated database processing are compared 
with a reference case where the search space has been greatly restricted to fit the available 
data. In this section, all added points are assigned a boat speed of 0. Table 4 presents the 
effect of the number of added points (before those too close to sailing data clusters are 
removed automatically) and distance criterion in comparison with the optimum values 
found in the reference case. With no added points, the optimum solution of run 1 is off by 
about 12% when comparing the value with the reference case. This large error is due to 
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5.3.2 Automated space filling  
The first step is to convert the sailing database independent variables to non-dimensional 
values so that the database is contained in a unit hypercube of dimension n, with n = 8 in 
our example. Second, we generate a random set of non-dimensional points/vectors in the 
same hypercube. The randomly generated points are added throughout the design space 
and those “too close” to a valid point of the database are removed following the approach 
described above; only the points populating the voids are kept.  
Courouble et al. (2008) show that 1,000 random points over the targeted space provide good 
accuracy. For the current dataset, the largest of the minimum distances expressed in terms of 
non-dimensional vectors is 0.698; for convenience we will choose δ=0.7 as the distance 
criterion. Therefore, the randomly generated points are kept only if they are at least at a 
distance of k x 0.7 from their neighbors. For example, for k = 1, about 40% of the 1000 
random points are rejected with the criterion of 0.70.  

 
5.4 Process overview 
Fig. 13 presents an overview of the automated process, starting with the database containing 
the filtered sailing data.  
Since the validation set (VS) is used for stopping the training and our interest is to train the 
function over the sailing telemetry, the VS will be composed of valid sailing data points 
only. In our case, the VS is about 300 points and all remaining points are used for the 
training set (TS) to which points are added following the approach described above (except 
in the reference case). The TS and VS are then used to train the NN, so that VMG can be 
determined instantaneously from given sailing parameters and wind conditions. 
The global optimization method used here us a Genetic Algorithm (GA). GA is a search and 
optimization method based on the process of biological evolution, in that they involve a 
search from a population of solutions and not from a single point. Each iteration of a GA 
involves a competitive selection that penalizes poor solutions. The solutions with high 
fitness are recombined with others to produce members of the next generation. 
Reproduction and mutations are used to generate new solutions which are biased towards 
regions of the space for which good solutions have already been seen. The strength of the 
GA is that they perform well in spaces where there may be multiple local optima. The 
typical drawback of GA is the requirement for a rather large number of function 
evaluations, a requirement easily met here with the use of the NN since objective functions 
can be evaluated instantaneously. 
The overall dataset is primarily based on the TWS going from 10 to 15 knots; consistent with 
sailing practice. In order to establish well defined reference cases to be used for evaluation of 
the automated approach (see above), the analysis is split in one-knot increments, starting at 
10 knots. In the general case, however, such splitting would not be necessary since the NN 
would be capable of representing the dependency of the boat speed on TWS (as long as TWS 
is an independent parameter). A summary of the results is presented in the next section. 
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Fig. 13. Automated process starting with the WTP sailing database and leading to a NN 
capable of instantaneously calculating boat speed, or which can be used to generate 
optimum sailing setups under varying conditions. 

 
5.5 Results and Discussion 
5.5.1 Effects of Optimum Distance Criterion and Number of Added Points 
All optimizations shown here are performed with a population size of 5000 with a stopping 
criterion of 100 generations. One optimum is obtained in about eight minutes on a regular 
personal computer, corresponding to half a million operations of the trained function.  
As noted above, the results obtained from the automated database processing are compared 
with a reference case where the search space has been greatly restricted to fit the available 
data. In this section, all added points are assigned a boat speed of 0. Table 4 presents the 
effect of the number of added points (before those too close to sailing data clusters are 
removed automatically) and distance criterion in comparison with the optimum values 
found in the reference case. With no added points, the optimum solution of run 1 is off by 
about 12% when comparing the value with the reference case. This large error is due to 
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“waves” in the network near the edges of data clusters because of lack of data outside these 
clusters and because some of the best sailing conditions are actually near some of these 
edges of data clusters. 
Increasing gradually the number of points from one hundred to one thousand, the 
difference drops to 2.1%. For a margin within 2% accuracy, 1000 points added over the six 
thousand sailing data points, means a minimum of 16% of added points is required the 
whole dataset. Theoretically in training a NN there is no limitation in terms of size, so 
adding more points would then not be a problem. Therefore, to improve the non-valid 
domain coverage, a higher percentage of added points (such as up to 20% of the total 
original dataset size) appears to be a safe margin to start with.  
The second element to investigate is the distance criterion. Our initial distance was based on 
k = 1 so as to insert additional points not too close to the valid sailing points. Results for two 
additional datasets are shown in Table 4, both with one thousand additional points but 
differing by their distance criterion (k coefficient). In the first dataset, the distance criterion is 
reduced to 75% (k=0.75); in the second dataset, the distance is reduced by 50% (k=0.5). For 
k=0.5, the dataset is within 1% of the target solution; k=0.75 shows a difference of 3.5%, 
which is still acceptable. This solution, however, is marginal, with parameters like heel angle 
or forestay tension being lower than typical values. This discrepancy is likely due to the fact 
that an objective function, boat speed, of zero was set of additional points which also creates 
“waves” in the NN near the edges of clusters. The value to use for these additional points is 
discussed below. 
 

Case # of added points k Error %* 
1 0 1 12.5 
2 100 1 7.2 
3 500 1 5.5 
4 1000 1 2.1 
5 1000 0.75 3.5 
6 1000 0.5 0.7 

Table 4. Comparison of optimum obtained with the automated database processing with 
that obtained with the reference case over a more restrictive design space. TWS: 10-11 Knots. 

 
5.5.2 Effect of Boat Speed for Added Points and Impact on Minimum Distance 
Criterion 
To prevent the optimizer from searching in the low point density area, we assigned boat 
speed of zero for all the added points. Populating non-valid areas of the domain by non-
sailing data points with speed value set to zero is radical but efficient, especially if the 
domain to be covered is very large for the amount of added points available. But as we get 
closer to the sailing data points, we risk that locally the function value be altered. Here, the 
sailing dataset shows boat speed values ranging from 7.1 to 11.3 knots, and inserting a point 
with zero value creates a radical damping of 170 % in the function value and may remove 
potential attractive solutions in the optimization process or create waves near the edges of 
sailing data clusters. To prevent that phenomenon near the edges, the function value for the 
added points is set to be equal to the overall minimum boat speed of the dataset (i.e. 7.1 

* compared with reference case 

knots) instead of 0.0 as set in earlier analyses. From that statement we created two new 
datasets with similar number of points added (1000) and k=1, but with function values equal 
to the lower boat speed value (7.1). The solutions when compared with the reference case 
show differences within 1.2 %, which is even better than the 3% obtained earlier.  
In regard to the settings (eight sailing variables), there is also more consistency between the 
two solutions. On a sailboat many different set ups can provide nearly the same boat speed, 
as long as they are coherent. In this case, although the TWS are not exactly the same the 
setting numbers are globally in the same range which is an important factor to emphasize, 
meaning the solutions have been optimized for both domains in a similar zone. Courouble et 
al. (2008) compare these solutions in more detail and show that although the solutions are 
within few percent, a closer look at the optimum design variables for heel, forestay, rudder 
and trim tab show some differences between the two solutions, but similar trends, 
suggesting that several combinations of sailing parameters may be used for optimum boat 
speed. The results demonstrate that the method offers excellent potential for identifying the 
areas of interests for further investigation. Although not performed in the present study, the 
use of a multi-island genetic algorithm would allow a user to explore such areas 
systematically. 
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“waves” in the network near the edges of data clusters because of lack of data outside these 
clusters and because some of the best sailing conditions are actually near some of these 
edges of data clusters. 
Increasing gradually the number of points from one hundred to one thousand, the 
difference drops to 2.1%. For a margin within 2% accuracy, 1000 points added over the six 
thousand sailing data points, means a minimum of 16% of added points is required the 
whole dataset. Theoretically in training a NN there is no limitation in terms of size, so 
adding more points would then not be a problem. Therefore, to improve the non-valid 
domain coverage, a higher percentage of added points (such as up to 20% of the total 
original dataset size) appears to be a safe margin to start with.  
The second element to investigate is the distance criterion. Our initial distance was based on 
k = 1 so as to insert additional points not too close to the valid sailing points. Results for two 
additional datasets are shown in Table 4, both with one thousand additional points but 
differing by their distance criterion (k coefficient). In the first dataset, the distance criterion is 
reduced to 75% (k=0.75); in the second dataset, the distance is reduced by 50% (k=0.5). For 
k=0.5, the dataset is within 1% of the target solution; k=0.75 shows a difference of 3.5%, 
which is still acceptable. This solution, however, is marginal, with parameters like heel angle 
or forestay tension being lower than typical values. This discrepancy is likely due to the fact 
that an objective function, boat speed, of zero was set of additional points which also creates 
“waves” in the NN near the edges of clusters. The value to use for these additional points is 
discussed below. 
 

Case # of added points k Error %* 
1 0 1 12.5 
2 100 1 7.2 
3 500 1 5.5 
4 1000 1 2.1 
5 1000 0.75 3.5 
6 1000 0.5 0.7 

Table 4. Comparison of optimum obtained with the automated database processing with 
that obtained with the reference case over a more restrictive design space. TWS: 10-11 Knots. 
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knots) instead of 0.0 as set in earlier analyses. From that statement we created two new 
datasets with similar number of points added (1000) and k=1, but with function values equal 
to the lower boat speed value (7.1). The solutions when compared with the reference case 
show differences within 1.2 %, which is even better than the 3% obtained earlier.  
In regard to the settings (eight sailing variables), there is also more consistency between the 
two solutions. On a sailboat many different set ups can provide nearly the same boat speed, 
as long as they are coherent. In this case, although the TWS are not exactly the same the 
setting numbers are globally in the same range which is an important factor to emphasize, 
meaning the solutions have been optimized for both domains in a similar zone. Courouble et 
al. (2008) compare these solutions in more detail and show that although the solutions are 
within few percent, a closer look at the optimum design variables for heel, forestay, rudder 
and trim tab show some differences between the two solutions, but similar trends, 
suggesting that several combinations of sailing parameters may be used for optimum boat 
speed. The results demonstrate that the method offers excellent potential for identifying the 
areas of interests for further investigation. Although not performed in the present study, the 
use of a multi-island genetic algorithm would allow a user to explore such areas 
systematically. 
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1. Introduction 
 

Computer-aided diagnosis (CAD) (Giger and Suzuki 2007) has been an active area of study 
in medical image analysis, because evidence suggests that CAD can help improve the 
diagnostic performance of radiologists in their image interpretations (Li, Aoyama et al. 2004; 
Li, Arimura et al. 2005; Dean and Ilvento 2006). Many investigators have participated in and 
developed CAD schemes for detection/diagnosis of lesions in medical images, such as 
detection of lung nodules in chest radiographs (Giger, Doi et al. 1988; van Ginneken, ter 
Haar Romeny et al. 2001; Suzuki, Shiraishi et al. 2005) and in thoracic CT (Armato, Giger et 
al. 1999; Armato, Li et al. 2002; Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 
2004), detection of microcalcifications/masses in mammography (Chan, Doi et al. 1987), 
breast MRI (Gilhuijs, Giger et al. 1998), breast US (Horsch, Giger et al. 2004; Drukker, Giger 
et al. 2005), and detection of polyps in CT colonography (Yoshida and Nappi 2001; Suzuki, 
Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). Some advanced CAD schemes employ a 
filter for enhancement of lesions as a preprocessing step for improving sensitivity and 
specificity. The filter enhances objects similar to a model employed in the filter; e.g., a blob 
enhancement filter based on the Hessian matrix enhances sphere-like objects (Frangi, 
Niessen et al. 1999). Actual lesions, however, often differ from a simple model, e.g., a lung 
nodule is generally modeled as a solid sphere, but there are nodules of various shapes and 
inhomogeneous nodules such as a spiculated nodule and a ground-glass opacity. A 
colorectal polyp is often modeled as a cap structure by using a shape index filter, but a 
sessile polyp or a flat polyp cannot be characterized well as a cap structure of the shape 
index. Thus, conventional filters often fail to enhance actual lesions such as lung nodules 
with ground-glass opacity and sessile/flat polyps.  
To address this issue, we developed a supervised filter for enhancement of actual lesions by 
use of a massive-training artificial neural network (MTANN) (Suzuki, Armato et al. 2003) 
filter in a CAD scheme. In this chapter, we introduce MTANN-based CAD schemes for 
detection of lung nodules in CT and for detection of polyps in CT colonography.  To 
summerize, by extension of “neural filters” (Suzuki, Horiba et al. 2002) and “neural edge 
enhancers” (Suzuki, Horiba et al. 2003; Suzuki, Horiba et al. 2004), which are ANN-based 
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(Rumelhart, Hinton et al. 1986) supervised nonlinear image-processing techniques, 
MTANNs (Suzuki, Armato et al. 2003) have been developed for accommodating the task of 
distinguishing a specific opacity from other opacities in medical images. MTANNs have 
been applied to the reduction of false positives (FPs) in the computerized detection of lung 
nodules in low-dose CT (Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004) and 
chest radiography (Suzuki, Shiraishi et al. 2005), for distinction between benign and 
malignant lung nodules in CT (Suzuki, Li et al. 2005), for suppression of ribs in chest 
radiographs (Suzuki, Abe et al. 2006), and for reduction of FPs in computerized detection of 
polyps in CT colonography (Suzuki, Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). The 
MTANN filter is trained with actual lesions in CT images to enhance the actual patterns of 
the lesions. We evaluated the performance of our CAD schemes incorporating the MTANNs 
for detection of lung nodules in CT and for detection of polyps in CT colonography. 

 
2. A MTANN Filter for Lesion Enhancement 
 

2.1. An Architecture of an MTANN Filter 
To enhance actual lesions in medical images, we developed an MTANN supervised filter. 
The architecture of an MTANN supervised filter is shown in Fig. 1. An MTANN filter 
consists of a linear-output regression artificial neural network (LOR-ANN) model (Suzuki, 
Horiba et al. 2003), which is a regression-type ANN capable of operating on pixel/volel data 
directly. The MTANN filter is trained with input CT images and the corresponding 
“teaching” images that contain a map for the “likelihood of being lesions.” The pixel values 
of the input images are linearly scaled such that –1,000 Hounsfield units (HU) corresponds 
to 0 and 1,000 HU corresponds to 1. The input to the MTANN filter consists of pixel values 
in a sub-region, RS, extracted from an input image. The output of the MTANN filter is a 
continuous scalar value, which is associated with the center pixel in the sub-region, and is 
represented by 

 SRjijyixILORANNyxO  ),(|),(),( ,  (1) 

where x and y are the coordinate indices, LORANN (·) is the output of the LOR-ANN model, 
and I(x,y) is a pixel value in the input image. The LOR-ANN employs a linear function, 

5.0)(  uaufL , instead of a sigmoid function,  )exp(11)( uufS  , as the activation 
function of the output layer unit because the characteristics and performance of an ANN are 
improved significantly with a linear function when applied to the continuous mapping of 
values in image processing (Suzuki, Horiba et al. 2003). Note that the activation function in 
the hidden layers is still a sigmoid function. The input vector can be rewritten as 

 
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where m is an input unit number, and NI is the number of input units. The output of the n-th 
unit in the hidden layer is represented by 
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where WHmn is a weight between the m-th unit in the input layer and the n-th unit in the 
hidden layer, and WH0n is an offset of the n-th unit in the hidden layer. The output of the 
output layer unit is represented by 
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where WOm is a weight between the m-th unit in the hidden layer and the unit in the output 
layer, NH is the number of units in the hidden layer, and WO0 is an offset of the unit in the 
output layer. For processing of the entire image, the scanning of an input CT image with the 
MTANN is performed pixel by pixel, as illustrated in Fig. 2(b). 
 

 
Fig. 1. Architecture of an MTANN supervised filter consisting of a LOR-ANN model with 
sub-region input and single-pixel output. All pixel values in a sub-region extracted from an 
input CT image are entered as input to the LOR-ANN. The LOR-ANN outputs a single pixel 
value for each sub-region, the location of which corresponds to the center pixel in the sub-
region. Output pixel value is mapped back to the corresponding pixel in the output image. 

 
2.2. Training of an MTANN Filter 
For enhancement of lesions and suppression of non-lesions in CT images, the teaching 
image T(x,y) contains a map for the “likelihood of being lesions,” as illustrated in Fig. 2(a). 
To create the teaching image, we first segment lesions manually for obtaining a binary 
image with 1 being lesion pixels and 0 being non-lesion pixels. Then, Gaussian smoothing is 
applied to the binary image for smoothing down the edges of the segmented lesions, 
because the likelihood of being lesions should gradually be diminished as the distance from 
the boundary of the lesion decreases. Note that the ANN was not able to be trained when 
binary teaching images were used. 
The MTANN filter involves training with a large number of pairs of sub-regions and pixels; 
we call it a massive-sub-region training scheme. For enrichment of the training samples, a 
training image, RT, extracted from the input CT image is divided pixel by pixel into a large 
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(Rumelhart, Hinton et al. 1986) supervised nonlinear image-processing techniques, 
MTANNs (Suzuki, Armato et al. 2003) have been developed for accommodating the task of 
distinguishing a specific opacity from other opacities in medical images. MTANNs have 
been applied to the reduction of false positives (FPs) in the computerized detection of lung 
nodules in low-dose CT (Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004) and 
chest radiography (Suzuki, Shiraishi et al. 2005), for distinction between benign and 
malignant lung nodules in CT (Suzuki, Li et al. 2005), for suppression of ribs in chest 
radiographs (Suzuki, Abe et al. 2006), and for reduction of FPs in computerized detection of 
polyps in CT colonography (Suzuki, Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). The 
MTANN filter is trained with actual lesions in CT images to enhance the actual patterns of 
the lesions. We evaluated the performance of our CAD schemes incorporating the MTANNs 
for detection of lung nodules in CT and for detection of polyps in CT colonography. 

 
2. A MTANN Filter for Lesion Enhancement 
 

2.1. An Architecture of an MTANN Filter 
To enhance actual lesions in medical images, we developed an MTANN supervised filter. 
The architecture of an MTANN supervised filter is shown in Fig. 1. An MTANN filter 
consists of a linear-output regression artificial neural network (LOR-ANN) model (Suzuki, 
Horiba et al. 2003), which is a regression-type ANN capable of operating on pixel/volel data 
directly. The MTANN filter is trained with input CT images and the corresponding 
“teaching” images that contain a map for the “likelihood of being lesions.” The pixel values 
of the input images are linearly scaled such that –1,000 Hounsfield units (HU) corresponds 
to 0 and 1,000 HU corresponds to 1. The input to the MTANN filter consists of pixel values 
in a sub-region, RS, extracted from an input image. The output of the MTANN filter is a 
continuous scalar value, which is associated with the center pixel in the sub-region, and is 
represented by 

 SRjijyixILORANNyxO  ),(|),(),( ,  (1) 

where x and y are the coordinate indices, LORANN (·) is the output of the LOR-ANN model, 
and I(x,y) is a pixel value in the input image. The LOR-ANN employs a linear function, 

5.0)(  uaufL , instead of a sigmoid function,  )exp(11)( uufS  , as the activation 
function of the output layer unit because the characteristics and performance of an ANN are 
improved significantly with a linear function when applied to the continuous mapping of 
values in image processing (Suzuki, Horiba et al. 2003). Note that the activation function in 
the hidden layers is still a sigmoid function. The input vector can be rewritten as 
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where m is an input unit number, and NI is the number of input units. The output of the n-th 
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where WHmn is a weight between the m-th unit in the input layer and the n-th unit in the 
hidden layer, and WH0n is an offset of the n-th unit in the hidden layer. The output of the 
output layer unit is represented by 
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where WOm is a weight between the m-th unit in the hidden layer and the unit in the output 
layer, NH is the number of units in the hidden layer, and WO0 is an offset of the unit in the 
output layer. For processing of the entire image, the scanning of an input CT image with the 
MTANN is performed pixel by pixel, as illustrated in Fig. 2(b). 
 

 
Fig. 1. Architecture of an MTANN supervised filter consisting of a LOR-ANN model with 
sub-region input and single-pixel output. All pixel values in a sub-region extracted from an 
input CT image are entered as input to the LOR-ANN. The LOR-ANN outputs a single pixel 
value for each sub-region, the location of which corresponds to the center pixel in the sub-
region. Output pixel value is mapped back to the corresponding pixel in the output image. 

 
2.2. Training of an MTANN Filter 
For enhancement of lesions and suppression of non-lesions in CT images, the teaching 
image T(x,y) contains a map for the “likelihood of being lesions,” as illustrated in Fig. 2(a). 
To create the teaching image, we first segment lesions manually for obtaining a binary 
image with 1 being lesion pixels and 0 being non-lesion pixels. Then, Gaussian smoothing is 
applied to the binary image for smoothing down the edges of the segmented lesions, 
because the likelihood of being lesions should gradually be diminished as the distance from 
the boundary of the lesion decreases. Note that the ANN was not able to be trained when 
binary teaching images were used. 
The MTANN filter involves training with a large number of pairs of sub-regions and pixels; 
we call it a massive-sub-region training scheme. For enrichment of the training samples, a 
training image, RT, extracted from the input CT image is divided pixel by pixel into a large 
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number of sub-regions. Note that close sub-regions overlap each other. Single pixels are 
extracted from the corresponding teaching image as teaching values. The MTANN filter is 
massively trained by use of each of a large number of input sub-regions together with each 
of the corresponding teaching single pixels; hence the term “massive-training ANN.” The 
error to be minimized by training of the MTANN filter is given by 
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where c is a training case number, Oc is the output of the MTANN for the c-th case, Tc is the 
teaching value for the MTANN for the c-th case, and P is the number of total training pixels 
in the training images, RT. The MTANN filter is trained by a linear-output back-propagation 
(BP) algorithm where the generalized delta rule (Rumelhart, Hinton et al. 1986) is applied to 
the LOR-ANN architecture (Suzuki, Horiba et al. 2003). After training, the MTANN filter is 
expected to output the highest value when a lesion is located at the center of the sub-region 
of the MTANN filter, a lower value as the distance from the sub-region center increases, and 
zero when the input sub-region contains a non-lesion. 
 

 
(a) 

 
(b) 

Fig. 2. Training and application of an MTANN filter for enhancement of lesions. (a) Training 
of an MTANN filter. The input CT image is divided pixel by pixel into a large number of 
overlapping sub-regions. The corresponding pixels are extracted from the “teaching” image 
containing a map for the “likelihood of being a lesion.” The MTANN filter is trained with 
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pairs of the input sub-regions and the corresponding teaching pixels. (b) Application of the 
trained MTANN filter to a new CT image. Scanning with the trained MTANN filter is 
performed for obtaining pixel values in the entire output image. 

 
3. An MTANN for Classification 
 

3.1. A Training Method of an MTANN for Classification 
For distinction between lesions and non-lesions in medical images, the teaching image 
contains a Gaussian distribution with standard deviation σT for a nodule and zero for a non-
nodule (i.e., completely dark), as shown in Fig. 3. This distribution represents a map for the 
“likelihood of being a lesion”: 
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To enrich the training samples, a training region, RT, extracted from the input image is 
divided pixel by pixel into a large number of overlapping sub-regions. Single pixels are 
extracted from the corresponding teaching region as teaching values. The MTANN is 
massively trained by use of each of a large number of the input sub-regions together with 
each of the corresponding teaching single pixels. After training, the MTANN is expected to 
output the highest value when a lesion is located at the center of the sub-region of the 
MTANN, a lower value as the distance from the sub-region center increases, and zero when 
the input sub-region contains a non-lesion.  
 

 
Fig. 3. Architecture and training of an MTANN for classification of candidates into a lesion 
(e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a nodule contains a 
Gaussian distribution at the center of the image, whereas that for a non-nodule contains zero 
(i.e., it is completely dark). 
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number of sub-regions. Note that close sub-regions overlap each other. Single pixels are 
extracted from the corresponding teaching image as teaching values. The MTANN filter is 
massively trained by use of each of a large number of input sub-regions together with each 
of the corresponding teaching single pixels; hence the term “massive-training ANN.” The 
error to be minimized by training of the MTANN filter is given by 
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where c is a training case number, Oc is the output of the MTANN for the c-th case, Tc is the 
teaching value for the MTANN for the c-th case, and P is the number of total training pixels 
in the training images, RT. The MTANN filter is trained by a linear-output back-propagation 
(BP) algorithm where the generalized delta rule (Rumelhart, Hinton et al. 1986) is applied to 
the LOR-ANN architecture (Suzuki, Horiba et al. 2003). After training, the MTANN filter is 
expected to output the highest value when a lesion is located at the center of the sub-region 
of the MTANN filter, a lower value as the distance from the sub-region center increases, and 
zero when the input sub-region contains a non-lesion. 
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Fig. 2. Training and application of an MTANN filter for enhancement of lesions. (a) Training 
of an MTANN filter. The input CT image is divided pixel by pixel into a large number of 
overlapping sub-regions. The corresponding pixels are extracted from the “teaching” image 
containing a map for the “likelihood of being a lesion.” The MTANN filter is trained with 
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pairs of the input sub-regions and the corresponding teaching pixels. (b) Application of the 
trained MTANN filter to a new CT image. Scanning with the trained MTANN filter is 
performed for obtaining pixel values in the entire output image. 
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3.1. A Training Method of an MTANN for Classification 
For distinction between lesions and non-lesions in medical images, the teaching image 
contains a Gaussian distribution with standard deviation σT for a nodule and zero for a non-
nodule (i.e., completely dark), as shown in Fig. 3. This distribution represents a map for the 
“likelihood of being a lesion”: 
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To enrich the training samples, a training region, RT, extracted from the input image is 
divided pixel by pixel into a large number of overlapping sub-regions. Single pixels are 
extracted from the corresponding teaching region as teaching values. The MTANN is 
massively trained by use of each of a large number of the input sub-regions together with 
each of the corresponding teaching single pixels. After training, the MTANN is expected to 
output the highest value when a lesion is located at the center of the sub-region of the 
MTANN, a lower value as the distance from the sub-region center increases, and zero when 
the input sub-region contains a non-lesion.  
 

 
Fig. 3. Architecture and training of an MTANN for classification of candidates into a lesion 
(e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a nodule contains a 
Gaussian distribution at the center of the image, whereas that for a non-nodule contains zero 
(i.e., it is completely dark). 
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3.2. A Scoring Method for Combining Output Pixels 
For combining output pixels from a trained MTANN, we developed a scoring method. A 
score for a given lesion candidate from the trained MTANN is defined as 
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is a Gaussian weighting function with standard deviation σ, and with its center 
corresponding to the center of the region for evaluation, RE; and O (x,y) is the output region 
of the n-th trained MTANN, where its center corresponds to the center of RE. The use of the 
Gaussian weighting function allows us to combine the responses (outputs) of a trained 
MTANN as a distribution. A Gaussian function is used for scoring, because the output of a 
trained MTANN is expected to be similar to the Gaussian distribution used in the teaching 
region. This score represents the weighted sum of the estimates for the likelihood that the 
region (lesion candidate) contains a lesion near the center, i.e., a higher score would indicate 
a lesion, and a lower score would indicate a non-lesion.  

 
3.3. A Mixture of Expert MTANNs 
To distinguish lesions from various types of non-lesions (or FPs), we have extended the 
capability of a single MTANN, and have developed a mixture of expert MTANNs. The 
architecture of the mixture of expert MTANNs is shown in Fig. 4(a). The mixture of expert 
MTANNs consists of several MTANNs that are arranged in parallel. Each MTANN is 
trained independently by use of the same nodules and a different set of non-nodules, as 
shown in Fig. 4(b). Each MTANN acts as an expert for distinction between lesions (e.g., 
nodules) and non-lesions (e.g., non-nodules) representing a specific non-lesion type. The 
scores from the expert MTANNs are combined by use of a mixing ANN such that different 
types of non-lesions can be distinguished from lesions. The mixing ANN consists of a linear-
output multilayer ANN model with a linear-output BP training algorithm (Suzuki, Horiba 
et al. 2003) for processing of continuous output/teaching values; the activation functions of 
the units in the input, hidden, and output layers are an identity, a sigmoid, and a linear 
function, respectively. One unit is employed in the output layer for distinction between a 
lesion and a non-lesion. The scores of each expert MTANN are used for each input unit in 
the mixing ANN; thus, the number of input units corresponds to the number of expert 
MTANNs, N. The scores of each expert MTANN act as the features for distinguishing 
lesions from a specific type of non-lesion for which the expert MTANN is trained. The 
output of the mixing ANN for the c-th lesion candidate is represented by 
 

 NnSNNM cnc  1|}{ , ,   (9) 

where NN (·) is the output of the linear-output ANN model, and n is an MTANN number. 
The teaching values for lesions are assigned the value one, and those for non-lesions are 

zero. Training of the mixing ANN may be performed by use of a leave-one-lesion-out cross-
validation scheme (Mosier 1951). After training, the mixing ANN is expected to output a 
higher value for a lesion and a lower value for a non-lesion. Thus, the output can be 
considered to be a “likelihood of being a lesion.” By thresholding the output, a distinction 
between lesions and non-lesions can be made. The balance between a true-positive rate and 
an FP rate is determined by the selected threshold value. If the scores of each expert 
MTANN properly characterize the specific type of non-lesion for which the expert MTANN 
is trained, the mixing ANN combining several expert MTANNs will be able to distinguish 
lesions from various types of non-lesions. 
 

 
(a) 

 
(b) 

Fig. 4. Architecture (a) and training (b) of a mixture of expert MTANNs for classification of 
lesion candidates into lesions or multiple types of non-lesions. 
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3.2. A Scoring Method for Combining Output Pixels 
For combining output pixels from a trained MTANN, we developed a scoring method. A 
score for a given lesion candidate from the trained MTANN is defined as 
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is a Gaussian weighting function with standard deviation σ, and with its center 
corresponding to the center of the region for evaluation, RE; and O (x,y) is the output region 
of the n-th trained MTANN, where its center corresponds to the center of RE. The use of the 
Gaussian weighting function allows us to combine the responses (outputs) of a trained 
MTANN as a distribution. A Gaussian function is used for scoring, because the output of a 
trained MTANN is expected to be similar to the Gaussian distribution used in the teaching 
region. This score represents the weighted sum of the estimates for the likelihood that the 
region (lesion candidate) contains a lesion near the center, i.e., a higher score would indicate 
a lesion, and a lower score would indicate a non-lesion.  
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et al. 2003) for processing of continuous output/teaching values; the activation functions of 
the units in the input, hidden, and output layers are an identity, a sigmoid, and a linear 
function, respectively. One unit is employed in the output layer for distinction between a 
lesion and a non-lesion. The scores of each expert MTANN are used for each input unit in 
the mixing ANN; thus, the number of input units corresponds to the number of expert 
MTANNs, N. The scores of each expert MTANN act as the features for distinguishing 
lesions from a specific type of non-lesion for which the expert MTANN is trained. The 
output of the mixing ANN for the c-th lesion candidate is represented by 
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an FP rate is determined by the selected threshold value. If the scores of each expert 
MTANN properly characterize the specific type of non-lesion for which the expert MTANN 
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Fig. 4. Architecture (a) and training (b) of a mixture of expert MTANNs for classification of 
lesion candidates into lesions or multiple types of non-lesions. 
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4. A CAD Scheme for Detection of Lung Nodules on CT Images 
 

4.1. Lung Cancer Detection in CT 
Lung cancer continues to rank as the leading cause of cancer deaths among Americans 
(American:Cancer:Society 2005; Jemal, Murray et al. 2005); the number of lung cancer deaths 
each year is greater than the combined number of breast, colon, and prostate cancer deaths. 
Evidence suggests that early detection of lung cancer may allow more timely therapeutic 
intervention and thus a more favorable prognosis for the patient (Heelan, Flehinger et al. 
1984; Flehinger, Kimmel et al. 1992; Sobue, Suzuki et al. 1992; Miettinen 2000). Therefore, in 
the 1970s, screening programs for early detection of lung cancer were carried out with chest 
radiography and cytologic examination of sputum in the United States (Flehinger, Melamed 
et al. 1984; Fontana, Sanderson et al. 1984; Frost, Ball et al. 1984) and in Europe (Kubik and 
Polak 1986). As the CT imaging techniques have advanced, screening with low-dose helical 
CT has been performed for early detection of lung cancer (Kaneko, Eguchi et al. 1996; Sone, 
Takashima et al. 1998; Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; 
Miettinen and Henschke 2001; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002; Swensen, 
Jett et al. 2003) since early 1990.   
Because CT is more sensitive than chest radiography in the detection of small non-calcified 
nodules due to lung carcinoma at an early stage (Sone, Takashima et al. 1998; Miettinen and 
Henschke 2001), lung cancer screening programs are being conducted in the United States 
(Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; Miettinen and Henschke 
2001; Swensen, Jett et al. 2003) and Japan (Kaneko, Eguchi et al. 1996; Sone, Takashima et al. 
1998; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002) with low-dose single-detector CT as 
the screening modality. Recently, multi-detector-row CT (MDCT) has been used for lung 
cancer screening. Helical CT and MDCT, however, generate a large number of images that 
must be read by radiologists. This may lead to “information overload” for radiologists. 
Furthermore, radiologists may fail to detect some cancers, which are visible in retrospect, 
during the interpretation of CT images (Gurney 1996; Li, Sone et al. 2002). Therefore, a CAD 
scheme for detection of lung nodules in CT has been investigated as a tool for lung cancer 
screening, because the CAD scheme may detect some cancers that are “missed” by 
radiologists (Li, Sone et al. 2002), and provide quantitative detection results as a “second 
opinion” to assist radiologists in improving their detection accuracy (Kobayashi, Xu et al. 
1996).  

 
4.2. Database of Lung Nodules in CT 
To test the performance of a CAD scheme utilizing the MTANN filters, we created a CT 
database consisting of 69 lung cancers in 69 patients (Li, Sone et al. 2002). The scans used for 
this study were acquired with a low-dose protocol of 120 kVp, 25 mA or 50 mA, 10-mm 
collimation, and a 10-mm reconstruction interval at a helical pitch of two. The reconstructed 
CT images were 512 x 512 pixels in size with a section thickness of 10 mm. The 69 CT scans 
consisted of 2,052 sections. All cancers were confirmed either by biopsy or surgically.  

 
4.3. Detection of Nodule Candidates 
The flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the MTANNs for classification is shown in Fig. 5. To limit processing area to the 
lungs, we segmented the lung regions in a CT image by use of thresholding based on Otsu’s 

threshold value determination (Otsu 1979). Then, we applied a rolling-ball technique along 
the outlines of the extracted lung regions to include a nodule attached to the pleura in the 
segmented lung regions (Armato, Giger et al. 2001).  
To enhance lung nodules in CT images, we trained an MTANN filter with 13 lung nodules 
in a training database and the corresponding “teaching” images that contained maps for the 
“likelihood of being nodules,” as illustrated in Fig. 2(a). To obtain the training regions, RT, 
we applied a mathematical morphology opening filter to the manually segmented lung 
nodules (i.e., binary regions) such that the training regions sufficiently covered nodules and 
surrounding normal structures (i.e., a 9 times larger area than the nodule region, on 
average). A three-layer structure was employed for the MTANN filter, because any 
continuous mapping can be approximated by a three-layer ANN (Funahashi 1989). The 
number of hidden units was selected to be 20 by use of a method for designing the structure 
of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). The size of the input sub-region, RS, 
was 9 by 9 pixels, which was determined experimentally in our previous studies (Suzuki, 
Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005). The slope of the 
linear function, a, was 0.01. With the parameters above, training of the MTANN filter was 
performed by 1,000,000 iterations. To test the performance, we applied the trained MTANN 
filter to the entire lungs. We applied thresholding to the output images of the trained 
MTANN filter to detect nodule candidates. We compared the results of nodule-candidate 
detection with and without the MTANN filter.  
We applied the trained MTANN filter to original CT images. The result of enhancement of 
nodules in CT images by the trained MTANN filter is shown in Fig. 6. The MTANN filter 
enhances the nodule and suppresses most of the normal structures in the CT image. 
Although some medium-sized vessels and some of the large vessels in the hilum remain in 
the output image, the nodule with spiculation is enhanced well. We applied thresholding to 
the output images of the trained MTANN filter. There are a smaller number of candidates in 
the MTANN-based image, as illustrated in Fig 6(c), whereas there are many nodule 
candidates in the binary image obtained by use of simple thresholding without the MTANN 
filter, as shown in Fig. 6(d). Note that the large vessels in the hilum can easily be separated 
from nodules by use of their area information. 
 

 
 

Fig. 5. Flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the mixture of expert MTANNs for classification. 
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4. A CAD Scheme for Detection of Lung Nodules on CT Images 
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cancer screening. Helical CT and MDCT, however, generate a large number of images that 
must be read by radiologists. This may lead to “information overload” for radiologists. 
Furthermore, radiologists may fail to detect some cancers, which are visible in retrospect, 
during the interpretation of CT images (Gurney 1996; Li, Sone et al. 2002). Therefore, a CAD 
scheme for detection of lung nodules in CT has been investigated as a tool for lung cancer 
screening, because the CAD scheme may detect some cancers that are “missed” by 
radiologists (Li, Sone et al. 2002), and provide quantitative detection results as a “second 
opinion” to assist radiologists in improving their detection accuracy (Kobayashi, Xu et al. 
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surrounding normal structures (i.e., a 9 times larger area than the nodule region, on 
average). A three-layer structure was employed for the MTANN filter, because any 
continuous mapping can be approximated by a three-layer ANN (Funahashi 1989). The 
number of hidden units was selected to be 20 by use of a method for designing the structure 
of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). The size of the input sub-region, RS, 
was 9 by 9 pixels, which was determined experimentally in our previous studies (Suzuki, 
Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005). The slope of the 
linear function, a, was 0.01. With the parameters above, training of the MTANN filter was 
performed by 1,000,000 iterations. To test the performance, we applied the trained MTANN 
filter to the entire lungs. We applied thresholding to the output images of the trained 
MTANN filter to detect nodule candidates. We compared the results of nodule-candidate 
detection with and without the MTANN filter.  
We applied the trained MTANN filter to original CT images. The result of enhancement of 
nodules in CT images by the trained MTANN filter is shown in Fig. 6. The MTANN filter 
enhances the nodule and suppresses most of the normal structures in the CT image. 
Although some medium-sized vessels and some of the large vessels in the hilum remain in 
the output image, the nodule with spiculation is enhanced well. We applied thresholding to 
the output images of the trained MTANN filter. There are a smaller number of candidates in 
the MTANN-based image, as illustrated in Fig 6(c), whereas there are many nodule 
candidates in the binary image obtained by use of simple thresholding without the MTANN 
filter, as shown in Fig. 6(d). Note that the large vessels in the hilum can easily be separated 
from nodules by use of their area information. 
 

 
 

Fig. 5. Flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the mixture of expert MTANNs for classification. 
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   (c)     (d) 
Fig. 6. Enhancement of a lesion by the trained lesion-enhancement MTANN filter for a non-
training case. (a) Original image of the segmented lung with a nodule (indicated by an 
arrow). (b) Output image of the trained lesion-enhancement MTANN filter. The nodule is 
enhanced in the output image, whereas most of the normal structures are suppressed. (c) 
Nodule candidates detected by the trained lesion-enhancement MTANN followed by 
thresholding. (d) Nodule candidates detected by simple thresholding only. 

 
4.4. Classification of Nodule Candidates 
Nodule candidates generally include true positives and mostly FPs. For reduction of the 
FPs, we trained an MTANN for classification of nodule candidates into nodules or non-
nodules (Suzuki, Armato et al. 2003; Suzuki, Yoshida et al. 2008).  We used 10 different-sized 
nodules with various contrasts and 10 non-nodule images including medium-sized and 
small vessels as training cases for the MTANN, as shown in Fig. 7. Parameters such as the 

size of the subregion of the MTANN, the standard deviation of the 2D Gaussian function in 
the teaching image, and the size of the teaching image were determined by experimental 
analysis (16) to be 9 x 9 pixels, 5.0 pixels, and 19 x 19 pixels, respectively. We employed a 
three-layer structure for the MTANN, because it has been proved theoretically that a three-
layer ANN can approximate any continuous mapping (38,39). The number of hidden units 
in the MTANN was determined to be 20 by use of a method for determining the structure of 
an ANN (40,41). Thus, the numbers of input, hidden, and output units were 81, 20, and one, 
respectively. With the parameters above, the training of the MTANN was performed 500,000 
times, and it converged with a mean absolute error of 0.112. Figure 7 shows the input 
images used for training the MTANN and the output images of the trained MTANN. It is 
apparent that the nodules are represented by light “fuzzy nodular” distributions in the 
output images, whereas the vessels are dark and thus “almost removed.”  
 

 
Fig. 7. Ten nodules and 10 non-nodule images including vessels used for training an 
MTANN, and the corresponding output images of the trained MTANN. The nodules are 
various-sized with different contrasts. The non-nodule images include medium-sized and 
small vessels with various orientations, which are the majority of non-nodules in the lungs. 

 
4.5. Simulated CT Images 
To investigate the basic characteristics of the trained MTANNs, we created simulated CT 
images that contained model nodules and model vessels. A nodule was modeled as a 
sphere, and a vessel as a cylinder. The simulated images included various-sized model 
nodules (8.0 mm, 14.0 mm, and 20.0 mm in diameter) with low, medium, and high contrast 
[200 Hounsfield units (HU), 400 HU, and 600 HU], various-sized model vessels (2.0 mm, 3.0 
mm, and 4.0 mm in diameter) with different orientations such as horizontal, vertical, and 
diagonal, and model nodules overlapping with model vessels, as shown in Fig. 8(a). We 
created the same-sized model nodules with different contrasts, because solid opacity and 
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ground-glass opacity (GGO) of the same size have different contrasts. The background level 
was -900 HU, which corresponds to the average background level in the lungs.  
Figure 8(b) shows the output image of the MTANN trained with actual nodules. In the 
output image, the various-sized model nodules with different contrasts are represented by 
light “nodular” distributions, whereas various-sized model vessels with different 
orientations are almost dark, and are thus removed. Therefore, it is apparent in the figure 
that model nodules can be distinguished from model vessels. This result indicates that the 
MTANN was able to learn from a very small number of training actual cases (10 actual 
nodules and 10 actual vessel images) to enhance sphere-like objects (model nodules) and 
suppress cylinder-like objects (model vessels), and that the trained MTANN would be 
robust against a change in scale and rotation.  
 

 
Fig. 8. Simulated CT image that contains various-sized model nodules with different 
contrasts and various-sized model vessels with different orientations, and the corresponding 
output images of the MTANNs trained with 10 actual nodules and 10 actula vessel images. 
(a) Input image for the MTANNs. (b) Output image of the trained MTANN. 

 
4.6. Performance of a CAD Scheme 
In order to investigate the performance for actual nodules and vessels, we applied the 
trained MTANN to non-training cases. Figures 9(a) and (b) show the output images of the 
trained MTANN, where various-sized actual nodules with different contrasts are 
represented by light “nodular” distributions, whereas medium-sized and small actual 
vessels with different orientations are almost eliminated. To distinguish nodules from 
various types of non-nodules, we trained 6 classification-MTANNs with 10 typical nodules 
and 6 different types of 10 non-nodules such as medium-sized vessels, small vessels, large 
vessels, soft-tissue opacity, and abnormal opacities from a training database. We applied the 
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trained classification-MTANNs to various types of nodules and non-nodules. The trained 
classification-MTANNs enhance nodules and suppress most of normal structures including 
various-sized lung vessels in CT images, as shown in Fig. 9.  The scores indicating the 
likelihood of being a nodule from the 6 classification-MTANNs were combined with a 
mixing ANN to form a mixture of expert classification-MTANNs. We used a leave-one-out 
cross-validation test for testing the mixing ANN in the mixture of expert MTANNs. We 
evaluated the performance by using free-response receiver-operating-characteristic (FROC) 
analysis (Egan, Greenberg et al. 1961).  
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that model nodules can be distinguished from model vessels. This result indicates that the 
MTANN was able to learn from a very small number of training actual cases (10 actual 
nodules and 10 actual vessel images) to enhance sphere-like objects (model nodules) and 
suppress cylinder-like objects (model vessels), and that the trained MTANN would be 
robust against a change in scale and rotation.  
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(c) 

Fig. 9. Illustrations of (a) various types of actual nodules and the corresponding output 
images of the trained MTANN for non-training cases, (b) various-sized lung vessels and and 
the corresponding output images, and (c) other types of non-nodules and the corresponding 
output images.  
 
To test the performance of our CAD scheme utilizing the MTANN lesion enhancement filter 
and the classification MTANNs, we applied it to the test database containing 69 lung 
cancers. The MTANN lesion enhancement filter followed by thresholding identified 97% 
(67/69) of cancers with 6.7 FPs per section. The classification-MTANNs were applied to the 
nodule candidates (true positives and FPs) for classification of the candidates into nodules 
or non-nodules. The scores from the 6 classification-MTANNs are shown in Fig. 10. 
Although the distributions for nodules and non-nodules overlap, many nodules can be 
separated from non-nodules by decision boundaries. The FROC curve indicating the 
performance of the mixture of expert MTANNs is shown in Fig. 11. The mixture of expert 
MTANNs was able to remove 60% (8,172/13,688) or 93% (12,667/13,688) of non-nodules 
(FPs) with a loss of 1 true positive or 10 true positives, respectively. Thus, our MTANN-
based CAD scheme achieved a 96% (66/69) or 84% (57/69) sensitivity with 2.7 (5,516/2,052) 
or 0.5 (1,021/2,052) FPs per section. The remaining true-positive nodules included a ground-
glass opacity, a cancer overlapping vessels, and a cancer touching the pleura. In contrast, the 
difference-image technique followed by multiple thresholding in the previously reported 
CAD scheme (Arimura, Katsuragawa et al. 2004) detected 96% (66/69) of cancers with 19.3 
FPs per section. Thus, the MTANN lesion-enhancement filter was effective for improving 
the sensitivity and specificity of a CAD scheme. The feature analysis and the rule-based 
scheme removed FPs further and achieved 9.3 FPs per section. Finally, with LDA, the 
previously reported CAD scheme yielded a sensitivity of 84% (57/69) with 1.4 (2,873/2,052) 
FPs per section. Therefore, MTANNs were effective for improving the sensitivity and 
specificity of a CAD scheme.  
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Fig. 10. Distributions of scores from MTANN nos. 1 and 2 of the 6 classification-MTANNs 
for 67 nodules (white circles) and 13,688 non-nodules (black dots) detected by the lesion-
enhancement MTANN filter followed by thresholding.  

 

 
Fig. 11. Performance of the mixture of expert MTANNs for classification between 67 nodules 
and 13,688 non-nodules. The FROC curve indicates that the mixture of expert MTANNs 
yielded a reduction of 60% (8,172/13,688) or 93% (12,667/13,688) of non-nodules (FPs) with 
a loss of 1 true positive or 10 true positives, respectively, i.e., it achieved a 96% (66/69) or 
84% (57/69) sensitivity with 2.7 (5,516/2,052) or 0.5 (1,021/2,052) FPs per section, 
respectively. 
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5. A CAD Scheme for Detection of Polyps in CTC 
 

5.1. Colorectal Cancer Detection in CTC 
Colorectal cancer is the second leading cause of cancer deaths in the United States (Jemal, 
Murray et al. 2005). Evidence suggests that early detection and removal of polyps (i.e., 
precursors of colorectal cancer) can reduce the incidence of colorectal cancer (Winawer, 
Fletcher et al. 1997; Dachman 2003). CT colonography (CTC), also known as virtual 
colonoscopy, is a technique for detecting colorectal neoplasms by use of a CT scan of the 
colon (Macari and Bini 2005). The diagnostic performance of CTC in detecting polyps, 
however, remains uncertain due to a propensity for perceptual errors (Fletcher, Booya et al. 
2005). Computer-aided detection (CAD) of polyps has been investigated to overcome the 
difficulty with CTC. CAD has the potential to improve radiologists’ diagnostic performance 
in the detection of polyps. 
Although CAD schemes are useful for improving radiologists’ sensitivity in detection of 
polyps in CTC, a major challenge for CAD schemes is reducing the number of FPs, while 
maintaining high sensitivity. Major sources of FPs generated by CAD schemes include 
haustral folds, residual stool, rectal tubes, the ileocecal valve, and extra-colonic structures 
such as the small bowel and stomach (Yoshida and Dachman 2005). Among those FP 
sources, rectal tubes are relatively obvious FPs.  Radiologists may, however, lose their 
confidence in CAD as an effective tool if the CAD scheme generates such obvious FPs. 
Therefore, removal of rectal-tube-induced FPs is desirable. To address this issue, we 
previously reported a 3D MTANN for distinction between polyps and rectal tubes in 3D 
CTC volumetric data (Suzuki, Yoshida et al. 2006). The 3D MTANN eliminated all rectal-
tube-induced FPs without removal of any true positives. Our purpose in this study was to 
develop a “mixture of expert” 3D MTANNs for further reduction of FPs in a polyp-detection 
CAD scheme while maintaining high sensitivity. 

 
5.2. CTC Database 
CTC examinations were performed on 73 patients at The University of Chicago Medical 
Center. The patients’ colons were prepared by standard pre-colonoscopy cleansing with 
administration of cathartics following a water diet or low-fiber diet, and they were 
insufflated with room air or carbon dioxide. Each patient was scanned in both supine and 
prone positions. Our database thus contained 146 CTC datasets. The CT scans were 
performed with either a single- or a multi-detector-row CT scanner (HiSpeed CTi or 
LightSpeed QX/i, GE Medical Systems, Milwaukee, WI). The CT scanning parameters 
included collimations between 2.5 and 5.0 mm, reconstruction intervals of 1.0-5.0 mm [1.0 
mm (n=2, 1% of the CTC datasets), 1.25 mm (n=3, 2%), 1.5 mm (n=59, 41%), 2.5 mm (n=79, 
54%), and 5.0 mm (n=3, 2%)], and tube currents of 60-120 mA with 120 kVp. Each 
reconstructed CT section had a matrix size of 512 x 512 pixels, with an in-plane pixel size of 
0.5-0.7 mm. The CT sections were interpolated to isotropic resolution by use of linear 
interpolation in the transverse direction. All patients underwent “reference-standard” 
optical colonoscopy. Radiologists established the locations of polyps in the CTC datasets by 
use of the colonoscopy and pathology reports, as well as multiplanar reformatted views of 
the CTC on a viewing workstation (GE Advantage Windows Workstation v.4.2, GE Medical 
Systems, Milwaukee, WI). In this study, we used 5 mm as the threshold for clinically 
significant polyps(Johnson and Dachman 2000). Fifteen patients had 28 polyps, 15 of which 

were 5-9 mm in diameter, and 13 were 10-25 mm. There was no polyp that was submerged 
in fluid. Fluid was minimized by use of a saline cathartic preparation as the standard 
preparation, not a colon gavage. We also created a training database of non-polyps by 
manual extraction of volumes containing non-polyps from 27 “normal” (non-polyp) CTC 
cases. 

 
5.3. Performance of Our Initial CAD Scheme 
We applied our previously reported CAD scheme (Yoshida and Nappi 2001; Nappi and 
Yoshida 2003) to the 73 CTC cases. The scheme included centerline-based extraction of the 
colon (Frimmel, Nappi et al. 2004), shape-based detection of polyps (Yoshida and Näppi 
2001; Yoshida, Masutani et al. 2002), and initial reduction of FPs by use of a Bayesian ANN 
(Kupinski, Edwards et al. 2001) based on geometric and texture features (Nappi and 
Yoshida 2002; Nappi and Yoshida 2003). We evaluated supine and prone CTC volumes 
independently. This CAD scheme achieved a 96.4% (27/28 polyps) by-polyp sensitivity with 
an average of 3.1 (224/73) FPs per patient. Forty-eight true-positive polyp detections in both 
supine and prone CTC volumes represented 27 polyps. We combined our previously 
reported CAD scheme with the mixture of expert 3D MTANNs for further reduction of FPs. 

 
5.4. Training of Expert 3D MTANNs 
We manually selected ten representative polyp volumes (ten polyps) from the 48 true-
positive volumes (containing 27 polyps) in our CTC database as the training polyp cases for 
expert 3D MTANNs. We classified CAD-generated FP sources into eight categories, i.e., 
rectal tubes, small bulbous folds, solid stool, stool with bubbles, colonic walls with haustral 
folds, elongated folds, strip-shaped folds, and the ileocecal valve. We manually selected ten 
non-polyps in each of the eight categories from the training non-polyp database (which was 
not used for testing). The ten polyps and the ten rectal tubes were the same as those used in 
our previous study (Suzuki, Yoshida et al. 2006). The number of sample volumes for each 
category was ten, because the performance of an expert 3D MTANN was found to be 
highest when the number of training sample volumes was 20 (i.e., ten polyps and ten non-
polyps) in our previous study (Suzuki, Yoshida et al. 2006), and the performance of 2D/3D 
MTANNs was not sensitive to the number of sample regions/volumes over different types 
of non-lesions in our previous studies (Suzuki, Armato et al. 2003; Suzuki, Armato et al. 
2003; Suzuki and Doi 2005; Suzuki, Li et al. 2005; Suzuki, Yoshida et al. 2006).  
We trained eight expert 3D MTANNs with the ten polyps and ten non-polyps in each 
category. A three-layer structure was employed for the expert 3D MTANNs(Funahashi 
1989). The size of the training volume and the standard deviation of the 3D Gaussian 
distribution in the teaching volume were 15 x 15 x 15 voxels (i.e., cubic shape) and 4.5 
voxels, respectively, which were determined empirically based on our previous studies 
(Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005; Suzuki, 
Yoshida et al. 2006). The number of hidden units was selected to be 25 by use of a method 
for designing the structure of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). With the 
parameters above, training of the expert 3D MTANNs was performed by 500,000 iterations. 
We selected four among the eight expert 3D MTANNs for the mixture of expert 3D 
MTANNs by experimental analysis, because the mixture of these four expert 3D MTANNs 
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such as the small bowel and stomach (Yoshida and Dachman 2005). Among those FP 
sources, rectal tubes are relatively obvious FPs.  Radiologists may, however, lose their 
confidence in CAD as an effective tool if the CAD scheme generates such obvious FPs. 
Therefore, removal of rectal-tube-induced FPs is desirable. To address this issue, we 
previously reported a 3D MTANN for distinction between polyps and rectal tubes in 3D 
CTC volumetric data (Suzuki, Yoshida et al. 2006). The 3D MTANN eliminated all rectal-
tube-induced FPs without removal of any true positives. Our purpose in this study was to 
develop a “mixture of expert” 3D MTANNs for further reduction of FPs in a polyp-detection 
CAD scheme while maintaining high sensitivity. 

 
5.2. CTC Database 
CTC examinations were performed on 73 patients at The University of Chicago Medical 
Center. The patients’ colons were prepared by standard pre-colonoscopy cleansing with 
administration of cathartics following a water diet or low-fiber diet, and they were 
insufflated with room air or carbon dioxide. Each patient was scanned in both supine and 
prone positions. Our database thus contained 146 CTC datasets. The CT scans were 
performed with either a single- or a multi-detector-row CT scanner (HiSpeed CTi or 
LightSpeed QX/i, GE Medical Systems, Milwaukee, WI). The CT scanning parameters 
included collimations between 2.5 and 5.0 mm, reconstruction intervals of 1.0-5.0 mm [1.0 
mm (n=2, 1% of the CTC datasets), 1.25 mm (n=3, 2%), 1.5 mm (n=59, 41%), 2.5 mm (n=79, 
54%), and 5.0 mm (n=3, 2%)], and tube currents of 60-120 mA with 120 kVp. Each 
reconstructed CT section had a matrix size of 512 x 512 pixels, with an in-plane pixel size of 
0.5-0.7 mm. The CT sections were interpolated to isotropic resolution by use of linear 
interpolation in the transverse direction. All patients underwent “reference-standard” 
optical colonoscopy. Radiologists established the locations of polyps in the CTC datasets by 
use of the colonoscopy and pathology reports, as well as multiplanar reformatted views of 
the CTC on a viewing workstation (GE Advantage Windows Workstation v.4.2, GE Medical 
Systems, Milwaukee, WI). In this study, we used 5 mm as the threshold for clinically 
significant polyps(Johnson and Dachman 2000). Fifteen patients had 28 polyps, 15 of which 

were 5-9 mm in diameter, and 13 were 10-25 mm. There was no polyp that was submerged 
in fluid. Fluid was minimized by use of a saline cathartic preparation as the standard 
preparation, not a colon gavage. We also created a training database of non-polyps by 
manual extraction of volumes containing non-polyps from 27 “normal” (non-polyp) CTC 
cases. 

 
5.3. Performance of Our Initial CAD Scheme 
We applied our previously reported CAD scheme (Yoshida and Nappi 2001; Nappi and 
Yoshida 2003) to the 73 CTC cases. The scheme included centerline-based extraction of the 
colon (Frimmel, Nappi et al. 2004), shape-based detection of polyps (Yoshida and Näppi 
2001; Yoshida, Masutani et al. 2002), and initial reduction of FPs by use of a Bayesian ANN 
(Kupinski, Edwards et al. 2001) based on geometric and texture features (Nappi and 
Yoshida 2002; Nappi and Yoshida 2003). We evaluated supine and prone CTC volumes 
independently. This CAD scheme achieved a 96.4% (27/28 polyps) by-polyp sensitivity with 
an average of 3.1 (224/73) FPs per patient. Forty-eight true-positive polyp detections in both 
supine and prone CTC volumes represented 27 polyps. We combined our previously 
reported CAD scheme with the mixture of expert 3D MTANNs for further reduction of FPs. 

 
5.4. Training of Expert 3D MTANNs 
We manually selected ten representative polyp volumes (ten polyps) from the 48 true-
positive volumes (containing 27 polyps) in our CTC database as the training polyp cases for 
expert 3D MTANNs. We classified CAD-generated FP sources into eight categories, i.e., 
rectal tubes, small bulbous folds, solid stool, stool with bubbles, colonic walls with haustral 
folds, elongated folds, strip-shaped folds, and the ileocecal valve. We manually selected ten 
non-polyps in each of the eight categories from the training non-polyp database (which was 
not used for testing). The ten polyps and the ten rectal tubes were the same as those used in 
our previous study (Suzuki, Yoshida et al. 2006). The number of sample volumes for each 
category was ten, because the performance of an expert 3D MTANN was found to be 
highest when the number of training sample volumes was 20 (i.e., ten polyps and ten non-
polyps) in our previous study (Suzuki, Yoshida et al. 2006), and the performance of 2D/3D 
MTANNs was not sensitive to the number of sample regions/volumes over different types 
of non-lesions in our previous studies (Suzuki, Armato et al. 2003; Suzuki, Armato et al. 
2003; Suzuki and Doi 2005; Suzuki, Li et al. 2005; Suzuki, Yoshida et al. 2006).  
We trained eight expert 3D MTANNs with the ten polyps and ten non-polyps in each 
category. A three-layer structure was employed for the expert 3D MTANNs(Funahashi 
1989). The size of the training volume and the standard deviation of the 3D Gaussian 
distribution in the teaching volume were 15 x 15 x 15 voxels (i.e., cubic shape) and 4.5 
voxels, respectively, which were determined empirically based on our previous studies 
(Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005; Suzuki, 
Yoshida et al. 2006). The number of hidden units was selected to be 25 by use of a method 
for designing the structure of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). With the 
parameters above, training of the expert 3D MTANNs was performed by 500,000 iterations. 
We selected four among the eight expert 3D MTANNs for the mixture of expert 3D 
MTANNs by experimental analysis, because the mixture of these four expert 3D MTANNs 
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((1) rectal tubes, (2) stool with bubbles, (3) colonic walls with haustral folds, and (4) solid 
stool) demonstrated the highest performance (described in the next subsection).  

 
5.5. Evaluation of the Performance for False-Positive Reduction 
We applied the trained expert 3D MTANNs to the 27 polyps (48 true-positive volumes) and 
all 224 non-training FPs identified by our previously reported CAD scheme. The output 
volumes for these testing cases are shown in Fig. 12. The centers of the input volumes 
corresponded to the detection results provided by the CAD scheme (including both true 
positives and FPs); thus, this experiment included the effect of actual off-centering of polyp 
candidates produced by the initial CAD scheme. Various polyps, including a sessile polyp 
(the third image from the left in Fig. 12(a)), are represented in the output by distributions of 
bright voxels, whereas various types of non-polyps appear as darker voxels, indicating the 
ability of the expert 3D MTANNs to enhance polyps and suppress different types of non-
polyps. We applied the 3D scoring method to the output volumes for polyps and non-
polyps. The 3D Gaussian weighting function used the same standard deviation as that for 
the 3D Gaussian distribution in the polyp teaching volume. Distributions of scores from the 
expert 3D MTANNs for the 27 polyps and all FPs are shown in Fig. 13. Although the two 
distributions in each graph overlap, a substantial fraction of FPs can be eliminated by use of 
the expert 3D MTANNs. 
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Output images of 
MTANN no. 2
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MTANN no. 3

Output images of 
MTANN no. 4

 
(b) 

Fig. 12. Illustrations of (a) various testing polyps and the corresponding output volumes of 
four trained expert 3D MTANNs and (b) four different categories of testing FPs and the 
output volumes from corresponding expert 3D MTANNs. In the output volumes, polyps 
appear as distributions of bright voxels (i.e., they are enhanced), whereas different types of 
FPs appear as dark voxels (i.e., they are suppressed). 
 

 
Fig. 13. Distributions of scores from MTANN nos. 1 and 2 in the mixture of expert 3D 
MTANNs for 27 polyps (white circles) and 224 non-polyps (black dots). 
 
We evaluated the overall performance of the mixture of expert 3D MTANNs for FP 
reduction by use of free-response receiver-operating-characteristic (FROC) analysis (Egan, 
Greenberg et al. 1961). The FROC curve of the trained mixture of expert 3D MTANNs is 
shown in Fig. 14. The FROC curve was obtained by a change in the threshold value for the 
output of the mixing ANN. This FROC curve indicates that the mixture of expert 3D 
MTANNs was able to eliminate 63% (142/224) of non-polyps (FPs) without removal of any 
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of the 27 polyps, i.e., a 96.4% (27/28) overall by-polyp sensitivity was achieved at an FP rate 
of 1.1 (82/73) per patient. 
 

 
Fig. 14. The FROC curve that shows the overall performance of the mixture of expert 3D 
MTANNs when it was applied to the entire database of 27 polyps (48 true-positive volumes) 
and 224 FPs. The FROC curve indicates that the mixture of expert 3D MTANNs yielded a 
reduction of 63% (142/224) of non-polyps (FPs) without removal of any true positives, i.e., it 
achieved 100% (27/27 or 17/17) classification performance. 

 
6. Conclusion 
 

The MTANN supervised filter was effective for enhancement of lesions including lung 
nodules and colorectal polyps and suppression of non-lesions in medical images and was 
useful for improving the sensitivity and specificity of CAD schemes substantially. 
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1. Introduction

Numerical simulations of laser-plasma wakefield (particle) accelerators [Geddes et al. (2009);
Tajima & Dawson (1979)] model the acceleration of electrons trapped in plasma oscillations
(wakes) left behind when an intense laser pulse propagates through the plasma. The goal
of these simulations is to better understand the process involved in plasma wake generation
and how electrons are trapped and accelerated by the wake as in Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2007; 2004). Understanding of such accelera-
tors, and their development, offers high accelerating gradients, potentially reducing size and
cost of new accelerators.

One operating regime of interest is where a trapped subset of electrons loads the wake and
forms an isolated group of accelerated particles with low spread in momentum and position
[Geddes et al. (2004)], desirable characteristics for many applications. The electrons trapped
in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up
to a gigaelectronvolt per centimeter [Tajima & Dawson (1979)]. High-energy electron acceler-
ators power intense X-ray radiation to terahertz sources, and are used in many applications
including medical radiotherapy and imaging [Geddes et al. (2009)].

To extract information from the simulation about the quality of the beam, a typical ap-
proach is to examine plots of the entire dataset, visually determining the parameters neces-
sary to select a subset of particles, which is then further analyzed. This procedure requires
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laborious examination of massive data sets over many time steps using several plots, a rou-
tine that is unfeasible for large data collections. Demand for automated analysis is growing
along with the volume and size of simulations. Current 2D LWFA simulation datasets are
typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The
increase in the number of datasets and dataset sizes leads to a need for automatic routines to
recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis as
in Ushizima et al. (2008).

Because of the growth in dataset size, the application of machine learning techniques for
scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran & Ka-
math (2006) presented a comprehensive report on applying graph-based techniques for orbit
classification. They used the KAM classifier as in Yip (1991) to label points and components
in single and multiple orbits. Love & Kamath (2007) conducted an image space analysis of
coherent structures in plasma simulations. They used a number of segmentation and region-
growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed
particle accelerator data, targeting the system dynamics in terms of particle orbits. However,
they did not address particle dynamics as a function of time or inspected the behavior of
bunches of particles.

A visual analysis of massive laser wakefield acceleration (LWFA) simulation data was ad-
dressed by Rübel et al. (2008), using interactive procedures to query the data. Sophisticated
visualization tools were provided to inspect the data manually. Rübel et al. have integrated
these tools to the visualization and analysis system VisIt (2009), in addition to utilizing effi-
cient data management based on HDF5 [Adelmann et al. (2007; 2005); Gosink et al. (2006);
H5Part (2009)], and the index/query tool FastBit [FastBit (2009)]. Rübel et al. (2009) proposed
automatic beam path analysis using a suite of methods to select particles in simulation data
and to analyze their temporal evolution. To enable researchers to accurately define particle
beams, the method computes a set of measures based on the path of particles relative to the
distance of the particles to a beam. To achieve good performance, this framework uses an
analysis pipeline designed to quickly reduce the amount of data that needs to be considered
in the actual path distance computation. As part of this process, region-growing methods are
utilized to detect particle bunches at single time steps. Efficient data reduction is essential
to enable automated analysis of large data sets as described in the next section, where data
reduction methods are steered to the particular requirements of our clustering analysis.

Ushizima et al. (2008) first described the application of a set of algorithms to automate
the data analysis and classification of particle beams in the LWFA simulation data, identifying
locations with high density of high energy particles. These algorithms detected high density
locations (nodes) in each time step, i.e. maximum points on the particle distribution for only
one spatial variable. Each node was correlated to a node in previous or later time steps by
linking these nodes according to a pruned minimum spanning tree (PMST). We call the PMST
representation “a lifetime diagram”, which is a graphical tool to show temporal information
on highly dense groups of particles in the longitudinal direction for the time series. Electron
bunch compactness was described by another step of the processing, designed to partition
each time step, using fuzzy clustering, into a fixed number of clusters. We combined the
lifetime diagram with the clustering results to locate spatially confined beams, demonstrating
the ability of the method to detect high quality beams, characterized by high energy and high
degree of spatial coherence. A reported drawback of the method in Ushizima et al. (2008)
is the inability to detect low energy beams due to the mechanism of privileging high energy

particles, therefore outputting incorrect scattered groups of particles with high energy instead
of compact group of particles with low energy.

This paper extends previous work by addressing beam detection, independent of the en-
ergy. We divide the investigation in two main steps: (a) detection of maximum density regions
of particles using both longitudinal and transversal direction of variation and (b) multidimen-
sional particle clustering over each time step to automatically detect isolated bunches of elec-
trons within resulting partitions. We calculate these partitions using normal mixture models,
followed by the selection of the best model according to a cluster compactness criteria. Each
clustering algorithm uses a multivariate analysis to identify high density groups of electrons,
iteratively searching for the best number of clusters to model the particle distribution. We
employ data representation and partitioning to detect electrons undergoing acceleration, us-
ing the powerful R statistical tools from Gentleman & Ihaka (2009) and have integrated the
data management method of Fastbit [FastBit (2009)] into the R analysis framework. Our main
contribution is the automatic detection of compact groups of particles from large, complex
and time-dependent scientific data sets of electron simulations. These groups are selected
for coherence in both momentum and spatial coordinates, which are characteristic of electron
beams that one wants to identify. In addition, we propose several graphical representations
of data for fast information assessment that will help guide later feature extractors to derive
simulation measurements. Our results show that the proposed framework can detect group
of particles that belong to the electron beam even if the particle bunch presents low energy.
This is important to allow comparison among many simulation runs with varying beam qual-
ity. We are able to automatically detect the beam and characterize it in terms of dispersion
measurements, that identifies the time steps where the bunch is most condensed and under
acceleration.

The next section (Sec.2) describes the datasets under investigation, the proposed approach
and implementation details. Sec.3 presents the results of combining data transformation, ge-
ometrical modeling and analysis with classification of electrons from simulation time series.
We conclude with discussions and future directions in Sec.4.

2. Material and methods

2.1 Particle acceleration simulations
LWFA simulations are used to model physical parameter variations, such as tuning of laser
energy and plasma characteristics, in order to determine the combination that will achieve the
desired small energy spread bunch, hence guiding and improving understanding of labora-
tory experiments. The simulations model the properties of a hydrogen plasma, which is an
ionized gas containing free electrons (not bound to a molecule) and positively charged ions.
As a laser pulse travels through the plasma, the electric field of the light separates electrons
and positively charged ions. While the positive ions are heavy and stay in place, the light
electrons are pushed away from the laser pulse creating a “bubble” of positively charged par-
ticles behind the pulse as in Geddes et al. (2004); Tsung et al. (2004). In this so-called blowout
regime [Pukhov & ter Vehn (2002)], a fraction of electrons can be trapped in the wave and
be accelerated, in the same direction as the laser pulse, until they outrun the wave. As the
accelerating structure travels at a speed less than the speed of light, the relativistic electrons
eventually slip into a decelerating region of the wake, stopping the acceleration process.

The most common algorithm used to simulate LWFA is particle-in-cell (PIC) codes [Bird-
sall et al. (1991)]. The PIC technique models the dynamics of particles and the electromagnetic
field in a simulation window that travels at the speed of light [Geddes et al. (2008; 2004); Tsung
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Fig. 1. Level sets as a function of the momentum of simulation particles, for a time step known
a priori to contain a high quality beam (red), characterized by high momentum (high px) in a
compact envelope, given by x,y position.

et al. (2007)]. The properties of accelerated particle groups vary (e.g., duration in time, posi-
tion, momentum and momentum spread) and, rather than being prescribed as inputs, are a
consequence of a set of parameters defined before the simulation starts, similarly to laboratory
experiments.
The simulation data analyzed in this paper were produced by the massively parallel plasma
simulation code VORPAL [Nieter & Cary (2004)] developed by Tech-X Corporation and the
University of Colorado at Boulder. VORPAL offers a broad range of models and algorithms
for treating the interaction of charged particles with the electromagnetic field, including an
electromagnetic or electrostatic [Messmer & Bruhwiler (2006)] field solvers, and kinetic, fluid
and hybrid models for the plasma. While originally developed for modeling laser-wakefield
accelerators, VORPAL’s flexibility has enabled it to be applied to a broad range of prob-
lems, including electromagnetic cavities, laser-solid interaction, investigations of breakdown
in high-power wave guides, or electron cooling concepts, just to mention a few. VORPAL
was designed for parallelism and scalability, and it runs routinely on tens of thousands of
processors on leadership-class supercomputers at various National Supercomputing Centers.
Using HDF5 as the native data format, VORPAL’s output can be processed with the powerful
analysis tools like the ones reported here.

One way to identify simulation particles that were trapped at some point in time is by
looking later on at the particles that have high energy. The particles with the highest energy
levels are usually located in the first wake period, forming a compact bunch, as illustrated

by the red region in Figure 1. The yellow level sets (center) show particles that can also be
accelerated in wave buckets that follow the first wake. The selection of the particles of interest
(the highly accelerated ones) has typically been done by looking at the later time-steps of a
simulation and interactively selecting only those particles with a velocity that is larger than a
defined threshold [Geddes (2005); Rübel et al. (2008); Tsung et al. (2007; 2004)].

2.2 Simulation datasets
This chapter investigates datasets from 2D simulations that contain the (x,y) position of the
particles as well as their momentum in the x and y directions (px, py). The laser pulse and ac-
celerated particles propagate in the x−direction. Each simulation particle represents a group
of electrons, with weight (wt). Since no identifiers (id) are stored for the particles, the parti-
cle weights are used as identifiers throughout the analysis. If several particles have the same
weight in the simulation, these are not traced. Table 1 presents details of the datasets used in
our tests, from which we draw only traceable particles (unique identifier).

Dataset Particles (106) Timesteps Total Size (GB)
A 0.4 37 1.3
B 1.6 37 4.5
C 0.4 38 1.3
D 3.2 45 11
E 6 39 28

Table 1. Tested 2D simulation datasets.

Data access requires efficient readers, provided by H5Part [H5Part (2009)]. H5Part is a
veneer API on top of HDF5 that considerably simplifies reading and writing simulation data
to HDF5 files. In order to efficiently query large particle datasets, we utilize the capabilities
of FastBit, a state-of-the-art index/query system as in FastBit (2009); Wu et al. (2004; 2006).
FastBit resolves queries in a time proportional to the number of hits satisfying the query.
This capability is essential when dealing with datasets of hundreds of millions of particles,
where the interesting particles might only number in the hundreds or thousands. A naive
(non-indexed) scheme would need to load up the entire dataset to resolve the query, which
is prohibitively expensive for large datasets. This index/query system supports conditional
queries, e.g. “detect all particles such that (px > 1e10)&(x > 0)&(y > 5)”; this can be used to
select particles with interesting characteristics in multi-dimensional phase space. FastBit can
also track selected particles across time steps by issuing queries of the form id in (5,10,31),
which pulls out data for the three specific particles.

FastBit indices are stored within H5Part files and accessed using a custom C++ interface
called HDF5-FastQuery [HDF5-FastQuery (2009)]. All our analysis software is written in R.
Therefore, in order to utilize FastBit’s functionality within the R runtime, we extended the
RcppTemplate package [Samperi (2006)] to make function calls to the HDF5-FastQuery inter-
face. This saves us considerable time to load subsets of particle data, at least 6.6 times faster
than R-package hdf5. This is a considerable improvement over existing HDF5 packages in
R, which often constrain the user to load the entire HDF5 file or complete groups within the
file. In addition to efficient data access, our framework implements data reduction by using
physical domain knowledge, data analysis algorithms and clustering techniques as described
in the following sections.
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Fig. 1. Level sets as a function of the momentum of simulation particles, for a time step known
a priori to contain a high quality beam (red), characterized by high momentum (high px) in a
compact envelope, given by x,y position.

et al. (2007)]. The properties of accelerated particle groups vary (e.g., duration in time, posi-
tion, momentum and momentum spread) and, rather than being prescribed as inputs, are a
consequence of a set of parameters defined before the simulation starts, similarly to laboratory
experiments.
The simulation data analyzed in this paper were produced by the massively parallel plasma
simulation code VORPAL [Nieter & Cary (2004)] developed by Tech-X Corporation and the
University of Colorado at Boulder. VORPAL offers a broad range of models and algorithms
for treating the interaction of charged particles with the electromagnetic field, including an
electromagnetic or electrostatic [Messmer & Bruhwiler (2006)] field solvers, and kinetic, fluid
and hybrid models for the plasma. While originally developed for modeling laser-wakefield
accelerators, VORPAL’s flexibility has enabled it to be applied to a broad range of prob-
lems, including electromagnetic cavities, laser-solid interaction, investigations of breakdown
in high-power wave guides, or electron cooling concepts, just to mention a few. VORPAL
was designed for parallelism and scalability, and it runs routinely on tens of thousands of
processors on leadership-class supercomputers at various National Supercomputing Centers.
Using HDF5 as the native data format, VORPAL’s output can be processed with the powerful
analysis tools like the ones reported here.

One way to identify simulation particles that were trapped at some point in time is by
looking later on at the particles that have high energy. The particles with the highest energy
levels are usually located in the first wake period, forming a compact bunch, as illustrated

by the red region in Figure 1. The yellow level sets (center) show particles that can also be
accelerated in wave buckets that follow the first wake. The selection of the particles of interest
(the highly accelerated ones) has typically been done by looking at the later time-steps of a
simulation and interactively selecting only those particles with a velocity that is larger than a
defined threshold [Geddes (2005); Rübel et al. (2008); Tsung et al. (2007; 2004)].

2.2 Simulation datasets
This chapter investigates datasets from 2D simulations that contain the (x,y) position of the
particles as well as their momentum in the x and y directions (px, py). The laser pulse and ac-
celerated particles propagate in the x−direction. Each simulation particle represents a group
of electrons, with weight (wt). Since no identifiers (id) are stored for the particles, the parti-
cle weights are used as identifiers throughout the analysis. If several particles have the same
weight in the simulation, these are not traced. Table 1 presents details of the datasets used in
our tests, from which we draw only traceable particles (unique identifier).

Dataset Particles (106) Timesteps Total Size (GB)
A 0.4 37 1.3
B 1.6 37 4.5
C 0.4 38 1.3
D 3.2 45 11
E 6 39 28

Table 1. Tested 2D simulation datasets.

Data access requires efficient readers, provided by H5Part [H5Part (2009)]. H5Part is a
veneer API on top of HDF5 that considerably simplifies reading and writing simulation data
to HDF5 files. In order to efficiently query large particle datasets, we utilize the capabilities
of FastBit, a state-of-the-art index/query system as in FastBit (2009); Wu et al. (2004; 2006).
FastBit resolves queries in a time proportional to the number of hits satisfying the query.
This capability is essential when dealing with datasets of hundreds of millions of particles,
where the interesting particles might only number in the hundreds or thousands. A naive
(non-indexed) scheme would need to load up the entire dataset to resolve the query, which
is prohibitively expensive for large datasets. This index/query system supports conditional
queries, e.g. “detect all particles such that (px > 1e10)&(x > 0)&(y > 5)”; this can be used to
select particles with interesting characteristics in multi-dimensional phase space. FastBit can
also track selected particles across time steps by issuing queries of the form id in (5,10,31),
which pulls out data for the three specific particles.

FastBit indices are stored within H5Part files and accessed using a custom C++ interface
called HDF5-FastQuery [HDF5-FastQuery (2009)]. All our analysis software is written in R.
Therefore, in order to utilize FastBit’s functionality within the R runtime, we extended the
RcppTemplate package [Samperi (2006)] to make function calls to the HDF5-FastQuery inter-
face. This saves us considerable time to load subsets of particle data, at least 6.6 times faster
than R-package hdf5. This is a considerable improvement over existing HDF5 packages in
R, which often constrain the user to load the entire HDF5 file or complete groups within the
file. In addition to efficient data access, our framework implements data reduction by using
physical domain knowledge, data analysis algorithms and clustering techniques as described
in the following sections.
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2.3 Proposed framework
Unlike image data, composed of pixel values at regular spaces, laser wakefield simulations
contain particles irregularly spaced in all dimensions. Scattered data is a common problem
in scientific data mining when trying to extract patterns in large datasets, particularly be-
cause the physical phenomenon is evolving over time [Kamath (2009)]. Data reduction of
large datasets is often mandatory before applying clustering algorithms due to their inherent
combinatorial complexity. Figure 2 shows our framework for detection of accelerated electron
bunches in LWFA simulations; the algorithms for data partitioning and pattern detection are
detailed in the next sections.
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Fig. 2. Framework for data reduction and beam detection applied to each time step of data
sets generated by laser wakefield acceleration (LWFA) simulations.

The first step (B1) selects particles and time steps relevant for inspection from a n-time step
simulation dataset, discarding those particles unlikely to belong to the physical phenomenon
of interest. The pipeline obtains particle distribution (B2), using kernels to calculate an esti-
mate ( f (x,y, px)) of the probability density function. Next, we find parameters x, y, px for
which f is maximum, selecting a subset of particles that may correspond to trapped bunches
of electrons (B3). The following step (B4) then groups the simulation particles according to
normal mixture models, before applying maximum likelihood estimation and Bayes criteria.
The goal is to identify the most likely model and number of clusters that better refine the
previous beam candidate particles. The simulation contains several time steps and varying
number of particles per time step; we combine the result of beam detection for each time step
and calculate statistics of the time series by applying moving averages (B5) to characterize the
electron bunch.

2.3.1 High energy particles and densities (B1-B2)
Block B1 performs particle selection given a threshold in momentum in the x−direction, based
on the fact that the bunch of electrons of interest should be observed near px = 1011. We can
then eliminate the low energy particles for which px < 1010. The expected wake oscillation is
up to px = 109. Therefore this threshold excludes particles of the background plasma, while

(a) High quality beam (b) Low quality beam

Fig. 3. Kernel density estimation of Dataset A (left) and D (right) at a single time step, showing
high-density bunches (red): 3D representation of f (x,y, px) with heatmap colors representing
the particle density.

including all particles that could be in an accelerated bunch. The precise choice of the thresh-
old does not affect the result accuracy and a lower threshold could be used at higher compu-
tational cost [Ushizima et al. (2008)]. After eliminating low momentum particles, some time
steps (in general the first few time steps of the simulation) may not include a relevant amount
of particles for inspection. We calculate the simulation average number of particles above
threshold on px (µs) to determine the “representative” time steps, ti, for which there is a num-
ber of particles greater than µs, determining a smaller subset of time steps. We observed that
this constraint eliminates initial time steps, but maintains consecutive time steps throughout
the time series from tµs , the first time step for which the number of particles is greater than µs.
Again, this threshold can be adjusted to lower values.

It is necessary to compute the density of the particles given the (x,y, px) parameters of
the particles in each time step. The most widely used nonparametric density estimator is the
histogram, whose main disadvantage is its sensitivity to the placement of the bin edges, a
problem not shared by kernel density estimators, as described in Wand & Jones (1995). Kernel
density estimators are hence a valuable tool to identify subgroups of samples with inhomo-
geneous behavior and to recover the underlying structure of the dataset, while minimizing
binning artifacts. The PDF estimation also depends on the number of particles and a set of
smoothing parameters called bandwidth [Weissbach & Gefeller (2009)].

We estimate the probability density function (PDF) f (x,y, px) for time steps t = [tµs , T] in
B2, where T is the original number of time steps in the simulation, before extracting beam
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Fig. 2. Framework for data reduction and beam detection applied to each time step of data
sets generated by laser wakefield acceleration (LWFA) simulations.

The first step (B1) selects particles and time steps relevant for inspection from a n-time step
simulation dataset, discarding those particles unlikely to belong to the physical phenomenon
of interest. The pipeline obtains particle distribution (B2), using kernels to calculate an esti-
mate ( f (x,y, px)) of the probability density function. Next, we find parameters x, y, px for
which f is maximum, selecting a subset of particles that may correspond to trapped bunches
of electrons (B3). The following step (B4) then groups the simulation particles according to
normal mixture models, before applying maximum likelihood estimation and Bayes criteria.
The goal is to identify the most likely model and number of clusters that better refine the
previous beam candidate particles. The simulation contains several time steps and varying
number of particles per time step; we combine the result of beam detection for each time step
and calculate statistics of the time series by applying moving averages (B5) to characterize the
electron bunch.

2.3.1 High energy particles and densities (B1-B2)
Block B1 performs particle selection given a threshold in momentum in the x−direction, based
on the fact that the bunch of electrons of interest should be observed near px = 1011. We can
then eliminate the low energy particles for which px < 1010. The expected wake oscillation is
up to px = 109. Therefore this threshold excludes particles of the background plasma, while
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Fig. 3. Kernel density estimation of Dataset A (left) and D (right) at a single time step, showing
high-density bunches (red): 3D representation of f (x,y, px) with heatmap colors representing
the particle density.

including all particles that could be in an accelerated bunch. The precise choice of the thresh-
old does not affect the result accuracy and a lower threshold could be used at higher compu-
tational cost [Ushizima et al. (2008)]. After eliminating low momentum particles, some time
steps (in general the first few time steps of the simulation) may not include a relevant amount
of particles for inspection. We calculate the simulation average number of particles above
threshold on px (µs) to determine the “representative” time steps, ti, for which there is a num-
ber of particles greater than µs, determining a smaller subset of time steps. We observed that
this constraint eliminates initial time steps, but maintains consecutive time steps throughout
the time series from tµs , the first time step for which the number of particles is greater than µs.
Again, this threshold can be adjusted to lower values.

It is necessary to compute the density of the particles given the (x,y, px) parameters of
the particles in each time step. The most widely used nonparametric density estimator is the
histogram, whose main disadvantage is its sensitivity to the placement of the bin edges, a
problem not shared by kernel density estimators, as described in Wand & Jones (1995). Kernel
density estimators are hence a valuable tool to identify subgroups of samples with inhomo-
geneous behavior and to recover the underlying structure of the dataset, while minimizing
binning artifacts. The PDF estimation also depends on the number of particles and a set of
smoothing parameters called bandwidth [Weissbach & Gefeller (2009)].

We estimate the probability density function (PDF) f (x,y, px) for time steps t = [tµs , T] in
B2, where T is the original number of time steps in the simulation, before extracting beam
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Fig. 4. Projections of beam candidate region detection (block B3) from timestep in dataset D
(top) and 2D particle density estimations (bottom) to confirm compactness of selected parti-
cles.

candidate regions. An estimation of the PDF is calculated using kernel density estimation
[Feng & Tierney (2009)] and defined on a grid with spacing ∆x = 0.5µm, ∆y = 0.5µm and
∆px ≈ 109. These parameters are selected based on the physical expectation of electron beam
size to be 2µm and momentum spread to be approximately 1010 [Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2004)]. This PDF will be used later for retrieval
of the maximum value and the first adjacent bins.

Figure 3 shows 3D densities that are the result of the calculated multivariate kernel density
estimators and illustrates the concepts of high and low quality beams. Notice that Fig.3(a)
presents a concentrated region in (x,y, px) and higher values of px in comparison with Fig.3(b),
which has scattered (red) groups with lower values of px, indicating a low-quality beam.
Next, we propose a method to detect these groups of particles, independently of the range of
energies they present.

2.3.2 Deriving maximum peaks (B3)
The task in B3 is to find particles at maximum values of f and their immediate vicinity to
obtain compact electron bunches in space and with limited dispersion in momentum, as em-
phasized in red in Figure 4. These criteria determine the ability to characterize the quality of
particle beams, which depends on the grouping of electrons in terms of their spatial parame-
ters as well as momentum in the longitudinal (x) and transverse (y) directions. The binning
used to calculate f may interfere in the beam quality descriptors if only the absolute maxi-
mum of the PDF is taken into account, e.g., the bins may separate a maximum peak into parts
if the binning is too small to contain the particles of interest. To prevent this undesirable ef-
fect, we adopt a tolerance parameter to select compact bunches and extract more than one

(a) (b)

Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of
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Fig. 4. Projections of beam candidate region detection (block B3) from timestep in dataset D
(top) and 2D particle density estimations (bottom) to confirm compactness of selected parti-
cles.

candidate regions. An estimation of the PDF is calculated using kernel density estimation
[Feng & Tierney (2009)] and defined on a grid with spacing ∆x = 0.5µm, ∆y = 0.5µm and
∆px ≈ 109. These parameters are selected based on the physical expectation of electron beam
size to be 2µm and momentum spread to be approximately 1010 [Geddes (2005); Geddes et al.
(2004); Pukhov & ter Vehn (2002); Tsung et al. (2004)]. This PDF will be used later for retrieval
of the maximum value and the first adjacent bins.

Figure 3 shows 3D densities that are the result of the calculated multivariate kernel density
estimators and illustrates the concepts of high and low quality beams. Notice that Fig.3(a)
presents a concentrated region in (x,y, px) and higher values of px in comparison with Fig.3(b),
which has scattered (red) groups with lower values of px, indicating a low-quality beam.
Next, we propose a method to detect these groups of particles, independently of the range of
energies they present.

2.3.2 Deriving maximum peaks (B3)
The task in B3 is to find particles at maximum values of f and their immediate vicinity to
obtain compact electron bunches in space and with limited dispersion in momentum, as em-
phasized in red in Figure 4. These criteria determine the ability to characterize the quality of
particle beams, which depends on the grouping of electrons in terms of their spatial parame-
ters as well as momentum in the longitudinal (x) and transverse (y) directions. The binning
used to calculate f may interfere in the beam quality descriptors if only the absolute maxi-
mum of the PDF is taken into account, e.g., the bins may separate a maximum peak into parts
if the binning is too small to contain the particles of interest. To prevent this undesirable ef-
fect, we adopt a tolerance parameter to select compact bunches and extract more than one
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Fig. 5. Comparison of particle selection with/without MVEE: extracting the orientation and
the axes of an enclosing ellipse from (a) produces (b), increasing the number of particles from
173 to 263. Colors indicate the density of particles, using only (x,y)-coordinates, and black
dots show potential particles to belong to the beam, according to the different methods.

maximum (beam candidate region) per time step. In addition, this is a way of accruing more
samples and detecting secondary beams when these are almost as prominent as the primary
beam, associated to the maximum of f .

During the searching for values that are approximately equal to max( f ), we keep not only
the maximum, but all bins where f ≥ u ∗ max( f ), where u is an uncertainty or tolerance pa-
rameter, here empirically set to 0.85. While this value enables the detection of the main and
the secondary beams (when present), lower values of u could be used to control the amount
of particles to be selected at a lower accuracy of beam position. From this point, we refer to
the subset of particles conditioned to u ∗ max( f ) and its adjacency, calculated for each time
step, as “beam candidates”.

Figure 4 (top) presents projections of Figure 3.b with their calculated beam candidates em-
phasized in red. These are the result of our first attempt to improve particle selection by using
an algorithm known as minimum volume enclosing ellipsoid as in Khachiyan & Todd (1993),
which is able to enclose previously selected particles and to include others based on a geo-
metrically defined polytope. Figure 5 illustrates the algorithm when applied to LWFA data,
showing the selected particles as black dots; these particles are not in the most dense region
(red) once the colors refers to (x,y)-density calculation. When including compactness in px,
the most dense region happens further ahead. As distinct from calculating center of mass
and forcing an ad hoc diameter or semi-major/minor axes, the minimum volume enclosing
ellipsoid (MVEE) algorithm [Khachiyan & Todd (1993); Kumar & Yildirim (2005); Moshtagh
(2009)] takes the subset of points and prescribes a polytope model to extrapolate a preliminary
sub-selection to other particles likely to be in the bunch. The MVEE algorithm is a semidefinite
programming problem and consists of a better approximation to the convexity of subsets of
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(a) High quality beam (b) Low quality beam

Fig. 6. Lifetime diagram of peaks, center of beam candidates, evolving in time for Dataset A
(left) and D (right) for all time steps.

particles that correspond to compact groups of electrons. After querying hypervolumes simi-
lar to the one in Figure 3, we applied the geometrical model to adjust the particle selection as
illustrated in Figure 5. By running the MVEE algorithm, we determine an ellipse as compact
as possible covering the data points of the beam candidate region, increasing the number of
samples without increasing the binning parameters. Here, we consider the problem of finding
a MVEE, that minimizes the logarithm of the determinant of H such that

(x − c)TH(x − c) ≤ n (1)

for a set of points x in Rn, an ellipsoid with center c and shape H [Khachiyan & Todd (1993)].
Further discussions on optimization of this algorithm can be found in Ahipasaoglu et al.
(2008).

In addition to methods to select beam particles and graphics for each time step, it is often
useful to track the bins occupied by the beam candidates by using lifetime diagrams. This
diagram show the whole simulation, i.e. a global representation of the temporal evolution
of beam candidate in bins. The diagram relates the time steps (t) to the relative position in
the simulation window (x), which corresponds to the maximum of f for each time step of the
simulation, as calculated in block B3. Figure 6(a) shows earlier time steps containing a bunch
of particles that remains at constant speed, with dispersion around t = 32 and formation of
a second bunch around t = 35. Figure 6(b) also shows time steps with formation of parti-
cle bunches that remains at constant speed earlier in the simulation, but the group disperses
around t = 28,followed by the formation of a second bunch around t = 34.
The algorithms described in this section focused on the location of a subset of simulated par-
ticles, expected to be in the maximum of a multivariate density distribution, dependent on
the particle properties. The next section complements the search for the beam by partition-
ing each time step to find subsets of particles, according to statistical modeling and clustering
techniques.

2.3.3 Clustering particles (B4)
Data partitioning is a conceptually intuitive method of organizing simulation particles into
similar groups given the absence of class labels. Since clustering is an unsupervised learning

method, evaluation and cluster quality assessment are valuable in interpreting classification
results. We include both clustering methods and cluster validity techniques applied to particle
acceleration to illustrate the applicability of dispersion measures to accurately evaluate an
intrinsic structure, namely, a coherent bunch of electrons.

In order to determine the number of clusters in each time step of the simulation while
testing statistical models with different numbers of components, we perform cluster analysis
using model-based clustering, where the model and the number of clusters are selected at run
time by mclust [Fraley & Raftery (2009)]. The model-based clustering algorithm postulates
a statistical model for the samples, which are assumed to come from a mixture of normal
probability densities. The calculation of normal mixture models considers different covariance
structures and different number of clusters [Haughton et al. (2009)] given an objective function
(score). The assumption of the number of clusters k entails a loss of generality, so we consider
a range of k in addition to parameters that control the shape of the class. These parametric
models are flexible in accommodating data as shown in Fraley & Raftery (2002) and consider
widely varying characteristics in estimating distributions.

By assuming a normal mixture model, we represent the data d, with n samples and k
components, considering a τk probability that an observation belongs to the kth component
and a multivariate normal distribution ϕk with mean vector µk and covariance matrix Σk.
The likelihood of d with n independent multivariate observations, represented by a Gaussian
mixture model with G multivariate mixture components [Fraley & Raftery (2007)] is

n

∏
i=1

G

∑
k=1

τk ϕk(di|µk,Σk) (2)

with priors conditioned to

τ ≥ 0;
G

∑
k=1

τk = 1. (3)

The maximum likelihood estimate uses expectation-maximization (EM) methods, which
rely on iterative two-fold processing: an E-step for calculating the conditional probability that
an observation belongs to a certain group given the parameters θk, and a M-step for computing
the parameters that maximize the log-likelihood given the previously calculated conditional
probability function [Fraley & Raftery (2002)]. In other words, EM determines the most likely
parameters θ1, ...,θk to represent a problem consisting of multivariate observations given by a
mixture of k underlying probability distributions [Fraley & Raftery (2006)].

The size of the LWFA datasets can compromise the efficiency of mixture model-based al-
gorithms due to mclust initialization [Fraley & Raftery (2002)], then we propose a random
sampling technique before calculating the mixture model. To illustrate such algorithm, Fig-
ure 7 uses artificial data, generated by two normal distributions g1(x,y) and g2(x,y) with 100
unlabeled samples each (Figure 7.a). In this example, we subsample the data by extracting
a quarter of its original samples and calculate mixture-models, varying the structure and the
number of the clusters (Figure 7.b). The result of the clustering provides labels for a quarter of
the samples (black and red dots in Figure 7.c) and these labels support a supervised learning
to classify the remaining samples as in Figure 7.d, a generalization procedure to extrapolate
the “learned” models to the full dataset by using expectation-maximization.

Instead of imposing k, which is not known a priori, the objects are associated to each other
according to a score that comes from the parameters, unknown quantities to be estimated from
the probability distributions [Vermunt & Magidson (2002)]. Figure 7.b shows the calculation
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Fig. 6. Lifetime diagram of peaks, center of beam candidates, evolving in time for Dataset A
(left) and D (right) for all time steps.

particles that correspond to compact groups of electrons. After querying hypervolumes simi-
lar to the one in Figure 3, we applied the geometrical model to adjust the particle selection as
illustrated in Figure 5. By running the MVEE algorithm, we determine an ellipse as compact
as possible covering the data points of the beam candidate region, increasing the number of
samples without increasing the binning parameters. Here, we consider the problem of finding
a MVEE, that minimizes the logarithm of the determinant of H such that

(x − c)TH(x − c) ≤ n (1)

for a set of points x in Rn, an ellipsoid with center c and shape H [Khachiyan & Todd (1993)].
Further discussions on optimization of this algorithm can be found in Ahipasaoglu et al.
(2008).

In addition to methods to select beam particles and graphics for each time step, it is often
useful to track the bins occupied by the beam candidates by using lifetime diagrams. This
diagram show the whole simulation, i.e. a global representation of the temporal evolution
of beam candidate in bins. The diagram relates the time steps (t) to the relative position in
the simulation window (x), which corresponds to the maximum of f for each time step of the
simulation, as calculated in block B3. Figure 6(a) shows earlier time steps containing a bunch
of particles that remains at constant speed, with dispersion around t = 32 and formation of
a second bunch around t = 35. Figure 6(b) also shows time steps with formation of parti-
cle bunches that remains at constant speed earlier in the simulation, but the group disperses
around t = 28,followed by the formation of a second bunch around t = 34.
The algorithms described in this section focused on the location of a subset of simulated par-
ticles, expected to be in the maximum of a multivariate density distribution, dependent on
the particle properties. The next section complements the search for the beam by partition-
ing each time step to find subsets of particles, according to statistical modeling and clustering
techniques.

2.3.3 Clustering particles (B4)
Data partitioning is a conceptually intuitive method of organizing simulation particles into
similar groups given the absence of class labels. Since clustering is an unsupervised learning

method, evaluation and cluster quality assessment are valuable in interpreting classification
results. We include both clustering methods and cluster validity techniques applied to particle
acceleration to illustrate the applicability of dispersion measures to accurately evaluate an
intrinsic structure, namely, a coherent bunch of electrons.

In order to determine the number of clusters in each time step of the simulation while
testing statistical models with different numbers of components, we perform cluster analysis
using model-based clustering, where the model and the number of clusters are selected at run
time by mclust [Fraley & Raftery (2009)]. The model-based clustering algorithm postulates
a statistical model for the samples, which are assumed to come from a mixture of normal
probability densities. The calculation of normal mixture models considers different covariance
structures and different number of clusters [Haughton et al. (2009)] given an objective function
(score). The assumption of the number of clusters k entails a loss of generality, so we consider
a range of k in addition to parameters that control the shape of the class. These parametric
models are flexible in accommodating data as shown in Fraley & Raftery (2002) and consider
widely varying characteristics in estimating distributions.

By assuming a normal mixture model, we represent the data d, with n samples and k
components, considering a τk probability that an observation belongs to the kth component
and a multivariate normal distribution ϕk with mean vector µk and covariance matrix Σk.
The likelihood of d with n independent multivariate observations, represented by a Gaussian
mixture model with G multivariate mixture components [Fraley & Raftery (2007)] is

n

∏
i=1

G

∑
k=1

τk ϕk(di|µk,Σk) (2)

with priors conditioned to

τ ≥ 0;
G

∑
k=1

τk = 1. (3)

The maximum likelihood estimate uses expectation-maximization (EM) methods, which
rely on iterative two-fold processing: an E-step for calculating the conditional probability that
an observation belongs to a certain group given the parameters θk, and a M-step for computing
the parameters that maximize the log-likelihood given the previously calculated conditional
probability function [Fraley & Raftery (2002)]. In other words, EM determines the most likely
parameters θ1, ...,θk to represent a problem consisting of multivariate observations given by a
mixture of k underlying probability distributions [Fraley & Raftery (2006)].

The size of the LWFA datasets can compromise the efficiency of mixture model-based al-
gorithms due to mclust initialization [Fraley & Raftery (2002)], then we propose a random
sampling technique before calculating the mixture model. To illustrate such algorithm, Fig-
ure 7 uses artificial data, generated by two normal distributions g1(x,y) and g2(x,y) with 100
unlabeled samples each (Figure 7.a). In this example, we subsample the data by extracting
a quarter of its original samples and calculate mixture-models, varying the structure and the
number of the clusters (Figure 7.b). The result of the clustering provides labels for a quarter of
the samples (black and red dots in Figure 7.c) and these labels support a supervised learning
to classify the remaining samples as in Figure 7.d, a generalization procedure to extrapolate
the “learned” models to the full dataset by using expectation-maximization.

Instead of imposing k, which is not known a priori, the objects are associated to each other
according to a score that comes from the parameters, unknown quantities to be estimated from
the probability distributions [Vermunt & Magidson (2002)]. Figure 7.b shows the calculation
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Fig. 7. Example of model-based clustering to clouds of points: (a) two Gaussian distributions
with no label assignment; (b) Bayesian information criteria calculation for different number
of clusters (k) and different models (E=equal volume and V=varying volume); (c) result of
classification using subset (25%) of the data; (d) generalization of model using expectation-
maximization.

of a score for different k and the maximum value of the curves imply the number of k the best
describe the samples.

This process establishes the inference on the sample rather than on the full population
[Fraley & Raftery (2002)]. This decision circumvents the bottleneck of the mclust initialization
by a sampling strategy to partition large datasets: we propose a biased sampling process that
ensures that the beam candidate region is in the sampled subset by guaranteeing that at least
10% (empirically chosen) of the samples belong to the high density particle volumes. We
cluster the particles using the normal mixture models for values of k ∈ [1,10] to follow an
ellipsoidal model with variable volume (VEV) [Banfield & Raftery (1993); Fraley & Raftery
(2009)]. We have tested other models as spherical, diagonal and ellipsoidal, which can have
equal or varying volume and shapes. However, VEV was the best algorithm for most of the
time steps in all the datasets, according to the Bayesian information criteria [Fraley & Raftery
(2009); Greene et al. (2008)]. We re-run the experiments to have clustering results using VEV
only, but a varying number of k. The resulting clusters from VEV are considered as the training
set to classify all the remaining samples by using EM to extrapolate parameters from training
samples.

The result of the clustering (B4) is combined with B3 by calculating the intersection be-
tween the beam candidates and the a cluster that contains most of the particles from the beam
candidates. In other words, we determine which cluster is most likely to contain the beam
candidates by majority voting among all possible clusters, finalizing the tasks in block B4.
The block B5 only analyzes the most compact group of particles that remains in the each time
step.

2.3.4 Cluster quality assessment (B4-B5)
One of our goals in investigating particle simulations is to detect the electron beam and to
characterize the dispersion of its particles in terms of spatial and momentum variables using
clustering algorithms. Since we do not know a priori the number of clusters that best describe
the particle grouping, we need some measure of goodness of fit to evaluate different clustering
algorithms. A standard approach is to obtain the number of clusters (k) by maximizing a
criterion function and to repeat the clustering procedure for different number of clusters.

We select k by maximizing the Bayesian information criterion (BIC) for a parametrized
clustering algorithm using mixture models, following an ellipsoidal, varying volume model.
The optimal BIC value considers the log-likelihood, the dimension of the data, and the number
of mixture components in the model. The criterion function must describe how well a given
clustering algorithm can match the data, defined as a function of the variable k.

Herein we will evaluate the goodness-of-fit of the clustering algorithms for k groups of
particles from each time step using BIC to guide model selection for a set of parameterized
mixture models with a varying number of classes. BIC adds a penalty to the log-likelihood
[Fraley & Raftery (2006)] by considering the number of parameters in a certain model M and
the number of observations (n) in the data set, with the form

BIC ≡ 2 loglikM(d,θ∗k )− (#params)M log(n) (4)

where loglikM(d,θ∗k ) is the maximized log-likelihood of the model with estimated parame-
ters θ∗k from the observations d and (#params)M number of independent parameters to be
estimated in M.

In addition to the evaluation of the clustering method (B4), we also want to verify if
our framework can capture the physical phenomena of trapping and acceleration, when the
beam is expected to be more compact. We propose the inspection of the particles in adjacent
time steps using moving averages [Shumway & Stoffer (2006)] to identify if the electrons are
grouped into stable bunches (B5).

The moving averages technique provides a simple way of seeing patterns in time series
data, smooths out short-term fluctuations and highlights longer-term trends. This is physi-
cally motivated as the bunches of interest move at speed approximately equal to the speed of
light, and hence are nearly stationary in the moving simulation window. We intersect parti-
cle bunches (b) at adjacent time steps, selecting the particles with the same identifier (id) and
calculate statistical parameters (ρ) of a three-point moving average (mvk), using the following
algorithm:

k ← 1
for t = 2 to n-1 do

idk ← id(bt−1) ∩ id(bt) ∩ id(bt+1)
mvk ← (bt−1|idk

+ bt|idk
+ bt+1|idk

)/3
ρ ← statistics(mvk)
k ← k + 1

end for

The particles of the bunch at time step t − 1, bt−1, indexed by idk, are called bt−1|idk
and

the function statistics calculates parameters such as the mean, variance and maximum values
from the moving averages. We use the plots in Figure 10, 13 and 14 to check the persistence of
particle bunches by looking at the evolution of statistical parameters as discussed in the next
section.

3. Results

Here, we apply the above-described algorithms to analyze laser-plasma wakefield accelera-
tion simulations, using the clustering techniques as part of a completely automated pipeline
to detect dense particle groups (“electron bunches”). The main contributions of this work, in
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Fig. 7. Example of model-based clustering to clouds of points: (a) two Gaussian distributions
with no label assignment; (b) Bayesian information criteria calculation for different number
of clusters (k) and different models (E=equal volume and V=varying volume); (c) result of
classification using subset (25%) of the data; (d) generalization of model using expectation-
maximization.

of a score for different k and the maximum value of the curves imply the number of k the best
describe the samples.

This process establishes the inference on the sample rather than on the full population
[Fraley & Raftery (2002)]. This decision circumvents the bottleneck of the mclust initialization
by a sampling strategy to partition large datasets: we propose a biased sampling process that
ensures that the beam candidate region is in the sampled subset by guaranteeing that at least
10% (empirically chosen) of the samples belong to the high density particle volumes. We
cluster the particles using the normal mixture models for values of k ∈ [1,10] to follow an
ellipsoidal model with variable volume (VEV) [Banfield & Raftery (1993); Fraley & Raftery
(2009)]. We have tested other models as spherical, diagonal and ellipsoidal, which can have
equal or varying volume and shapes. However, VEV was the best algorithm for most of the
time steps in all the datasets, according to the Bayesian information criteria [Fraley & Raftery
(2009); Greene et al. (2008)]. We re-run the experiments to have clustering results using VEV
only, but a varying number of k. The resulting clusters from VEV are considered as the training
set to classify all the remaining samples by using EM to extrapolate parameters from training
samples.

The result of the clustering (B4) is combined with B3 by calculating the intersection be-
tween the beam candidates and the a cluster that contains most of the particles from the beam
candidates. In other words, we determine which cluster is most likely to contain the beam
candidates by majority voting among all possible clusters, finalizing the tasks in block B4.
The block B5 only analyzes the most compact group of particles that remains in the each time
step.

2.3.4 Cluster quality assessment (B4-B5)
One of our goals in investigating particle simulations is to detect the electron beam and to
characterize the dispersion of its particles in terms of spatial and momentum variables using
clustering algorithms. Since we do not know a priori the number of clusters that best describe
the particle grouping, we need some measure of goodness of fit to evaluate different clustering
algorithms. A standard approach is to obtain the number of clusters (k) by maximizing a
criterion function and to repeat the clustering procedure for different number of clusters.

We select k by maximizing the Bayesian information criterion (BIC) for a parametrized
clustering algorithm using mixture models, following an ellipsoidal, varying volume model.
The optimal BIC value considers the log-likelihood, the dimension of the data, and the number
of mixture components in the model. The criterion function must describe how well a given
clustering algorithm can match the data, defined as a function of the variable k.

Herein we will evaluate the goodness-of-fit of the clustering algorithms for k groups of
particles from each time step using BIC to guide model selection for a set of parameterized
mixture models with a varying number of classes. BIC adds a penalty to the log-likelihood
[Fraley & Raftery (2006)] by considering the number of parameters in a certain model M and
the number of observations (n) in the data set, with the form

BIC ≡ 2 loglikM(d,θ∗k )− (#params)M log(n) (4)

where loglikM(d,θ∗k ) is the maximized log-likelihood of the model with estimated parame-
ters θ∗k from the observations d and (#params)M number of independent parameters to be
estimated in M.

In addition to the evaluation of the clustering method (B4), we also want to verify if
our framework can capture the physical phenomena of trapping and acceleration, when the
beam is expected to be more compact. We propose the inspection of the particles in adjacent
time steps using moving averages [Shumway & Stoffer (2006)] to identify if the electrons are
grouped into stable bunches (B5).

The moving averages technique provides a simple way of seeing patterns in time series
data, smooths out short-term fluctuations and highlights longer-term trends. This is physi-
cally motivated as the bunches of interest move at speed approximately equal to the speed of
light, and hence are nearly stationary in the moving simulation window. We intersect parti-
cle bunches (b) at adjacent time steps, selecting the particles with the same identifier (id) and
calculate statistical parameters (ρ) of a three-point moving average (mvk), using the following
algorithm:

k ← 1
for t = 2 to n-1 do

idk ← id(bt−1) ∩ id(bt) ∩ id(bt+1)
mvk ← (bt−1|idk

+ bt|idk
+ bt+1|idk

)/3
ρ ← statistics(mvk)
k ← k + 1

end for

The particles of the bunch at time step t − 1, bt−1, indexed by idk, are called bt−1|idk
and

the function statistics calculates parameters such as the mean, variance and maximum values
from the moving averages. We use the plots in Figure 10, 13 and 14 to check the persistence of
particle bunches by looking at the evolution of statistical parameters as discussed in the next
section.

3. Results

Here, we apply the above-described algorithms to analyze laser-plasma wakefield accelera-
tion simulations, using the clustering techniques as part of a completely automated pipeline
to detect dense particle groups (“electron bunches”). The main contributions of this work, in
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Fig. 8. Result of locating high-density bunches for one time step of dataset D: 3D scatter plot
of particles, color is proportional to the particle energy (px) and white blobs correspond to the
preliminary detection of beam candidate region as described in Sec.2.3.2.

comparison with the previous approach in Ushizima et al. (2008), are that we can perform
beam detection independent of the quality or energy of the beam. Thus compact groups of
particles can have either high momentum or low momentum, instead of only being able to cor-
rectly detect groups of particles exhibiting high momentum. This improvement stems from
determining particle distribution using kernel density estimators, which minimizes the sensi-
tivity of bin size assumptions and placement, enabling accurate detection of maximum values
of f (x,y, px). This is in contrast with the previous method that considered f as function of x
only. Also, while Rübel et al. (2008) relies on user interaction, here we automatically detect
compact groups of particles under acceleration.

We show that using the particle x-coordinate relative to the window size, we can keep
track of the maximum values of the kernel density functions and represent these points using
lifetime diagrams. Figure 6 shows the evolution of peaks from f (x,y, px), which will support
future work to restrict the search for compact bunches using clustering to specific regions
around the maximum values. Figure 8 illustrates the result of identifying beam candidate
from block B3 at a single time step from the dataset D, showing the (x,y, px)-coordinates of
particles and respective detected compact groups. The beam candidate region is represented
by a cloud of white dots, containing all the particles for which 0.85 ∗ max( f ) holds.

The application of geometrical models such as the MVEE to enclose the detected beam can-
didates shows how structure assumptions may interfere in the number of particles selected, as
illustrated in Figure 5. The advantage of this method is that it expands a previous restrictive
selection to other neighboring points that should be included in the beam candidate region.
As opposed to an approach that sets a fixed diameter, it also avoids an undesirable impact
on the particle spread. We report results considering a geometrical model that encompass the
beam candidate region by calculating the MVEE applied to preliminary selection of particles,
which was mostly consistent with the shape of the bunch. The geometry assumption may

Fig. 9. Result of beam detection for ti = 27 from dataset A: beam candidates in gray from
processing in block B3 (top), clustering using mixture models, with colors representing the
different partitions over a sampled subset (center) and final result of electron bunch detection,
with increased number of particles after generalization with EM-algorithm, from block B4
(bottom).

result in inclusion of outliers if the beam present different shapes; however, we eliminate out-
liers during the moving averages procedure, keeping particles more likely to be part of the
electron bunch.

We calculate model-based clusters for each time step, after retrieving the results from block
B1 and B3. We illustrate the partitions of one time step of all datasets in Figure 9, 11 and 12,
showing the phase space of a time step where the beam was expected to be compact. In Figure
9, the two top plots show the result of beam candidate selection, in gray, for dataset A as out-
put by block B3. The two center plots present different compact groups of particles given by
the mixture model, and the bottom plots give the final result of electron bunch selection (B4),
emphasized in red color. The result of B3 indicates potential clusters of particles, important
to guide the sampling and identify the cluster position, but the definition of particle parti-
tions that are connected and compact given x,y, px is only accomplished after B4, which finds
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Fig. 8. Result of locating high-density bunches for one time step of dataset D: 3D scatter plot
of particles, color is proportional to the particle energy (px) and white blobs correspond to the
preliminary detection of beam candidate region as described in Sec.2.3.2.

comparison with the previous approach in Ushizima et al. (2008), are that we can perform
beam detection independent of the quality or energy of the beam. Thus compact groups of
particles can have either high momentum or low momentum, instead of only being able to cor-
rectly detect groups of particles exhibiting high momentum. This improvement stems from
determining particle distribution using kernel density estimators, which minimizes the sensi-
tivity of bin size assumptions and placement, enabling accurate detection of maximum values
of f (x,y, px). This is in contrast with the previous method that considered f as function of x
only. Also, while Rübel et al. (2008) relies on user interaction, here we automatically detect
compact groups of particles under acceleration.

We show that using the particle x-coordinate relative to the window size, we can keep
track of the maximum values of the kernel density functions and represent these points using
lifetime diagrams. Figure 6 shows the evolution of peaks from f (x,y, px), which will support
future work to restrict the search for compact bunches using clustering to specific regions
around the maximum values. Figure 8 illustrates the result of identifying beam candidate
from block B3 at a single time step from the dataset D, showing the (x,y, px)-coordinates of
particles and respective detected compact groups. The beam candidate region is represented
by a cloud of white dots, containing all the particles for which 0.85 ∗ max( f ) holds.

The application of geometrical models such as the MVEE to enclose the detected beam can-
didates shows how structure assumptions may interfere in the number of particles selected, as
illustrated in Figure 5. The advantage of this method is that it expands a previous restrictive
selection to other neighboring points that should be included in the beam candidate region.
As opposed to an approach that sets a fixed diameter, it also avoids an undesirable impact
on the particle spread. We report results considering a geometrical model that encompass the
beam candidate region by calculating the MVEE applied to preliminary selection of particles,
which was mostly consistent with the shape of the bunch. The geometry assumption may

Fig. 9. Result of beam detection for ti = 27 from dataset A: beam candidates in gray from
processing in block B3 (top), clustering using mixture models, with colors representing the
different partitions over a sampled subset (center) and final result of electron bunch detection,
with increased number of particles after generalization with EM-algorithm, from block B4
(bottom).

result in inclusion of outliers if the beam present different shapes; however, we eliminate out-
liers during the moving averages procedure, keeping particles more likely to be part of the
electron bunch.

We calculate model-based clusters for each time step, after retrieving the results from block
B1 and B3. We illustrate the partitions of one time step of all datasets in Figure 9, 11 and 12,
showing the phase space of a time step where the beam was expected to be compact. In Figure
9, the two top plots show the result of beam candidate selection, in gray, for dataset A as out-
put by block B3. The two center plots present different compact groups of particles given by
the mixture model, and the bottom plots give the final result of electron bunch selection (B4),
emphasized in red color. The result of B3 indicates potential clusters of particles, important
to guide the sampling and identify the cluster position, but the definition of particle parti-
tions that are connected and compact given x,y, px is only accomplished after B4, which finds
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Fig. 10. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in dataset A: the curves show the history of one bunch that forms around t = 22,
reaching maximum energy around t = 27.

the k-component varying-volume ellipsoidal mixture model clustering that best represent the
particles, using BIC as criterion function.

(a) Dataset B, t=21 (b) Dataset C, t=22

Fig. 11. Result of beam detection for ti = 21 from dataset B and ti = 22 from dataset C: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

Next, we evaluate the compactness of the electron bunch (B5) by calculating moving aver-
ages (mvj) over the time series. Figures 10, 13 and 14 show the result of calculating statistics
from mvj, using the particles selected according to block B4. While the beam detection at each
time step may contain outliers, the intersection with adjacent time steps returns the core sub-
set of particles (idj) that persists at least for three time steps. At the top left of Figure 10, we
show the red and blue curves, with the maximum and mean value of px (red and blue, re-
spectively), for each time step. The distance between the red curve and the blue curve, at each
time step, is an indicator of the dispersion of the particles in the bunch as well as the length
of the yellow arrows (standard deviation of the mvj with respect to x, y, px or py). Also,
notice that the moving averages capture the local behavior of a particle bunch that persists
for at least three time steps, but do not guarantee that the bunch is present throughout the
simulation. There are time steps where the algorithm does not capture any beam, which cor-
respond to moving average equal to zero as in t = [28,34] from dataset D in Figure 14.a. The
period of non-bunch detection, mvj = 0, corresponds to the presence of peaks on f at different,
non-adjacent positions, which is correlated to the dispersion of the particles for that period. It
follows similar interpretation of the particle dispersion in terms of spatial parameters (x and
y) and energy (px and py) to other datasets. Figures 10, 13 and 14 demonstrate that the algo-
rithm automatically identifies the bunch over a range of simulation conditions and resulting
bunch qualities.

Our tests were conducted on an SGI Altix with 32 1.4 GHz Itanium-2 Processors and 180
GBytes of shared memory. The primary motivation for using this computing system is the
large memory; the current implementation of the mixture model clustering algorithms in
package mclust is fairly memory-intensive and does not work on standard workstations for
large datasets. The SGI Altix is a multi-user machine, thus computing times in different stages
of the framework are approximate. Our process of computing beam candidate regions (block
B3) is reasonably fast and could be easily incorporated into routine inspection as a prepro-
cessing step. The clustering computation is more expensive, and new implementations are
necessary to improve performance. The approximate computing times of beam candidate (in
seconds) and clustering (in minutes) for each dataset are organized as pairs with time in paren-
thesis: A=(15.6s, 31min), B=(66s, 20min), C=(24.3s, 42min), D=(295.8s, 116min) and E=(417.4s,
975min).

4. Conclusions and Future Work

Previous investigations from Ushizima et al. (2008) and Rübel et al. (2008) to find particle
bunches reported results using fixed spatial tolerance around centers of maximum compact-
ness and assumed ad hoc thresholding values to determine potential particle candidates in-
volved in the physical phenomena of interest. Ushizima et al. (2008) pointed out limitations
inherent to techniques that detects maximum values using only one-dimensional spatial ap-
proach (x-axis), which did not capture the most condensed structure when confined to de-
pressions between peaks in px or when dispersed in y.

The current approach circumvented most of these problems, since the algorithm searched
for compact high density group of particles using both spatial information, x and y, and mo-
mentum in the direction of laser propagation, px. We improved the detection of a high density
volume of particles by using the 3D kernel density, followed by the detection of its maximum
and enclosing the particle subsets using MVEE, thus generating subsets of particles which
are beam candidate regions. These subsets provided the position of the most likely cluster to
contain a compact electron bunch in a time step. We proposed the use of moving averages to
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Fig. 10. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in dataset A: the curves show the history of one bunch that forms around t = 22,
reaching maximum energy around t = 27.

the k-component varying-volume ellipsoidal mixture model clustering that best represent the
particles, using BIC as criterion function.

(a) Dataset B, t=21 (b) Dataset C, t=22

Fig. 11. Result of beam detection for ti = 21 from dataset B and ti = 22 from dataset C: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

Next, we evaluate the compactness of the electron bunch (B5) by calculating moving aver-
ages (mvj) over the time series. Figures 10, 13 and 14 show the result of calculating statistics
from mvj, using the particles selected according to block B4. While the beam detection at each
time step may contain outliers, the intersection with adjacent time steps returns the core sub-
set of particles (idj) that persists at least for three time steps. At the top left of Figure 10, we
show the red and blue curves, with the maximum and mean value of px (red and blue, re-
spectively), for each time step. The distance between the red curve and the blue curve, at each
time step, is an indicator of the dispersion of the particles in the bunch as well as the length
of the yellow arrows (standard deviation of the mvj with respect to x, y, px or py). Also,
notice that the moving averages capture the local behavior of a particle bunch that persists
for at least three time steps, but do not guarantee that the bunch is present throughout the
simulation. There are time steps where the algorithm does not capture any beam, which cor-
respond to moving average equal to zero as in t = [28,34] from dataset D in Figure 14.a. The
period of non-bunch detection, mvj = 0, corresponds to the presence of peaks on f at different,
non-adjacent positions, which is correlated to the dispersion of the particles for that period. It
follows similar interpretation of the particle dispersion in terms of spatial parameters (x and
y) and energy (px and py) to other datasets. Figures 10, 13 and 14 demonstrate that the algo-
rithm automatically identifies the bunch over a range of simulation conditions and resulting
bunch qualities.

Our tests were conducted on an SGI Altix with 32 1.4 GHz Itanium-2 Processors and 180
GBytes of shared memory. The primary motivation for using this computing system is the
large memory; the current implementation of the mixture model clustering algorithms in
package mclust is fairly memory-intensive and does not work on standard workstations for
large datasets. The SGI Altix is a multi-user machine, thus computing times in different stages
of the framework are approximate. Our process of computing beam candidate regions (block
B3) is reasonably fast and could be easily incorporated into routine inspection as a prepro-
cessing step. The clustering computation is more expensive, and new implementations are
necessary to improve performance. The approximate computing times of beam candidate (in
seconds) and clustering (in minutes) for each dataset are organized as pairs with time in paren-
thesis: A=(15.6s, 31min), B=(66s, 20min), C=(24.3s, 42min), D=(295.8s, 116min) and E=(417.4s,
975min).

4. Conclusions and Future Work

Previous investigations from Ushizima et al. (2008) and Rübel et al. (2008) to find particle
bunches reported results using fixed spatial tolerance around centers of maximum compact-
ness and assumed ad hoc thresholding values to determine potential particle candidates in-
volved in the physical phenomena of interest. Ushizima et al. (2008) pointed out limitations
inherent to techniques that detects maximum values using only one-dimensional spatial ap-
proach (x-axis), which did not capture the most condensed structure when confined to de-
pressions between peaks in px or when dispersed in y.

The current approach circumvented most of these problems, since the algorithm searched
for compact high density group of particles using both spatial information, x and y, and mo-
mentum in the direction of laser propagation, px. We improved the detection of a high density
volume of particles by using the 3D kernel density, followed by the detection of its maximum
and enclosing the particle subsets using MVEE, thus generating subsets of particles which
are beam candidate regions. These subsets provided the position of the most likely cluster to
contain a compact electron bunch in a time step. We proposed the use of moving averages to
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(a) Dataset D, t=19 (b) Dataset E, t=23

Fig. 12. Result of beam detection for ti = 19 from dataset D and ti = 23 from dataset E: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

identify periods of bunch stability, in the time series, and we derived dispersion measures to
characterize beam compactness and quality.

Our implementation of function calls to the HDF-FastQuery interface allowed us to load
data using FastBit in R, saving time while only loading subsets of particles that potentially
participate to the phenomenon of interest. Our results showed that we can assess the beam
evolution using both mathematical models and machine learning techniques to automate the
search for the beam using large LWFA simulation datasets. Application of hierarchical ap-
proaches as in the R packages hclust and mclust are prohibitive if not combined with sampling
methods. We present an algorithm to sample the simulation data, but Monte Carlo meth-
ods [Banfield & Raftery (1993)] could be used by adding a repetitive randomness process as
a way of guaranteeing representation of a beam candidate region and improvement of accu-
racy. Future evaluations may consider more sophisticated methods such as Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) as in Zhang et al. (1996) and hierarchical
clustering based on granularity as in Liang & Li (2007), which are designed for very large data
sets. Further investigation should also include subspace clustering as in Kriegel et al. (2009)
once the large simulation datasets contain target regions that can be determined using the
techniques proposed in our framework.
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(a) Dataset D, t=19 (b) Dataset E, t=23

Fig. 12. Result of beam detection for ti = 19 from dataset D and ti = 23 from dataset E: beam
candidates in gray from processing in block B3 (top), clustering using mixture models, with
colors representing the different partitions over a sampled subset (center) and final result of
electron bunch detection, after generalization with EM-algorithm, from block B4 (bottom).

identify periods of bunch stability, in the time series, and we derived dispersion measures to
characterize beam compactness and quality.

Our implementation of function calls to the HDF-FastQuery interface allowed us to load
data using FastBit in R, saving time while only loading subsets of particles that potentially
participate to the phenomenon of interest. Our results showed that we can assess the beam
evolution using both mathematical models and machine learning techniques to automate the
search for the beam using large LWFA simulation datasets. Application of hierarchical ap-
proaches as in the R packages hclust and mclust are prohibitive if not combined with sampling
methods. We present an algorithm to sample the simulation data, but Monte Carlo meth-
ods [Banfield & Raftery (1993)] could be used by adding a repetitive randomness process as
a way of guaranteeing representation of a beam candidate region and improvement of accu-
racy. Future evaluations may consider more sophisticated methods such as Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) as in Zhang et al. (1996) and hierarchical
clustering based on granularity as in Liang & Li (2007), which are designed for very large data
sets. Further investigation should also include subspace clustering as in Kriegel et al. (2009)
once the large simulation datasets contain target regions that can be determined using the
techniques proposed in our framework.
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(a) Dataset D

(b) Dataset E

Fig. 14. Beam quality assessment to evaluate the dispersion of particle parameters using the
time series in: (a) dataset D: the curves show the history of two bunches: one that forms at the
beginning of the simulation, compact and lower energy (t = [18,27]) and a second one with
broader dispersion in px and higher energy (t = [36,44]). The beam is not detected by the
algorithm from t = [28,34], represented by zero values in the four graphs; (b) dataset E: the
curves show the history of two bunches that form around t = 23, reaching maximum energy
and compactness around t = 34. The beam is not detected by the algorithms from t = [21,22]
and t = [29,31], represented by zero values.
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1. Introduction     
 

In this chapter we explore and investigate a range of methods in pursue of improving target 
prediction of microRNA. The currently available prediction methods produce a large output 
set that also includes a rather high amount of false positives.  Additional strategies for target 
prediction are necessary and we elaborate on one particular group of microRNAs; i.e. those 
that might bind to the same target. We intend to transfer our approach to other groups of 
microRNAs as well as the broader application to the important model species. 
microRNAs (miRNAs) are a novel class of post-transcriptional gene expression regulators 
discovered in the genome of plants, animals and viruses. The mature miRNAs are about 22 
nucleotides long. They bind to their target messengerRNA (mRNA) and therefore induce 
translational repression or degradation of target mRNAs (Enright et al., 2003; Bartel, 2004). 
Recent studies have elucidated that these small molecules are highly conserved between 
species indicating their fundamental roles conserved in evolutionary selection. They are 
implicated in developmental timing regulation (Reinhart et al., 2000), apoptosis (Brennecke 
et al., 2003) and cell proliferation (Lecellier et al., 2005). Some of them have been described to 
act as potential tumor suppressors (Johnson et al., 2005), potential oncogenes (He et al., 
2005) and might be important targets for drugs (Maziere & Enright, 2007). 
The identification of large number of miRNAs existing in different species has increased the 
interest in unraveling the mechanism of this regulator. It has been proven that more than 
one miRNA regulates one target and vice versa (Enright et al., 2003). Therefore 
understanding this novel network of regulatory control is highly dependent on 
identification of miRNA targets. Due to the costly, labor-intensive nature of experimental 
techniques required, currently, there is no large-scale experimental target validation 
available leaving the biological function of the majority completely unknown (Enright & 
Griffiths-Jones, 2007). These limitations of the wet experiments have lead to the 
development of computational prediction methods.  
It has been established that the physical RNA interaction requires sequence 
complementarity and thermodynamic stability. Unlike plant miRNAs, which bind to their 
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targets through near-perfect sequence complementarity, the interaction between animal 
miRNAs and their targets is more flexible. Partial complementarity is frequently found 
(Enright et al., 2003) and this flexibility complicates computation. Lots of effort has been put 
into characterizing functional miRNA-target pairing. The most frequently used prediction 
algorithms are miRanda, TargetScan/TargetScanS, RNAhybrid, DIANA-microT, picTar, 
and miTarget. 
MiRanda (Enright et al., 2003) is one of the earliest developed large-scale target prediction 
algorithm which was first designed for Drosophila then adapted for human and other 
vertebrates. It consists of three steps: First, a dynamic programming local alignment is 
carried out between miRNAs and 3’UTR of potential targets using a scoring matrix. After 
filtering by threshold score, the resulting binding sites are evaluated thermodynamically 
using the Vienna RNA fold package (Wuchty, 1999). Finally, the miRNA pairs that are 
conserved across species are kept.  
TargetScan/TargetScanS (Lewis et al., 2003; Lewis et al., 2005) have a stronger emphasize on 
the seed region. In the standard version of TargetScan, the predicted target-sites first require 
a 7-nucleotide (nt) match to the seed region of miRNA, i.e., nucleotides 2-8; second, 
conservation in 4 genomes (human, mouse, rat and puffer fish), and third, thermodynamic 
stability. TargetScanS is the new and simplified version of TargetScan. It extends the cross-
species comparison to 5 genomes (human, mouse, rat, dog and chicken) and requires a seed 
match of only 6-nt long (nucleotides 2-7). Through the requirement of more stringent species 
conservation it leads to more accurate predictions even without conducting free energy 
calculations.  
RNAhybrid (Rehmsmeier et al., 2004) was the first method which integrated powerful 
statistical models for large-scale target prediction. Basically, this method finds the 
energetically most favorable hybridization sites of a small RNA in a large RNA string. It 
takes candidate target sequences and a set of miRNAs and looks for energetically favorable 
binding sites. Statistical significance is evaluated with an extreme value statistics of length 
normalized minimum free energies for individual hits, a Poisson approximation of  multiple 
hits, and the calculation of effective numbers of orthologous targets in comparative studies 
of  multiple organisms. Results are filtered according to p-value thresholds.  
DIANA-microT identified putative miRNA-target interaction using a modified dynamic 
programming algorithm with a sliding window of 38 nucleotides that calculated binding 
energies between two imperfectly paired RNAs. After filtering by an energy threshold, the 
candidates are examined by the rules derived from mutation experiments of a single let-7 
binding site. Finally, those which were conserved between human and mouse were further 
considered for experimental verification (Grun & Rajewsky, 2007; Sethupathy et al., 2007).  
PicTar takes sets of co-expressed miRNAs and searches for combinations of miRNA binding 
sites in each 3’UTR (Krek et al., 2005). And miTarget is a support vector machine classifier 
for miRNA target-gene prediction, which utilizes a radial basis function kernel to 
characterize targets by structural, thermodynamic, and position-based features (Kim et al., 
2006). 
Among the algorithms discussed previously, miRanda and TargetScan/TargetScanS belong 
to the sequence-based algorithms which evaluate miRNA-target complementarity first, then 
calculate the binding site thermodynamics to further prioritize; in contrast, DIANA-microT 
and RNAhybrid are based on algorithms that are rooted in thermodynamics, thus using 
thermodynamics as the initial indicator of potential miRNA binding site.  

 

Until now, it remains unclear whether sequence or structure is the better predictor of a 
miRNA binding site (Maziere & Enright, 2007). All of the above mentioned methods 
produce a large set of predictions and include a relatively high false positive ratio; all in all 
this indicates that these methods are promising methods but still far away from perfect. The 
estimated false-positive rate (FPR) for PicTar, miRanda and TargetScan is about 30%, 24-39% 
and 22-31% respectively (Bentwich, 2005; Sethupathy et al., 2006b; Lewis et al., 2003). It has 
been reported that miTarget has a similar performance as TargetScan (Kim et al., 2006). In 
addition to the relatively high FPR, Enright et al. observed that many real targets are not 
predicted by these methods and this seems to be largely due to requirements for 
evolutionary conservation of the putative miRNA target-site across different species 
(Enright et al., 2003; Martin, 2007). In general we also notice that in all of these algorithms, 
the target prediction is based on features that consider the miRNA-target interaction such as 
sequence complementarity and stability of miRNA-target duplex. 
Through the observations in the population of confirmed miRNAs targets we became aware 
that some miRNAs are validated as binding the same target. For example, in human miR-17 
and miR-20a both regulate the expression of E2F transcription factor 1 (E2F1); while miR-221 
and miR-222 both bind to v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 
(KIT).  Subsequently, we considered that this observation would allow target identification 
from the analysis of functionally similar miRNAs.  
Based on this idea, we present an approach which analyzes miRNA-miRNA relationships 
and utilizes them for target prediction. Our aim is to improve target prediction by using 
different features and discovering significant feature patterns through tuning and 
combining several machine learning techniques. To this respect, we applied feature 
selection, principle component analysis, classification, decision trees, and 
propositionalization-based relational subgroup discovery to reveal the feature patterns 
between known miRNAs. During this procedure, different data setups were evaluated and 
the parameters were optimized. Furthermore, the derived rules were applied to functionally 
unknown miRNAs so as to see if new targets could be predicted. In the analysis of 
functionally similar miRNAs, we found that genomic distance, seed and overall sequence 
similarities between miRNAs are dominant features in the description of a group of 
miRNAs binding the same target. Application of one specific rule resulted in the prediction 
of targets for five functionally unknown miRNAs which were also detected by some of the 
existing methods. Our method is complementary to the existing prediction approaches. It 
contributes to the improvement of target identification by predicting targets with high 
specificity and without conservation limitation. Moreover, we discovered that knowledge 
discovery especially the propositionalization-based relational subgroup discovery, is 
suitable for this application domain since it can interpret patterns of similar function 
miRNAs with respect to the limited features available. 
The remainder of this chapter is organized as follows. In Section 2, miRNA biology and 
databasing as well as the background of the machine learning techniques which are the 
components of our method are explained: i.e., miRNA biogenesis and function, related 
databases, feature selection, principle component analysis, classification, decision trees and 
propositionalization-based relational subgroup discovery. Section 3 specifies the proposed 
method including data preparation, algorithm configuration and parameter optimization. 
The results are summarized in Section 4. Finally, In Section 5, we discuss the strengths and 
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(KIT).  Subsequently, we considered that this observation would allow target identification 
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Based on this idea, we present an approach which analyzes miRNA-miRNA relationships 
and utilizes them for target prediction. Our aim is to improve target prediction by using 
different features and discovering significant feature patterns through tuning and 
combining several machine learning techniques. To this respect, we applied feature 
selection, principle component analysis, classification, decision trees, and 
propositionalization-based relational subgroup discovery to reveal the feature patterns 
between known miRNAs. During this procedure, different data setups were evaluated and 
the parameters were optimized. Furthermore, the derived rules were applied to functionally 
unknown miRNAs so as to see if new targets could be predicted. In the analysis of 
functionally similar miRNAs, we found that genomic distance, seed and overall sequence 
similarities between miRNAs are dominant features in the description of a group of 
miRNAs binding the same target. Application of one specific rule resulted in the prediction 
of targets for five functionally unknown miRNAs which were also detected by some of the 
existing methods. Our method is complementary to the existing prediction approaches. It 
contributes to the improvement of target identification by predicting targets with high 
specificity and without conservation limitation. Moreover, we discovered that knowledge 
discovery especially the propositionalization-based relational subgroup discovery, is 
suitable for this application domain since it can interpret patterns of similar function 
miRNAs with respect to the limited features available. 
The remainder of this chapter is organized as follows. In Section 2, miRNA biology and 
databasing as well as the background of the machine learning techniques which are the 
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the weaknesses of the applied machine learning techniques and feasibility of the derived 
miRNA target prediction rules. 

2. Background 
 

The first two subsections are devoted to the exploration of miRNA biology whereas the 
latter two subsections have a computational nature. 

 
2.1 microRNA biogenesis and function 
The mature miRNAs are ~22 nucleotide single-stranded noncoding RNA molecules. They 
are derived from miRNA genes. First, miRNA gene is transcribed to primary miRNA 
transcripts (pri-microRNA), which is between a few hundred or a few thousand base pair 
long. Subsequently, this pri-microRNA is processed into hairpin precursors (pre-
microRNA), which has a length of approximately 70 nucleotides, by the protein complex 
consisting of the nuclease Drosha and the double-stranded RNA binding protein Pasha. The 
pre-miRNA then is transported to cytoplasm and cut into small RNA duplexes of 
approximately 22 nucleotides by the endonuclease Dicer. Finally, either the sense strand or 
antisense strand can function as templates giving rise to mature miRNA. Upon binding to 
the active RISC complex, mature miRNAs interact with the target mRNA molecules through 
base pair complementarity, therefore inhibit translation or sometimes induce mRNA 
degradation (Chen, 2005). Fig. 1 illustrates the process of biogenesis and function of 
miRNAs. For reasons of simplification the auxiliary protein complexes are not included in 
the picture. 
 

 
 

Fig. 1. Simplified illustration of miRNA biogenesis and function. miRNA genes are first 
transcribed to pre-miRNA, and then proceeded to mature miRNAs. Upon binding to these 
miRNAs through sequence complementarity, the messengerRNAs (mRNAs), which are 
called the targets of miRNAs, will be either degradated or translation of the targets will be 
inhibited. 

 

It is suggested that miRNAs tend to bind 3‘ UTR (3‘ Untranslated Region) of their target 
mRNAs (Lee et al., 1993). Further studies have discovered that position 2-8 of miRNAs, 
which is called ‘seed’ region, has been described as a key specificity determinant of binding, 
requires good or perfect complementarity (Lewis et al., 2003; Lewis et al., 2005). In Fig. 1, a 
detailed miRNA-target interaction is showed with a highlighted seed region. 

 
2.2 miRNA databases 
miRBase: MiRBase is the primary online repository for published miRNA sequence data, 
annotation and predicted gene targets (Griffiths-Jones et al., 2006; Griffiths-Jones, 2004). It 
consists of three parts: 

1. The miRBase Registry acts as an independent authority of miRNA gene 
nomenclature, assigning names prior to publication of novel miRNA sequences. 

2. The miRBase Sequences is a searchable database for miRNA sequence data and 
annotation. The latest version (Release 13.0, March 2009) contains 9539 entries 
representing hairpin precursor miRNAs, expressing 9169 mature miRNA 
products, in 103 species including primates, rodents, birds, fish, worms, flies, 
plants and viruses. 

3. The miRBase Targets is a comprehensive database of predicted miRNA target 
genes. The core prediction algorithm currently is miRanda (version 5.0, Nov 2007). 
It searches over 2500 animal miRNAs against over 400 000 3’UTRs from 17 species 
for potential target sites. In human, the current version predicts 34788 targets for 
851 human miRNAs.  

Tarbase: Tarbase is a comprehensive repository of a manually curated collection of 
experimentally supported animal miRNA targets (Sethupathy et al., 2006a; Papadopoulos et 
al., 2008). It describes each supported target site by the miRNA which binds it, the target 
genes, the direct and indirect experiments that were conducted to validate it, binding site 
complementarity and etc. The latest version (Tarbase 5.0, Jun 2008) records more than 1300 
experimentally supported miRNA target interactions for human, mouse, rat, zebrafish, 
fruitfly, worm, plant, and virus. As machine learning methods become more popular, this 
database provides a valuable resource to train and test for machine learning based target 
prediction algorithms. 

 
2.3 Pattern recognition 
Pattern recognition is considered a sub-topic of machine learning. It concerns with 
classification of data either based on a priori knowledge or based on statistical information 
extracted from the patterns. The patterns to be classified are usually groups of 
measurements, features or observations, which define data points in an appropriate 
multidimensional space. Our pattern recognition proceeds in three different stages: feature 
reduction, classification and cross-validation. 
Feature reduction: Feature reduction includes feature selection and extraction. Feature 
selection is the technique of selecting a subset of relevant features for building learning 
models. In contrast, feature extraction seeks a linear or nonlinear transformation of original 
variables to a smaller set. The reason why not all features are used is because of 
performance issues, but also to make results easier to understand and more general. 
Sequential backward selection is a feature selection algorithm. It starts with entire set, and 
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variables to a smaller set. The reason why not all features are used is because of 
performance issues, but also to make results easier to understand and more general. 
Sequential backward selection is a feature selection algorithm. It starts with entire set, and 



Machine Learning396

 

then keeps removing one feature at a time so that the entire subset so far performs the best. 
Principle component analysis (PCA) is an unsupervised linear feature extraction algorithm.  
It derives new variables in decreasing order of importance that are a linear combinations of 
the original variables, uncorrelated and retain as much variation as possible (Webb, 2002). 
Classification: Classification is the process of assigning labels on data records based on their 
features. Typically, the process starts with a training dataset that has examples already 
classified. These records are presented to the classifier, which trains itself to predict the right 
outcome based on that set. After that, a testing set of unclassified data is presented to the 
classifier, which classifies all the entries based on its training. Finally, the classification is 
being inspected. The better the classifier, the more good classifications it has made. Linear 
discriminant classifier (LDC) and quadratic discriminant classifiers (QDC) are two 
frequently used classifiers which separate measurements of two or more classes of objects or 
events by a linear or a quadric surface respectively. 
Cross-validation: Cross-validation is the process of repeatedly partitioning a dataset in a 
training set and a testing set. When the dataset is partitioned in n parts we call that n-fold 
cross-validation. After partitioning the set in n parts, the classifier is trained with n-1 parts, 
and tested on the remaining part. This process is repeated n times, each time a different part 
functions as the training part. The n results from the folds then can be averaged to produce a 
single estimation of error. 

 
2.4 Knowledge discovery 
Knowledge discovery is the process which searches large volumes of data for patterns in 
order to find understandable knowledge about the data. In our knowledge discovery 
strategy, decision tree and relational subgroup discovery are applied. 
Decision tree: The decision tree (Witten & Frank, 1999) is a common machine learning 
algorithm used for classification and prediction. It represents rules in the form of a tree 
structure consisting of leaf nodes, decision nodes and edges. This algorithm starts with 
finding the attribute with the highest information gain which best separates the classes, and 
then it is split into different groups. Ideally, this process will be repeated until all the leaves 
are pure. 
Relational subgroup discovery: Subgroup discovery belongs to descriptive induction 
(Zelezny & Lavrac, 2006) which discover patterns described in the form of individual rules. 
Relational subgroup discovery  (RSD) is the algorithm which utilizes relational datasets as 
input, generates subgroups whose class-distributions differ substantially from the complete 
dataset with respect to the property of interest (Lavrac et al., 2003). The principle of RSD can 
be simplified as follows; first, a feature is constructed through first-order feature 
construction and the features covering empty datasets are retracted. Second, rules are 
induced using weighted relative accuracy heuristics and weighted covering algorithm. 
Finally, the induced rules are evaluated by employing the combined probabilistic 
classifications of all subgroups and the area under the receiver operating characteristics 
(ROC) curve (Fawcett, 2006). The key improvement of RSD is the application of weighted 
relative accuracy heuristics and weighted covering algorithm, i.e.  
 

WRAcc (H←B) = p(B) · ( p(H|B)-p(H) )                                            (1) 
 

 

The weighted relative accuracy heuristics is defined as equation 1. In rule H←B, H stands 
for Head representing classes, while B denotes the Body which consists of one or a 
conjunction of first-ordered features. p is the probability function. As shown in the equation, 
weighted relative accuracy consists of two components: weight p(B), and relative accuracy 
p(H | B) − p(H). The second term, relative accuracy, is the relative accuracy gain between the 
conditional probability of class H given that features B is satisfied and the probability of 
class H. A rule is only interesting if it improves over this default rule H←true accuracy 
(Zelezny & Lavrac, 2006). 
In the weighted covering algorithm, the covered positive examples are not deleted from the 
current training set which is the case for the classical covering algorithm. Instead, in each 
run of the covering loop, the examples are given decreasing weights while the number of 
iterations is increasing. In doing so, it is possible to discover more substantial significant 
subgroups and thereby achieving to find interesting subgroup properties of the entire 
population. 

 
3. Experimental setups, methods and materials 
 

3.1 Data collection 
In the interest of including maximally useful data, human miRNAs are chosen as the 
research focus. The latest version of TarBase (TarBase-V5 released at 06/2008) includes 1093 
experimentally confirmed human miRNA-target interactions. Among them, 243 are 
supposed by direct experiment such as in vitro reporter gene (Luciferase) assay, while the 
rest are validated by an indirect experimental support such as microarrays. Considering the 
fact that the indirect experiments could induce the candidates which are in the downstream 
of the miRNA involved pathways, it is uncertain whether these can virtually interact with 
miRNA or not. Thus they are excluded and only the miRNAs-target interactions with direct 
experiment support are used in this study. 
We observed that some miRNAs are validated as binding the same target. According to this 
observation, we pair the miRNAs as positive if they bind the same target, and randomly 
couple the rest as the negative data set. In total, there are 93 positive pairs. After checking 
the consistency of the name of miRNAs and removing the redundant data (for example, 
miR-26 and miR-26-1 refer to the same miRNA), 73 pairs are kept and thus another 73 
negative pairs are generated. For quality control reasons, the data generation step is 
repeated 10 times and each set is tested individually in the following analysis.  
Here we clarify two notions; known miRNAs are those whose function is known and have 
been validated for having at least one target, unknown miRNAs refer to those for which the 
targets are unknown. 

 
3.2 Feature collection 
In the study of miRNA-target interaction, it has been established that this physical binding 
requires sequence complementarity and thermodynamic stability. Here some of miRNA-
target interaction features are transformed to the study of functionally similar miRNA pairs. 
We predefine four features: overall sequence (~22 nt) similarity, seed (position 2-8) 
similarity, non-seed (position 9-end) similarity and genomic distance. Seed has been proven 
to be an important region in miRNA-target interaction which display an almost perfect 
match to the target sequence (Karginov et al., 2007), thus we suggest that seed similarity 
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then keeps removing one feature at a time so that the entire subset so far performs the best. 
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cross-validation. After partitioning the set in n parts, the classifier is trained with n-1 parts, 
and tested on the remaining part. This process is repeated n times, each time a different part 
functions as the training part. The n results from the folds then can be averaged to produce a 
single estimation of error. 
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algorithm used for classification and prediction. It represents rules in the form of a tree 
structure consisting of leaf nodes, decision nodes and edges. This algorithm starts with 
finding the attribute with the highest information gain which best separates the classes, and 
then it is split into different groups. Ideally, this process will be repeated until all the leaves 
are pure. 
Relational subgroup discovery: Subgroup discovery belongs to descriptive induction 
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WRAcc (H←B) = p(B) · ( p(H|B)-p(H) )                                            (1) 
 

 

The weighted relative accuracy heuristics is defined as equation 1. In rule H←B, H stands 
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3. Experimental setups, methods and materials 
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In the interest of including maximally useful data, human miRNAs are chosen as the 
research focus. The latest version of TarBase (TarBase-V5 released at 06/2008) includes 1093 
experimentally confirmed human miRNA-target interactions. Among them, 243 are 
supposed by direct experiment such as in vitro reporter gene (Luciferase) assay, while the 
rest are validated by an indirect experimental support such as microarrays. Considering the 
fact that the indirect experiments could induce the candidates which are in the downstream 
of the miRNA involved pathways, it is uncertain whether these can virtually interact with 
miRNA or not. Thus they are excluded and only the miRNAs-target interactions with direct 
experiment support are used in this study. 
We observed that some miRNAs are validated as binding the same target. According to this 
observation, we pair the miRNAs as positive if they bind the same target, and randomly 
couple the rest as the negative data set. In total, there are 93 positive pairs. After checking 
the consistency of the name of miRNAs and removing the redundant data (for example, 
miR-26 and miR-26-1 refer to the same miRNA), 73 pairs are kept and thus another 73 
negative pairs are generated. For quality control reasons, the data generation step is 
repeated 10 times and each set is tested individually in the following analysis.  
Here we clarify two notions; known miRNAs are those whose function is known and have 
been validated for having at least one target, unknown miRNAs refer to those for which the 
targets are unknown. 

 
3.2 Feature collection 
In the study of miRNA-target interaction, it has been established that this physical binding 
requires sequence complementarity and thermodynamic stability. Here some of miRNA-
target interaction features are transformed to the study of functionally similar miRNA pairs. 
We predefine four features: overall sequence (~22 nt) similarity, seed (position 2-8) 
similarity, non-seed (position 9-end) similarity and genomic distance. Seed has been proven 
to be an important region in miRNA-target interaction which display an almost perfect 
match to the target sequence (Karginov et al., 2007), thus we suggest that seed similarity 
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between miRNAs is a potentially important feature. Additionally, including non-seed and 
sequence similarity features enables us to investigate the property behaviors of these two 
regions. Genomic distance is not a well investigated feature which is defined as base pair 
distance between two genes. The idea of investigating genomic distance between miRNAs is 
derived from our former study. Previously, through statistical methods and heterogeneous 
data support, we demonstrated that the genomic location feature plays a role in miRNA-
target interaction for a selection of miRNA families (Zhang et al., 2007). Here we induce this 
idea to the study of miRNAs relationships based on the genomic distance. 
In the data preparation, sequence similarity is calculated using the EBI pairwise global 
sequence alignment tool: i.e. Needle (Sankoff & Kruskal, 1999). Genomic sequence and 
location are retrieved from the miRBase Sequence Database. The distance between two 
miRNAs is calculated by genomic position subtraction when they are located on the same 
chromosome; otherwise it is set to undefined. 
 

 
Fig. 2. Workflow. miRNA pairs are analyzed by both pattern recognition and knowledge 
discovery strategies. 

 
3.3 Workflow 
As showed in Fig. 2, we use two strategies to discover miRNA-miRNA relationships. In 
pattern recognition strategy, different classifiers are applied in order to discriminate positive 
and negative miRNA pairs. Then the performance of each classifier is evaluated by cross-
validation. In knowledge discovery, rules are first discovered from three methods with 
respect to decision tree and relational subgroup discovery techniques. Through combining 

 

the results, the optimized rules describing functionally alike miRNAs are generated which 
are used for final targets prediction and validation.  
Pattern recognition: In this strategy, the first step is feature reduction. Features are selected 
by sequential backward elimination algorithm and extracted by principle component 
analysis. As it is known that sequential forward selection adds new features to a feature set 
one at a time until the final feature set is reached (Webb, 2002). It is simple and fast. The 
reason it is not applied in our experiment is due to the limitation that the selected features 
could not be deleted from the feature set once they have been added. This could lead to local 
optimum. After dimension reduction, classification is performed by both linear and 
quadratic classifiers. Finally, the performance is examined by 5-fold cross-validation with 10 
repetitions. This part was implemented with PRtools (van der Heijden et al., 2004) a plugin 
for the MatLab platform. 
 

 
Fig. 3. Detailed experimental design in rule generation stage. Three methods are applied 
which are Decision tree, Category RSD and Binary RSD. In Category RSD, datasets are first 
categorized into groups. Subsequently, data with two feature sets, which are with and 
without overall sequence similarity, are used as the input to RSD algorithm. In Binary RSD, 
feature values are binariezed using decision tree. Due to the fact that data are sampled 10 
times, the cut-offs are then established using max coverage (Max Cov), median and max 
density (Max Den). Finally, RSD is applied to all 3 conditions in order to find out the feature 
cut-offs, which lead to the most significant rule sets. 
 
Knowledge discovery: In pattern recognition the miRNA is classified through elaborate 
statistical models; in contrast, in knowledge discovery data patterns are described to allow 
us to increase our knowledge on the data.This could promote our understanding of 
functionally similar miRNAs. Furthermore, integration of this knowledge could finally 
promote target prediction. In this strategy, there are three phases: rule generation illustrated 
in the framework (dashed) of Fig. 2, target prediction and validation. In the first step, rules 
are discovered using decision trees and relational subgroup discovery. With the aim to 
discover the most significant rules, different data structures and feature thresholds are 
evaluated and compared. Details are explained in the following sections and an overview of 
this methodology is shown in Fig. 3. 
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Decision tree learning is utilized as a first step in order to build a classifier discriminating 
two classes of miRNA pairs. In our experiments, we used the decision tree from the Weka 
software platform (Witten & Frank, 1999). The features were tested using the J48 classifier 
and evaluated by 10 fold cross-validation. 
Due to the fact that not all the determinant features are known at this stage, we are 
interested in finding rules for subgroups of functionally similar miRNAs with respect to our 
predefined features. In our experiments, we used the propositionalization based relational 
subgroup discovery algorithm (Zelezny & Lavrac, 2006). We prefer rules that contain only 
the positive pairs and portray high coverage. Consequently, the repetitive rules are selected, 
if their E-value is greater than 0.01 and at the same time the significance is above 10. 
Both the Category RSD and the Binary RSD reveal feature patterns by utilizing the relational 
subgroup discovery algorithm. The main difference is that the former analyzes the data in a 
categorized format, whereas in later algorithm the data is transformed to a binary form.  
 

  

  
Fig. 4. Density plot for the four features. The plots of distance and seed similarity match 
bimodal distribution indicating two main groups in each feature. However it is not 
straightforward to judge sequence and non-seed similarity distributions. 
 
As a pilot experiment for RSD, data is first categorized as follows: the similarity percentage 
is evenly divided into 5 groups: very low (0-20%], low (20-40%], medium (40-60%], high (60-
80%], very high (80-100%]; Distance is categorized into 5 regions: 0-1kb1, 1-10kb, 10-100kb, 
100kb-end, undef (if miRNAs that are paired are located on a different chromosome). Two 

                                                                 
1 The unit of distance on a genome is base pair abbreviated as ‘b’, kb = kilo base pairs. 

 

relational input tables, which are with and without the overall sequence similarity feature, 
are constructed and further tested with the purpose of verifying whether the sequence has a 
global effect or only contributes as the combination of seed and non-seed parts.  
Through the observation of density graphs of the features, as depicted in Fig. 4, we 
concluded that distance and seed similarity feature densities match a bimodal distribution. 
The same conclusion can, however, not be drawn easily for overall and non-seed sequence 
similarities. Therefore, in this method, we apply a decision tree algorithm to discriminate 4 
feature values into binary values. Each feature is calculated individually and only the root 
classifier value in the tree is used for establishing the cut-off. After that, binary tables are 
generated according to three criteria:  

 Maximum coverage where the value covers the most positive pairs. Max coverage 
(distance, sequence, seed, non-seed) = 8947013 b, 56.5%, 71.4%, 53.3% 

 Median. Median (distance, sequence, seed, non-seed) = 3679 b, 65.2%, 71.4%, 
60.65% 

 Maximum density which is the region with the highest positive pair density. Max 
density (distance, sequence, seed, non-seed) = 3679 b, 69.6%, 75%, 64.7% 

 
4. Results 
 

4.1 Classification  
After application of sequential backward feature selection, features including genomic 
distance, seed similarity and non-seed similarity are selected as the top 3 informative 
features. Sequence similarity is the least informative feature because it is highly correlated to 
seed and non-seed similarities. Scatter plots of two classes of miRNA pairs in the selected 
feature space are depicted in Fig. 5. As can be seen in the four sub-graphs of Fig. 5, the 
majority of positive and negative miRNA pairs are overlapping which is an indication for 
the complexity of the classification. The distribution of negative class is more compact. We 
observed that the majority of this class located in the area of non-seed<60%, seed<70% and 
distance is infinite. Futhermore, we noticed that for those functionally similar miRNAs, seed 
similarity vary from 0 to 100%. This implies that miRNAs with the same or different seed 
sequence can bind the same targets. This is due to the fact that miRNAs can bind to the same 
targets at the same binding site which leads to high similarity and at different binding site 
resulting low similarity. The evaluation of the classifier performance shows that the average 
error and standard deviation for the quadratic classifier are 0.29739 and 0.01082, and for the 
linear classifier are 0.30987 and 0.0131.  
In Fig. 6 the dataset is plotted in 2-dimensional PCA space in combination with the linear 
and quadratic classifiers. In this 2D projection, the average error and standard deviation for 
the quadratic classifier are 0.3029 and 0.00721, and for the linear classifier are 0.31657 and 
0.00871. 
With around 30% of classification errors, this means two classes are difficult to separate 
using features currently available. Furthermore, although the classifiers provide a statistical 
explanation and meaning, no biological insight is gained from them in order to be able to 
interpret the miRNA mechanism(s). 



Specificity Enhancement in microRNA Target Prediction through Knowledge Discovery 401

 

Decision tree learning is utilized as a first step in order to build a classifier discriminating 
two classes of miRNA pairs. In our experiments, we used the decision tree from the Weka 
software platform (Witten & Frank, 1999). The features were tested using the J48 classifier 
and evaluated by 10 fold cross-validation. 
Due to the fact that not all the determinant features are known at this stage, we are 
interested in finding rules for subgroups of functionally similar miRNAs with respect to our 
predefined features. In our experiments, we used the propositionalization based relational 
subgroup discovery algorithm (Zelezny & Lavrac, 2006). We prefer rules that contain only 
the positive pairs and portray high coverage. Consequently, the repetitive rules are selected, 
if their E-value is greater than 0.01 and at the same time the significance is above 10. 
Both the Category RSD and the Binary RSD reveal feature patterns by utilizing the relational 
subgroup discovery algorithm. The main difference is that the former analyzes the data in a 
categorized format, whereas in later algorithm the data is transformed to a binary form.  
 

  

  
Fig. 4. Density plot for the four features. The plots of distance and seed similarity match 
bimodal distribution indicating two main groups in each feature. However it is not 
straightforward to judge sequence and non-seed similarity distributions. 
 
As a pilot experiment for RSD, data is first categorized as follows: the similarity percentage 
is evenly divided into 5 groups: very low (0-20%], low (20-40%], medium (40-60%], high (60-
80%], very high (80-100%]; Distance is categorized into 5 regions: 0-1kb1, 1-10kb, 10-100kb, 
100kb-end, undef (if miRNAs that are paired are located on a different chromosome). Two 

                                                                 
1 The unit of distance on a genome is base pair abbreviated as ‘b’, kb = kilo base pairs. 

 

relational input tables, which are with and without the overall sequence similarity feature, 
are constructed and further tested with the purpose of verifying whether the sequence has a 
global effect or only contributes as the combination of seed and non-seed parts.  
Through the observation of density graphs of the features, as depicted in Fig. 4, we 
concluded that distance and seed similarity feature densities match a bimodal distribution. 
The same conclusion can, however, not be drawn easily for overall and non-seed sequence 
similarities. Therefore, in this method, we apply a decision tree algorithm to discriminate 4 
feature values into binary values. Each feature is calculated individually and only the root 
classifier value in the tree is used for establishing the cut-off. After that, binary tables are 
generated according to three criteria:  

 Maximum coverage where the value covers the most positive pairs. Max coverage 
(distance, sequence, seed, non-seed) = 8947013 b, 56.5%, 71.4%, 53.3% 

 Median. Median (distance, sequence, seed, non-seed) = 3679 b, 65.2%, 71.4%, 
60.65% 

 Maximum density which is the region with the highest positive pair density. Max 
density (distance, sequence, seed, non-seed) = 3679 b, 69.6%, 75%, 64.7% 

 
4. Results 
 

4.1 Classification  
After application of sequential backward feature selection, features including genomic 
distance, seed similarity and non-seed similarity are selected as the top 3 informative 
features. Sequence similarity is the least informative feature because it is highly correlated to 
seed and non-seed similarities. Scatter plots of two classes of miRNA pairs in the selected 
feature space are depicted in Fig. 5. As can be seen in the four sub-graphs of Fig. 5, the 
majority of positive and negative miRNA pairs are overlapping which is an indication for 
the complexity of the classification. The distribution of negative class is more compact. We 
observed that the majority of this class located in the area of non-seed<60%, seed<70% and 
distance is infinite. Futhermore, we noticed that for those functionally similar miRNAs, seed 
similarity vary from 0 to 100%. This implies that miRNAs with the same or different seed 
sequence can bind the same targets. This is due to the fact that miRNAs can bind to the same 
targets at the same binding site which leads to high similarity and at different binding site 
resulting low similarity. The evaluation of the classifier performance shows that the average 
error and standard deviation for the quadratic classifier are 0.29739 and 0.01082, and for the 
linear classifier are 0.30987 and 0.0131.  
In Fig. 6 the dataset is plotted in 2-dimensional PCA space in combination with the linear 
and quadratic classifiers. In this 2D projection, the average error and standard deviation for 
the quadratic classifier are 0.3029 and 0.00721, and for the linear classifier are 0.31657 and 
0.00871. 
With around 30% of classification errors, this means two classes are difficult to separate 
using features currently available. Furthermore, although the classifiers provide a statistical 
explanation and meaning, no biological insight is gained from them in order to be able to 
interpret the miRNA mechanism(s). 



Machine Learning402

 

  
 

  
Fig. 5. Scatter plots of two classes of miRNA pairs in the selected feature spaces. Positive 
pairs are denoted using a token of plus (also in blue), while negatives are demonstrated by 
asterisk (red). 

 
4.2 Rule discovery  
In the decision tree analysis, several different tree structures are generated from 10 
replications of the training data. Among them, the root attribute or the first depth of the tree 
is mainly associated with distance, sequence and seed similarity properties, while non-seed 
feature appeared only near the leaf nodes. This inconsistency in the tree structures indicated 
that none of the predefined features, or any combination of them, can significantly classify 
miRNAs. 
The feature patterns discovered from Category RSD are listed in Table 1 where the rules in 
Table 1b take overall sequence into account but those in Table 1a do not. ‘YES’-rules 
describe functionally similar miRNAs characterized by our predefined features. 
‘Significance’ denotes the average significance over 10 replications. Further inspection of 
Table 1 shows that both rule sets consist of 3 main groups with features being Seed>80%, 
Dis<=1 kb and Dis=(1 kb,10 kb] labeled by A, B, C respectively.  The remainder is the subset 
of these groups. Considering overall sequence in the rule generation results only the fourth 
rule (A.2) in Table 1a and 1b to be different. These results indicate that genomic location and 

 

seed similarity between miRNAs are probably dominant features when deciding which 
miRNAs bind to the same target. Sequence information may be relevant but it is not as 
strong as seed and distance features. 
 

 
Fig. 6. Scatter plot of two classes of miRNA pairs in 2-dimensional PCA components space 
together with a linear discriminant classifier showed by a line and a quadratic discriminant 
classifier illustrated by an arc. 
 

Label -Overall sequence : YES Rules 2.1 Significance 
A 
A.1 
B 
A.2 
C 

Seed>80% 
Dis=undef & Seed>80% 
Dis<=1 kb 
Seed>80% & Nonseed=(60%,80%] 
Dis=(1 kb,10 kb] 

26.7 
14.3 
14.1 
12.6 
11 

   (a) 
 

Label +Overall sequence: YES Rules 2.2 Significance 
A 
A.1 
B 
A.2 
C 

Seed>80% 
Dis=undef & Seed>80% 
Dis<=1 kb 
Seed>80% & Seq=(60%,80%] 
Dis=(1 kb,10 kb] 

26.7 
14.3 
14.1 
11.2 
11 

   (b) 
Table 1. Category RSD results. Rules generated from two data structures: considering 
overall sequence, seed, non-seed similarities as well as distance (a) and only seed, non-seed 
similarities and distance (b). 
 
Table 2 shows the rules generated by Binary RSD, thereby using three cut-off criteria: Max 
coverage (a), Median (b) and Max density (c). As can be seen, three rule sets have similar 
structures but different feature cut-offs which lead to different significance. The main 
feature groups derived using max coverage, median and max density criteria respectively 
are Seed>71.4% (A) and Dis<=8947013 b (B) in rule set 3.1; Seed>71.4% (A), Dis<=3679 b (B) 
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and Seq>65.2% (C) in rule set 3.2; and Seed>75% (A), Dis<=3679 b (B) and Seq>69.6% (C) in 
rule set 3.3. Others are the subsets of these groups. 
 

Label Max coverage: YES Rules 3.1 Significance 
A.1 
A 
A.2 
B 
A.3 
A.4 
A.5 

Seed>71.4% & Seq>56.5% 
Seed>71.4% 
Nonseed>53.3% & Seed>71.4% & Seq>56.5% 
Dis<=8947013 b 
Nonseed>53.3% & Seed>71.4% 
Dis>8947013 b & Seed>71.4% & Seq>56.5% 
Dis>8947013 b & Seed>71.4% 

30 
27.2 
21.6 
19.8 
18.2 
13.5 
12.3 

   (a) 
 
Label Median: YES Rules 3.2 Significance 
A 
A.1 
B 
B.1 
A.2 
A.3 
A.4 
C.1 
C 

Seed>71.4% 
Seed>71.4% & Seq>65.2% 
Dis<=3679 b 
Dis<=3679 b & Nonseed<=60.65% 
Dis>3679 b & Seed>71.4% 
Nonseed>60.65% & Seed>71.4% & Seq>65.2% 
Nonseed>60.65% & Seed>71.4% 
Nonseed>60.65% & Seq>65.2% 
Seq>65.2% 

27.2 
23.3 
23.3 
15.9 
14.9 
13.7 
13.7 
13.7 
12.2 

   (b) 
 
Label Max density: YES Rules 3.3 Significance 
A 
B 
A.1 
C 
B.1 
B.2/C.1 
A.2 
A.3/C.2 
C.3 

Seed>75% 
Dis<=3679 b 
Seed>75% & Seq>69.6% 
Seq>69.6% 
Dis<=3679 b & Nonseed<=64.7% 
Dis<=3679 b & Seq<=69.6% 
Dis>3679 b & Seed>75% 
Nonseed>64.7% & Seed>75% & Seq>69.6% 
Nonseed>64.7% & Seq>69.6% 

26.7 
23.3 
20.8 
20.8 
18 
14.1 
11.5 
11 
11 

   (c) 
 

Table 2. Binary RSD results. Rules generated from 3 sets of parameters are shown in a 
sequence of Max coverage (a), Median (b) and Max density (c). 
 
Furthermore, the rules with similar features but different feature values are compared. The 
decision on final cut-off is based on the value which results in the highest significance. 
Therefore the final optimized rules are: 
 
Rule 1: IF distance between two miRNAs <=3679 b, 
Rule 2: IF seed similarity between two miRNAs > 71.4%, 

 

Rule 3: IF sequence similarity between two miRNAs > 69.6% 
THEN they bind the same target. 
 
To evaluate our methods, as a reference, a permutation test is performed. We repeat the 
learning procedure for each training set with the labels randomly shuffled. Using Max 
coverage as a cutoff criterion, we obtained that all the rules have the max significance lower 
than 8. This test therefore demonstrates that the rules derived from the original data are 
more significant compared to the random situation. 

 
4.3 Target prediction   
We apply the above rules searching for miRNAs which serve similar functions as the known 
miRNAs. Rule 1, 2 and 3 discovered 75, 655 and 150 miRNA pairs respectively in each 
subgroup which highly extends our previous findings (Zhang et al., 2008) based on similar 
methodology.  Among them, 23 miRNA predicted targets which are covered by all of the 3 
rules are selected for further validation, since this group has relative small pairs which are 
easy to validate. Furthermore, as they involve more constraints, it is considered to be more 
reliable. 
By further inspection of these 23 miRNA pairs, we found that it consists of 3 confirmed pairs 
in which both individual miRNAs from each pair are well studied, 15 pairs with both 
members from the same family which are supposed to have the same targets, and 5 new 
pairs which have one well-studied miRNA and one functional unknown partner. Therefore, 
we induce the targets for these 5 unknown miRNAs hsa-miR-18a/ 18b/ 20b /212 /200c 
from their known partner. Their predicted targets are listed in Table 3.  
Informatic validation is performed to check the prediction consistency with the existing 
methods. Table 3 shows validation for the 3 confirmed and 5 predicted miRNA pairs. The 
miRNAs with confirmed targets are indicated in italic, while the miRNAs in boldface are the 
unknown ones for which the targets are predicted from their known partners. All of their 
targets are validated by examining whether they are predicted by TargetScan, miRanda, 
Pictar, miTarget and RNAhybrid. For example the table can be read as following: whether 
the target (BCL2) is predicted by the existing methods (TargetScan) for m1 (hsa-miR 15a) or 
m2 (hsa-miR-16). Consequently, we discover that among our prediction, Retinoblastoma 1 
(RB1) for hsa-miR-20b are predicted by TargetScan and Pictar; Circadian Locomoter Output 
Cycles Kaput (Clock) for hsa-miR-200c is captured by miRanda; Rho GTPase activating 
protein (RICS) for hsa-miR-212 is detected by Pictar; E2F transcription factor 1 (E2F1) and 
AIB1 for hsa-miR-18a are identified by miTarget. 
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and Seq>65.2% (C) in rule set 3.2; and Seed>75% (A), Dis<=3679 b (B) and Seq>69.6% (C) in 
rule set 3.3. Others are the subsets of these groups. 
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A 
A.2 
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A.3 
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Dis>8947013 b & Seed>71.4% 
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21.6 
19.8 
18.2 
13.5 
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   (a) 
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14.9 
13.7 
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Table 2. Binary RSD results. Rules generated from 3 sets of parameters are shown in a 
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more significant compared to the random situation. 
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easy to validate. Furthermore, as they involve more constraints, it is considered to be more 
reliable. 
By further inspection of these 23 miRNA pairs, we found that it consists of 3 confirmed pairs 
in which both individual miRNAs from each pair are well studied, 15 pairs with both 
members from the same family which are supposed to have the same targets, and 5 new 
pairs which have one well-studied miRNA and one functional unknown partner. Therefore, 
we induce the targets for these 5 unknown miRNAs hsa-miR-18a/ 18b/ 20b /212 /200c 
from their known partner. Their predicted targets are listed in Table 3.  
Informatic validation is performed to check the prediction consistency with the existing 
methods. Table 3 shows validation for the 3 confirmed and 5 predicted miRNA pairs. The 
miRNAs with confirmed targets are indicated in italic, while the miRNAs in boldface are the 
unknown ones for which the targets are predicted from their known partners. All of their 
targets are validated by examining whether they are predicted by TargetScan, miRanda, 
Pictar, miTarget and RNAhybrid. For example the table can be read as following: whether 
the target (BCL2) is predicted by the existing methods (TargetScan) for m1 (hsa-miR 15a) or 
m2 (hsa-miR-16). Consequently, we discover that among our prediction, Retinoblastoma 1 
(RB1) for hsa-miR-20b are predicted by TargetScan and Pictar; Circadian Locomoter Output 
Cycles Kaput (Clock) for hsa-miR-200c is captured by miRanda; Rho GTPase activating 
protein (RICS) for hsa-miR-212 is detected by Pictar; E2F transcription factor 1 (E2F1) and 
AIB1 for hsa-miR-18a are identified by miTarget. 
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      Also predicted by 
Our prediction TargetScan miRanda Pictar miTarget RNAhybrid-

mfe(kcal/mol) 
miRNA1 (m1) miRNA1(m2) Targets m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 

hsa-miR-15a hsa-miR-16 BCL2 √ √ × × √ √ × √ -24.3 -24.1 

hsa-miR-17 hsa-miR-20a E2F1 √ √ √ × √ √ √ √ -26.8 -24.6 

hsa-miR-221 hsa-miR-222 KIT √ √ × × × × √ √ -24.9 -26.4 

 
hsa-miR-17 

 
hsa-miR-18a 

E2F1 √ × √ × √ × √ √ -26.8 -26.8 

AIB1 - - - - - - √ √ -26.3 -26.6 

hsa-miR-106a hsa-miR-18b RB1 √ × × × √ × × × -23.2 -28.3 

hsa-miR-106a hsa-miR-20b RB1 √ √ × × √ √ × × -23.2 -27.2 

hsa-miR-132 hsa-miR-212 RICS × × - - √ √ - - - - 

hsa-miR-141 hsa-miR-200c Clock × × √ √ × × √ × -22.1 -20.1 

Table 3. Informatic validation of confirmed and predicted miRNA pairs. miRNA1 and 
miRNA2 are the partners in one pair. Target column shows the validated targets for the 
known miRNAs (in italic) and the predicted targets for the unknown miRNAs (in boldface). 
m1 and m2 columns denote whether the targets are predicted by the existing methods for 
miRNA1 (m1) and miRNA2 (m2) respectively. 

 
5. Conclusions and discussion 
 

Machine learning is widely used in commercial businesses where vast amounts of data are 
produced. The life-sciences, molecular oriented research in particular, is a rapidly growing 
field which has gained a lot of attention lately especially now that the genomes of the major 
research model species have been sequenced and are publicly available. With the 
development of more and more large-scale and advanced techniques in biology, the need to 
discover hidden information triggered the application of machine learning in the field of the 
life-sciences. But these applications bear a risk, since, first of all, most biological mechanisms 
are not yet fully understood, and second, some techniques produce too little experimental 
data due to the limitations of these techniques, thereby making machine learning unreliable. 
In this chapter, we explained how we integrated different machine learning algorithms and 
tuned and optimized experimental setups to a growing but not yet mature research field, 
miRNA target prediction. The innovation of this approach is not only integration and 
optimization of machine learning algorithms, but also the prediction through new features 
in miRNA relationship instead of widely studied features of miRNA-target interaction. 
Existing methods for analysis have shown to be insufficient in identifying targets from this 
perspective.  
As illustrated in the methods and results sections, pattern recognition generates models 
enabling class descriptions. In this case, a rather high misclassification error around 30% is 
surfacing. In contrast, subgroup discovery aims at discovering statistically unusual patterns 
of interesting classes (Zelezny & Lavrac, 2006). It discovers three main groups describing 
only the positive miRNA pairs. 
One of the disadvantages of pattern recognition method is that the model is not biologically 
interpretable. Consisting of linear or quadratic transformations of features, the classifiers tell 
nothing about the mechanisms of miRNA-target binding. However decision tree and 

 

relational subgroup discovery are descriptive induction algorithms which discover patterns 
in the form of rules.  With these discovered rules, we gain knowledge about miRNA-target 
interaction which can, subsequently, be used to predict more targets.  
We compared two main algorithmic approaches used in knowledge discovery. Given the 
circumstances that not all the targets and useful features are known in advance, the 
classification of miRNA data using decision trees is not recommended. However, the 
relational subgroup discovery, an advanced subgroup discovery algorithm, has shown to be 
suitable for this application domain since it can discover the rules for subgroups of similar 
function miRNAs with respect to our predefined features. During the rule mining, we also 
noticed that feature threshold optimization is a crucial procedure which helps revealing the 
significant rules. 
We have established that distance, seed and sequence similarities are determinants. The 
question is whether it makes sense from the biological point of view. It has been reported 
that many miRNAs appear in clusters on a single polycistronic transcript (Tanzer & Stadler, 
2004). They are transcribed together in a long primary transcript, yielding one or more 
hairpin precursors and finally are cut to multi-mature miRNAs. Tanzer et al. reported that 
the human mir-17 cluster contains six precursor miRNA (mir-17/ 18/ 19a/ 20/ 19b-1/ 92-1) 
within a region of about 1kb on chromosome 13 (Tanzer & Stadler, 2004). These 
observations are similar with the feature embedded in Rule 1 (cf. Section 4.2). Besides the 
fact that clustered miRNAs can be transcribed together, we further showed that miRNAs 
that are in close proximity to each other can bind to the same target so as to serve as the 
regulators for the same goal. In this study, we showed that the genomic location also 
contributes to miRNA target identification. 
As for seed similarity, Rule 2 (cf. Section 4.2) describes that the miRNAs with seed similarity 
above 71.4% share the same targets. This means only a perfect match or one mismatch in the 
seed is allowed in the process of binding the same targets. This is consistent with the idea 
that seed is a specific region, in particular it requires a nearly perfect match with the target 
(Karginov et al., 2007). Moreover, TargetScanS also only requires a 6-nt seed match 
comprising nucleotides 2-7 of the miRNA. Thus, the rule requiring at least 6 out of 7 
nucleotides to be similar in seed region can be considered reasonable. 
Overall sequence similarity is also a predictor but not as decisive as seed and genomic 
distance. This means that not only the seed region is important; sometimes two miRNAs 
with generally similar sequences can also bind to the same target. This is consistent with the 
finding that some miRNA-target interaction bindings have a mismatch or wobble in the 5’ 
seed region but compensate through excellent complementarity at the 3’ end, which leads to 
high average sequence complementarity (Maziere & Enright, 2007). 
In order to support our findings, we validated the results using five existing algorithms 
presented in Table 3. Not all of the predicted targets are identified by TargetScan, miRanda, 
Pictar, miTarget and RNAhybrid, whereas this is the same case for the known targets. Most 
of the candidates are predicted by at least one of these methods. Both miTarget and our 
method are based on machine learning techniques; miTarget uses a support vector machine 
and considers sequence and structure features of miRNA-target duplexes whereas we focus 
the integration of several machine learning algorithms on the genomic location and 
sequence features between miRNAs. Moreover, we noticed that miRanda has a relatively 
low performance for target prediction in human. This may be due to the fact that miRanda 
was initially developed to predict miRNA targets in Drosophila melanogaster, and later 
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miRNA2 are the partners in one pair. Target column shows the validated targets for the 
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m1 and m2 columns denote whether the targets are predicted by the existing methods for 
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in miRNA relationship instead of widely studied features of miRNA-target interaction. 
Existing methods for analysis have shown to be insufficient in identifying targets from this 
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As illustrated in the methods and results sections, pattern recognition generates models 
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Overall sequence similarity is also a predictor but not as decisive as seed and genomic 
distance. This means that not only the seed region is important; sometimes two miRNAs 
with generally similar sequences can also bind to the same target. This is consistent with the 
finding that some miRNA-target interaction bindings have a mismatch or wobble in the 5’ 
seed region but compensate through excellent complementarity at the 3’ end, which leads to 
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In order to support our findings, we validated the results using five existing algorithms 
presented in Table 3. Not all of the predicted targets are identified by TargetScan, miRanda, 
Pictar, miTarget and RNAhybrid, whereas this is the same case for the known targets. Most 
of the candidates are predicted by at least one of these methods. Both miTarget and our 
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sequence features between miRNAs. Moreover, we noticed that miRanda has a relatively 
low performance for target prediction in human. This may be due to the fact that miRanda 
was initially developed to predict miRNA targets in Drosophila melanogaster, and later 
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adapted to vertebrate genomes (Enright et al., 2003). In the application of RNAhybrid tool, a 
predefined threshold of the normalized minimum free energy (mfe) is lacking, we therefore 
decided to list the original values. We found that most of our predicted miRNA-target 
duplexes are more stable illustrated by the lower minimum free energy relative to the 
known ones. 
In addition to these encouraging results, we also noticed that only groups of miRNA 
relationships are discovered by our method. Some miRNAs which are located far apart and 
whose seed similarity is low still have the same target. This indicated that besides genomic 
distance, seed and sequence similarities, more features need to be included in order to find 
more and better patterns shared by functionally alike miRNAs. Grimson et al. uncovered five 
general features of target site context beyond seed pairing that boost site efficacy (Grimson 
et al., 2007). In future research we will explore the site context in the miRNA relationship 
analysis. Additionally, we also consider taking into account miRNA co-expression patterns. 
In summary, we conclude that genomic distance, seed and sequence similarities are the 
determinants for describing the relationships of functionally similar miRNAs. Our method 
is complementary to the approaches that are currently used. It contributes to the 
improvement of target identification by predicting targets with high specificity. Moreover, it 
does not require conservation information for classification, so it is free from the limitations 
of some of the existing methods. In future research, with more biologically validated targets 
and features available, more rules can be generated from a large dataset, and consequently 
more targets can be identified to the functionally unknown miRNAs. The methodology can 
be transferred to a broad range of other species as well. 
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adapted to vertebrate genomes (Enright et al., 2003). In the application of RNAhybrid tool, a 
predefined threshold of the normalized minimum free energy (mfe) is lacking, we therefore 
decided to list the original values. We found that most of our predicted miRNA-target 
duplexes are more stable illustrated by the lower minimum free energy relative to the 
known ones. 
In addition to these encouraging results, we also noticed that only groups of miRNA 
relationships are discovered by our method. Some miRNAs which are located far apart and 
whose seed similarity is low still have the same target. This indicated that besides genomic 
distance, seed and sequence similarities, more features need to be included in order to find 
more and better patterns shared by functionally alike miRNAs. Grimson et al. uncovered five 
general features of target site context beyond seed pairing that boost site efficacy (Grimson 
et al., 2007). In future research we will explore the site context in the miRNA relationship 
analysis. Additionally, we also consider taking into account miRNA co-expression patterns. 
In summary, we conclude that genomic distance, seed and sequence similarities are the 
determinants for describing the relationships of functionally similar miRNAs. Our method 
is complementary to the approaches that are currently used. It contributes to the 
improvement of target identification by predicting targets with high specificity. Moreover, it 
does not require conservation information for classification, so it is free from the limitations 
of some of the existing methods. In future research, with more biologically validated targets 
and features available, more rules can be generated from a large dataset, and consequently 
more targets can be identified to the functionally unknown miRNAs. The methodology can 
be transferred to a broad range of other species as well. 
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1.  Introduction 
 

Data Mining has become a prominent approach in recent years for generating rules within 
databases which concentrates on generating valuable information for decision making. 
Clustering, in Data Mining is the problem of identifying the distribution of patterns and 
intrinsic correlations in large data sets by portioning the data points into similarity classes. 
The traditional clustering algorithms which use distance between points define boundaries 
in clustering. But, these clustering mechanisms don’t apply on boolean and categorical 
attributes. The clustering is applied on unstructured data to extract knowledge that may 
take a form of predictive rules.  
Clustering enhances the value of existing databases by revealing rules in the data. These 
rules are useful   for understanding trends, making predictions of future events from 
historical data, or synthesizing data records into meaningful clusters. Through clustering are 
similar data items grouped together to form clusters. Clustering algorithms usually employ 
a distance metric based (e.g., Euclidean) similarity measure in order to partition the 
database such that data points in the same partition are more similar than points in different 
partitions. In this chapter, we study clustering algorithms for data with categorical 
attributes. Instead of using traditional clustering algorithms that use distances between 
points for clustering which is not an appropriate concept for boolean and categorical 
attributes, we propose a novel concept of HAC (Hierarchy of Attributes and Concepts) to 
measure the similarity/proximity between a pair of data points. 
Hierarchical clustering is one of the most frequently used methods in unsupervised 
learning. Given a set of data points, the output is a binary tree whose leaves are the data 
points and whose internal nodes represent nested clusters of various sizes. The tree 
organizes these clusters hierarchically, where the hope is that this hierarchy agrees with the 
intuitive organization of real-world data. 
Hierarchical structures are ubiquitous in the natural world. The idea of hierarchical (also 
known as agglomerative) clustering is to begin with each point from the input as a separate 
cluster. We then build clusters by, repeatedly merging the two clusters that are closest in 
features from the initial points. This gives a hierarchy of containment, as each point in the 
input belongs to a succession of larger clusters. If we keep merging, we end up with a single 
cluster that contains all points, and the structure of the hierarchy can be represented as a 
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(binary) tree. From this tree we can extract a set of k clusters. For example, terminating the 
merging when only k clusters remain, or when the closest pair of clusters are at a distance 
exceeding some threshold. The crucial part of this algorithm is to define a metric to measure 
the distance between two clusters of multiple points. One kind of definition that uses 
mathematical model is:  the smallest distance between a point in one cluster and a point in 
another; the greatest distance between such points; or the average distance. Each definition 
has its own advantages and disadvantages. 
This research focuses on hierarchical conceptual clustering in structured, discrete-valued 
databases. By structured data, we refer to information consisting of data points and 
relationships between the data points. This differs from a definition of unstructured data as 
containing free text and structured data containing feature vectors.   
Conceptual clustering is an important way of summarizing and explaining data [1, 6]. 
However, the recent formulation of this paradigm has allowed little exploration of 
conceptual clustering as a means of improving performance. Furthermore, previous work in 
conceptual clustering has not explicitly dealt with constraints imposed by real world 
environments. This chapter presents a clustering using HAC (Hierarchy of attributes and 
concepts), which is a hierarchical conceptual clustering system that organizes data so as to 
maximize inference ability. This algorithm uses both the hierarchical and conceptual 
clustering methods to implement clustering by discovering substructures in database which 
compress the original data and represent structural concepts in the data. Once a 
substructure is discovered, the substructure is used to simplify the data by replacing 
instances of the substructure with a pointer to the substructure definition. The discovered 
substructures allow abstraction over detailed structures in the original data. Iteration of the 
substructure discovery process constructs a hierarchical description of the structural data in 
terms of the discovered substructures. This hierarchy provides varying levels of 
interpretation that can be accessed based on the specific data analysis goals. 
An important property of the conceptual clustering is that, it can enhances the value of 
existing databases by revealing patterns in the data. These patterns may be useful for 
understanding trends, for making predictions of future occurrences from historical 
evidence, or for synthesizing data records into meaningful clusters. A conceptual clustering 
system accepts a set of object descriptions (events, observations, facts) and produces a 
classification scheme over the observations. These systems use an evaluation function to 
determine classes with "good" conceptual descriptions. A learning of this kind is referred to 
as learning from observation (as opposed to learning from examples). Typically, conceptual 
clustering systems assume that the observations are available indefinitely so that batch 
processing is possible using all observations. 
In this study, HAC will be used as an aid to represent medical domain knowledge 
substructures to simplify the generation process of the databases through clustering. As a 
result, the research will identify interesting relationships and patterns among the data, and 
represent them in the form of association rules. 

 
2. Related Work 
 

Clustering is the unsupervised classification of patterns (observations, data items or feature 
vectors) into  groups (clusters). The clustering problem has been addressed in many contexts 
and by researchers in many disciplines; this reflects its broad appeal and usefulness as one 

of the steps in exploratory data analysis. However, clustering is a difficult problem 
combinatorial and differences in assumptions and contexts in different communities have 
made the transfer of useful generic concepts and methodologies slow to occur [2].  
Hierarchical clustering is one of the most frequently used methods in unsupervised 
learning. Given a set of data points, the output is a binary tree (dendogram) whose leaves 
are the data points and whose internal nodes represent nested clusters of various sizes. The 
tree organizes these clusters hierarchically, where the hope is that this hierarchy agrees with 
the intuitive organization of real-world data. Hierarchical structures are ubiquitous in the 
natural world [5]. 
There are two general approaches to hierarchical clustering: top-down and bottom-up. The 
top-down approach starts with a cluster containing all points that is recursively split until 
enough sub clusters have been created. Heckel et al. [10, 11] use this approach on vector 
fields where each point has a position and a vector. The cluster with the highest error value 
will split into two clusters recursively so that the error values of the remaining clusters 
decrease with each split. 
The bottom-up approach starts with all points as individual clusters and merges the two 
clusters with least difference, until one big cluster has been formed from all clusters. Telea 
and van Wijk [10] use this approach to simplify complex vector fields using an elliptic 
similarity function. They merge the pair of vectors with the least position, magnitude and 
direction differences until all vectors have been merged into one single vector. 
Conceptual clustering is used to summarize the result. It enhances the value of existing 
databases by revealing patterns in the data. These patterns may be useful for understanding 
trends, for making predictions of future occurrences from historical evidence, or for 
synthesizing data records into meaningful clusters. The hybrid conceptual clustering [3] is 
used to handle both the incremental and non incremental problems for clustering 
successfully but it is computationally expensive moreover can be applied on small data sets. 
In past decades, many conceptual clustering algorithms have been proposed which can 
automatically acquire knowledge or concepts from large amounts of information acquired 
from experience or observation [1, 7, 8, 9]. Concepts in COBWEB are represented by 
probabilistic expressions and are acquired by using four learning operators and an 
evaluation function called category utility. But the category utility used in original COBWEB 
has a bias to prefer larger size classes in concept hierarchy. This bias produces some 
spurious intermediate nodes in concept hierarchy (classification tree). These nodes make 
tree deeper and complex, so we can’t understand concepts within the nodes of tree easily 
[9]. 
This chapter presents an efficient non-metric measure called HAC (Hierarchy of Attributes 
and Concepts) for clustering of categorical as well as non-categorical(quantitative) data 
through which the proximity and relationships between data items can be identified. 

 
3. Information 
 

3.1 Hierarchy of Attributes and Concepts 
The present paper introduces a hierarchical description of concepts by attributes, 
mathematical formalization presents the concepts as matrices whose columns represents 
terms constructed by attributes. A spherical model is developed to present a vocabulary  
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Conceptual clustering is an important way of summarizing and explaining data [1, 6]. 
However, the recent formulation of this paradigm has allowed little exploration of 
conceptual clustering as a means of improving performance. Furthermore, previous work in 
conceptual clustering has not explicitly dealt with constraints imposed by real world 
environments. This chapter presents a clustering using HAC (Hierarchy of attributes and 
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maximize inference ability. This algorithm uses both the hierarchical and conceptual 
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compress the original data and represent structural concepts in the data. Once a 
substructure is discovered, the substructure is used to simplify the data by replacing 
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terms of the discovered substructures. This hierarchy provides varying levels of 
interpretation that can be accessed based on the specific data analysis goals. 
An important property of the conceptual clustering is that, it can enhances the value of 
existing databases by revealing patterns in the data. These patterns may be useful for 
understanding trends, for making predictions of future occurrences from historical 
evidence, or for synthesizing data records into meaningful clusters. A conceptual clustering 
system accepts a set of object descriptions (events, observations, facts) and produces a 
classification scheme over the observations. These systems use an evaluation function to 
determine classes with "good" conceptual descriptions. A learning of this kind is referred to 
as learning from observation (as opposed to learning from examples). Typically, conceptual 
clustering systems assume that the observations are available indefinitely so that batch 
processing is possible using all observations. 
In this study, HAC will be used as an aid to represent medical domain knowledge 
substructures to simplify the generation process of the databases through clustering. As a 
result, the research will identify interesting relationships and patterns among the data, and 
represent them in the form of association rules. 
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Clustering is the unsupervised classification of patterns (observations, data items or feature 
vectors) into  groups (clusters). The clustering problem has been addressed in many contexts 
and by researchers in many disciplines; this reflects its broad appeal and usefulness as one 

of the steps in exploratory data analysis. However, clustering is a difficult problem 
combinatorial and differences in assumptions and contexts in different communities have 
made the transfer of useful generic concepts and methodologies slow to occur [2].  
Hierarchical clustering is one of the most frequently used methods in unsupervised 
learning. Given a set of data points, the output is a binary tree (dendogram) whose leaves 
are the data points and whose internal nodes represent nested clusters of various sizes. The 
tree organizes these clusters hierarchically, where the hope is that this hierarchy agrees with 
the intuitive organization of real-world data. Hierarchical structures are ubiquitous in the 
natural world [5]. 
There are two general approaches to hierarchical clustering: top-down and bottom-up. The 
top-down approach starts with a cluster containing all points that is recursively split until 
enough sub clusters have been created. Heckel et al. [10, 11] use this approach on vector 
fields where each point has a position and a vector. The cluster with the highest error value 
will split into two clusters recursively so that the error values of the remaining clusters 
decrease with each split. 
The bottom-up approach starts with all points as individual clusters and merges the two 
clusters with least difference, until one big cluster has been formed from all clusters. Telea 
and van Wijk [10] use this approach to simplify complex vector fields using an elliptic 
similarity function. They merge the pair of vectors with the least position, magnitude and 
direction differences until all vectors have been merged into one single vector. 
Conceptual clustering is used to summarize the result. It enhances the value of existing 
databases by revealing patterns in the data. These patterns may be useful for understanding 
trends, for making predictions of future occurrences from historical evidence, or for 
synthesizing data records into meaningful clusters. The hybrid conceptual clustering [3] is 
used to handle both the incremental and non incremental problems for clustering 
successfully but it is computationally expensive moreover can be applied on small data sets. 
In past decades, many conceptual clustering algorithms have been proposed which can 
automatically acquire knowledge or concepts from large amounts of information acquired 
from experience or observation [1, 7, 8, 9]. Concepts in COBWEB are represented by 
probabilistic expressions and are acquired by using four learning operators and an 
evaluation function called category utility. But the category utility used in original COBWEB 
has a bias to prefer larger size classes in concept hierarchy. This bias produces some 
spurious intermediate nodes in concept hierarchy (classification tree). These nodes make 
tree deeper and complex, so we can’t understand concepts within the nodes of tree easily 
[9]. 
This chapter presents an efficient non-metric measure called HAC (Hierarchy of Attributes 
and Concepts) for clustering of categorical as well as non-categorical(quantitative) data 
through which the proximity and relationships between data items can be identified. 
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The present paper introduces a hierarchical description of concepts by attributes, 
mathematical formalization presents the concepts as matrices whose columns represents 
terms constructed by attributes. A spherical model is developed to present a vocabulary  
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(spanned space) of concepts. In the beginning of this section the following definitions are 
introduced. 
Attribute:  Is a basic characteristic or a feature of a term. 
Term:  Is considered as a set of connected attributes. 
Concept: Is a language independent meaning associated with at least one term, or set of 
terms. 
Vocabulary: Is a set of terms and concepts. 
HAC is both a hierarchical and conceptual clustering system that organizes data to 
maximize inference ability. This algorithm implements clustering by discovering 
substructures in database which compress the original data and represent structural 
concepts in the data. Once a substructure is discovered, it is used to simplify the data by 
replacing instances of the substructure with a pointer to the substructure definition. The 
discovered substructures allow abstraction over detailed structures in the original data. 
Iteration of the substructure discovery process constructs a hierarchical description of the 
structural data in terms of the discovered substructures. This hierarchy provides varying 
levels of interpretation that can be accessed based on the specific data analysis goals. HAC 
accepts database of structured data (concepts) as input. This type of data is naturally 
represented using a graph or diagrammatical form. The graph representation includes 
labeled vertices with vertex ID (identification) numbers, attributes on X-axis and downward 
directed edges (see Fig 1). Each vertex represents a concept and the value of that concept is 
given by the directed edges (usually map to the attribute’s value on X-axis or to some other 
concept).   
 

  
Fig. 1. The Graphical representation of HAC 
 
  

Table 1. The HAC attribute Table based on   attribute allergies. 
 
Using the graph we can create a concept table for every attribute in the database and this 
table will have all the concepts and their value which are relevant according to the attribute. 
Ultimately with the help of these concept tables we can get a table where each record will 
have an attribute name, its value and relationship with other concepts. Each attribute in 
such a table represents a cluster. 
For example Table1, which is formed from set of documents within the domain of 
education, consist of three columns. The second column specifies the attribute name and the 
third column specifies the attribute values. Now from table 1 we form another table called 
Concept Table (Table 2). Every row in this table (Table 2) consists of three fields. The first 
field shows the concept name whereas the second and third attributes represents concept 
value and concept attributes. 
For example, the Concept Name C1 whose value is sense is a concept formed from the 
attributes F1,F2,F12,F17,F21,F36,F54 which represents various Food ID’s. Recall that HAC 
can be represented as a closed diagramatical entity shown in Fig 2. 
 
 
 

ID Disease Name Causes Id 

1 Acute sinusitis K1,K2,K3,K4 

2 Anaphylaxis K5,K6,K7,K8,K9,K10,K11,K12,K13,K14,K15,K16 

3 Penicillin allergy K6 

4 Latex allergy K17,K18 

5 Peanut allergy K6,K19,K20,K21,K22,K23,K24,K25,K26,K27,K28,
K29,K30,K31 

6 Mold allergy K32 

7 Nickel allergy K21,K29,K33,K34,K35,K36,K37,K38,K39 

8 Dust mine allergy K40 

9 Asperigillosis K29,K41,K42,K4,K44 

10 Soy allergy K45,K46 

11 Shellfish allergy K47,K48,K49,K50,K51,K52,K53,K54,K55,K56 

12 Wheat allergy K57,K58,K59,K60 

……… …… …………. 

20 Food allergy 

K6,K7,K8,K9,K10,K11,K23,K24,K45,K46,K47,K4,
K49,K50,K51,K52,K53,K54,K56,K57,K58,K59,K60
,K62,K63,K64,K65K66,K67,K68,K88,K89,K90,K91

,K92,K93 
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For example, the Concept Name C1 whose value is sense is a concept formed from the 
attributes F1,F2,F12,F17,F21,F36,F54 which represents various Food ID’s. Recall that HAC 
can be represented as a closed diagramatical entity shown in Fig 2. 
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Table 2. The HAC concept Table based on the  attribute Food Category.

 
3.2 Approach 
HAC is both a hierarchical and conceptual clustering system that organizes data so as to 
maximize inference ability. This algorithm implement clustering by discovering 
substructures in database which compress the original data and represent structural 
concepts in the data. Once a substructure is discovered, the substructure is used to simplify 
the data by replacing instances of the substructure with a pointer to the substructure 
definition. The discovered substructures allow abstraction over detailed structures in the 
original data. Iteration of the substructure discovery process constructs a hierarchical 
description of the structural data in terms of the discovered substructures. This hierarchy 
provides varying levels of interpretation that can be accessed based on the specific data 
analysis goals. 
HAC accepts database of structured data (concepts) as input. This type of data is naturally 
represented using a graph. The graph representation includes labeled vertices with vertex id 
numbers, attributes on X-axis and downward directed edges. Each vertex represents a 
concept and the value of that concept is given by the directed edges (usually map to the 
attribute’s value on X-axis or to some other concept).  With this graph we can make a 
concept table for every attribute in the database and this table will have all the concepts and 
their value which are relevant according to the attribute. Ultimately with the help of these 

Food Category 
ID

Food Category Food  ID 
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C8 Bakery F11,F13,F14,F20,F43,F45,F51

C9 Drinks F9,F15,F24,F25,F35,F39 

C10 Fat items F22,F28,F41,F5 

C11 Seeds F42,F60,F61 

C12 Leafyand Salad  
vegetables 

F52,F57,F64,F65,F79,F88

C13 Junk foods F19,F23,F27,F31,F38,F49,F44,F46,F47,F94

C14 Spices F34,F56,F62,F63,F66 

concept tables we can get a table in which each record will have an attribute name, its value 
and relationship with different concepts. Each attribute in this table represents a cluster. 
 

 
Fig. 2. The Triangular representation of the HAC. 

 
4. Spherical Model 
 

The graph model developed in the previous section is useful for connection purposes. To 
provide an opportunity to generate and manipulate concepts a matrix form is considered 
here after. 

 
a11  a12  .………….. a1n 

…………………………………. 

                                                Ckxn     =          ....………………………………. 

…………………………………. 

ak1  ak2 …………… akn 

 
Every column in Ckxn represents a term and every aij represents an attribute. Thus every 
concept could be decomposed to set of independent terms and every term be generated by 
pivot element. Therefore every concept (matrix) could be transformed to set of linearly 
independent terms (columns), created by linearly independent attributes (enteries). As a 
consecuence every concept will have an invertable minor and the dimensions of this minor 
will be called a rank of the concept. The set of linearly independent terms Ti where i = 1, 
2,…, n over the field of real numbers may span the entire set of concepts. 
 

                             T = span {Ti} i=1,…..,m                                                          (1) 
 
If the dimension of the set T is too large the matrix form of concepts presentation would 
happen to be memory inefficient. To overcome this obstacle a spherical model is developed 
to represent terms and concepts generation. The central section of the sphere represents the 
entire set of  linearly independent  attributes used to build up the basis Ti where i = 1, 2,…, 
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m. The next part forms the terms and is followed by concepts. Finally the model is ending 
with only one highest point as shown in figure 3.  
If the total number of terms, coming from a certain domain, is n then the maximum number 

of concepts to be generated by (n-1) terms over a numerical field of 1 element (number) is   
 





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


1n
n  . 

 
But if n-2 elements are used over the same numeric field the number of composed concepts 
would be  









 2n
n . 

 
Fig. 3. The Spherical Model 
 
Therefore the total number of concepts to be generated over a field with 1 element and n 
terms is 2n . If the numeric field consists of j elements (numbers), and the maximum size of a 

term (column) is k then the total number of concepts to be generated is nkj 2 . From 
theoretical view point it could be a very big number, but in practice the number of concepts 
would be smaller because some terms could happen to be mutually contradictive and 
cannot be linked in a single concept.

 
5. Algorithm 
 

On the basis of the theoretical concepts an algorithm is developed to form an HAC. 
Algorithm Forming_of_HAC_Clusters (A_Name [], A_Values []) 

1. Make concept tables for different attributes using HAC. In this basically we have to 
make such that each level or concept is meaningful.  

2. Now, make a “Cluster Point Table” which will have attribute name, attribute value 
and relationship with different concepts. Attribute name is basically the name of 
cluster and each and every attribute name is associated with an attribute value 

3.  Concept will give the value of cluster which is a combination of different attributes 
and concepts.  

4. Concept values can be generated by using following steps: 
5. Let total_num= Total number of attributes values   in given table; 
6. While I <= total_num 
       Begin: 
        Num=1; 

AC_1=total number of Attribute or concepts in  concept table; 
AC _2=total number of Attribute or concepts in concept table; 

                     If AC_1 and AC_2 forms a cluster 
                               C_num= AC _1 * AC _2; 
                                Num++; 
                    End if 
                    Increment I; 
               End. 

7.  For i=1 to num 
Vi = total number of records under different    
combination of C1 (j, j+1---m) and C2 (k, k+1----n) 
Here, V (i, i+1----total_num) are different clusters or attributes in Cluster Point Table. 
C1 (j, j+1---m) are different concepts of concept table1 

                      C2 (k, k+1---m)   are different concepts of concept table2 
From this Cluster Point table and Concept tables (made through HAC) we can generate 
rules.  
The above algorithm is used to form the concepts and form an HAC from the given attribute 
values. The same algorithm is used if an update of an HAC is needed. The algorithm is 
capable of adding new concepts, terms and attributes. 

 
6. Case Study: Clustering Using the HAC 
 

This is an example between various allergy diseases and food categories in an allergy 
database. First a chart of  various concepts is formed in which each concept will have allergy 
disease name as its value. Note that it could include multiple entries.   

 
6.1 HAC1 
In Table 1 which is an attribute table for allergy disease, the attribute names are mapped 
with its values for reference purposes. The concepts D1 through D20 in the TACR for the 
attribute “Allergy diseases” shown in Table 3 summarize the concepts in the HAC hierarchy 
of Figure 1 that hold among different attributes and concepts of diseases.  
Note that the root concept D20 embraces all concepts and attributes of “Food related allergy 
diseases.” 
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In Table 1 which is an attribute table for allergy disease, the attribute names are mapped 
with its values for reference purposes. The concepts D1 through D20 in the TACR for the 
attribute “Allergy diseases” shown in Table 3 summarize the concepts in the HAC hierarchy 
of Figure 1 that hold among different attributes and concepts of diseases.  
Note that the root concept D20 embraces all concepts and attributes of “Food related allergy 
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Table 3. TACR for Allergy Diseases 

 
6.2 HAC2 
Similarly, we can build the HAC structure for another attribute “Food category” as shown 
in Figure 4. The hierarchy shows a conceptual relationship among the values and concepts 
related to the attribute “Foods”.  For this purpose the attribute table in Table 2 is used. 

Food ID Food values 
 

F1 Eggs 
F2 Milk 
F3 Fish 
F4 Shellfish 
F5 Tree nut 
F6 Beans 
F7 Wheat 
F8 Gluten 
F9 Alcoholic drinks 
F10 Beef 
F11 Bread 
F12 Butter 
… ……… 

F95 Cherry 
Table 4. TACR for Food Category 

Cause ID Cause 
K1 cold virus 
K2 

bacterial or fungal 

K3 
deviated nasal septum 

K4 nasal polyps 
K5 Drugs 
K6 Peanuts 
K7 tree nuts 
K8 Milk 
K9 Eggs 

K10 Fish 
K11 Shellfish 
K12 Insect stings from bees 

………. ……….. 
K93 Mushrooms 

The concepts C1 through C14 in the TACR for the attribute “Food Category” shown in Table 
4 summarize the concepts in the HAC hierarchy of Figure 4 showing the relationships 
among different values and concepts associated with Food Category. 
Using the TACRs for the selected attributes, Diseases and Food Category in this case, a 
graph can be constructed to represent clusters at concept levels. The graph is shown in 
Figure 5. Each point in the graph represents a concept that is formed by a combination of 
attribute values. Let’s call this point in the graph a Concept Cluster Point (CCP). Since the 
cluster point represents a high level concept, it naturally converts to a rule that matches with 
a concept. Furthermore, the support of each rule can be given by calculating the number of 
contributing entries in the original relational table to form the concept. 

 
 
 
 
 
 
 
 
 
 
 

Table 5. Cluster Point Table 
 
In Table 5 above, the CCPs V1 through V9 each represent a concept cluster representing a 
high level concept associated with departments and degrees with a support value. Hence 
the next step is to convert these CCPs into characteristic rules. To help this process, the CCP 
graph in Figure 5 is used. Note that each CCP is associated with an appropriate support 
value which represents the weight to support the converted rule representing the concept. 
Each CCP in Figure 5 represents rules regarding how many people affected with specific 
allergy affected by food category and concepts. A rule can directly be generated from the 
cluster point table with the support from the attribute tables and TACRs. The cluster point 
table is shown as cluster point graph, each point in the graph represents rule associated with 
support. For example, if we want to query how the milk allergy is affected by dairy 
products. 
 

Conceptual 
Points 

Support Concepts 
(diseases) 

Concepts 
(food 
category) 

V1 5 D5 C5 
V2 2 D10 C5 

V3 6 D11 C2 

V4 6 D12 C4 

V5 2 D13 C1 

------ --- ----- ---- 
V15 1 D20 C6 

V16 1 D20 C7 
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Fig. 4. HAC for Food and Foodtypes 
 
In this example, the milk allergy has D13 and the dairy product is C1, both the combination 
of D13 and C1 represents V3 that has support 5. 
 

 
Fig. 5. Cluster Point Graph 

 
7. Implementation   
 

We have used a medical database which contains information about patient causes and food 
types. This is generated syntactically based on the case studies found in the websites [13, 14]. 
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We used 2 concept tables for implementation of our algorithm; first concept table is for 
attribute ‘Allergy diseases’ and second concept table is for attribute ‘Food categories’. 
Each concept table will have a different hierarchy level for respective attributes, example in 
Concept table for attribute ‘Allergy disease’ concept D1 (Acute sinusitis) represents 
hierarchy level of cold virus, bacterial or fungal, deviated nasal septum, nasal polyps. 
Similarly concept table for the attribute ‘Food categories’ represents different hierarchy level 
of degrees. Using these two concept tables we made ‘Cluster Point Table’ which has all the 
possible clusters, each cluster is a combination of ‘Allergy disease’ attribute and ‘Food 
categories’ attribute. 
We used non-numeric or categorical data for our clustering algorithm. This algorithm is 
implemented in ‘JAVA’ with a simple user interface which makes it very easy to use. User 
just needs to select different concepts of different attributes, concepts are dynamically 
generated from concept tables in database. After selecting the concepts the user needs to 
press the ‘Submit’ button that will display the result or you can say rules for our ‘Cluster 
Point Graph’ on an additional results page. ‘Cluster Point Graph’ represents all the clusters 
possible from different combinations of different concepts. 

 
8. Result   
 

Depending on the concept tables the results are generated in the form of rules. Each row in 
the ‘cluster point table’ represents a cluster that takes a form of rule. The total number of 
rules depends on the number of concept tables. Here we are using two concept tables that 
have generated rules has follows: 
1. The two concept tables used are Allergy Diseases and Food Categories. The sample rules 
generated such as: 

a) Most likely, the persons are affected by specific allergy due to specific food 
category. 
b) The total number of persons with specific values of different concepts. 
From the user perspective the user selects the disease and food category then it 

shows the resulted cluster value from cluster point table. If the user select Concept ‘Milk 
Allergy’ and Concept ‘Dairy Products’ if you submit the query then it will generate the rule 
as ‘There are 5 persons affected by ‘Milk Allergy’ due to ‘Dairy Products’ or either way we 
can generate the rule or there are 45 persons with different symptoms are affected. The 
sample result is shown in Figure 6.  
2. Furthermore, the algorithm can be implemented on three concept tables. These generates  
rules,  based on the concept tables and input tables. The HAC generates different rules 
based on the concept tables with different combinations of concepts. Each concept table 
represents conceptual hierarchies of categorical attributes. This algorithm specifies the 
clustering on categorical attributes on the concept tables to derive the association rules in the 
form of cluster point table. 
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Fig. 6. Sample output screen of Cluster Point table 
 

9. Conclusion   
 

In this paper, we studied the hierarchical conceptual clustering applied on structured 
databases. We have given a new method of HAC with conceptual clustering to explore 
categorical data. The main contributions of the paper are to develop HAC algorithm which 
is applied on categorical attributes instead of traditional algorithms which apply the 
distance metric measures. The results show that the data is categorized using hierarchical 
conceptual clustering with HAC. There are numerous types of clustering techniques most of 
these techniques are applicable only on the unstructured data. Sometimes, there is a need to 
apply clustering on categorical attributes which is not suitable to apply on it. So, the non-
metric measures are used to perform clustering on the categorical attributes which 
represents the closest proximity between the data attributes. HAC is used to represents 
databases in the form concept tables for categorical data which contains the concepts formed 
on the domain. This technique can be applied on any of the fields which have structure data. 
The information is extracted using the HAC algorithm from structured data.  
The structured data is applied on input and the results formed are rules extracted from the 
data. Clustering is important for both types of data. The modern data mining mechanisms 
are used to apply on the data. From a machine learning standpoint, this research has been 
greatly influenced by work in conceptual clustering. HAC seeks classifications that 
maximize a heuristic measure (as in conceptual clustering systems) and uses a search 
strategy abstracted from incremental systems such as UNIMEM [8].  
 
10. Future Work    
 

Our algorithm can be effective in the medically related areas to allergic disease.  
Implementing this algorithm with multiple concept tables can be a potential extension of the 
approach in our case we have implemented only on two concept tables. Another important 
enhancement of this algorithm can be its implementation on other domains in medicine and 
also domains apart from medical areas. 
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1. Introduction     
 

1.1 Knowledge representation 
The most essential part of building an expert system is the acquirement and representation 
of domain knowledge. In the seventies, Feigenbaum indicated the important concept of 
knowledge engineering. He emphasized that to utilize knowledge in problem-solving 
process is equally important with knowing how to solve a problem. Knowledge, according 
to how it is stored, can be classified to tacit knowledge and explicit knowledge. The tacit 
knowledge, existing in the brain of experts, can only be acquired through interviewing the 
domain experts. On the other hand, the explicit knowledge can be expressed clearly. Since 
explicit knowledge is easier to be handled, it was used in most expert systems. 
Knowledge representation affects how problems are solved. Human knowledge can be 
expressed in the form of mathematic formulas, speech, text and figures. In artificial 
intelligence domain, especially in expert system research, several knowledge representation 
forms had been proposed (Negnevitsky, 2002). They are: 

1. Semantic networks (Quillian, 1965, 1968):  
Using directed graph to represent knwolege objects and their relationship. 
Each object in the network is linked to other objects by their semantic 
relationships. 

2. Case-based format (Watson, 1997; Kolodner 1993):  
Knowledge is stored in the form of cases-solutions.  

3. Rule-based format (Triantaphyllou & Felici, 2006):  
If-Then rules are stored as the knowledge source. 

4. Frame-based format (Minsky, 1975):  
Objects are divided into several frames, and each frame contains its 
corresponding attribute to describe the characteristics of the objects. 

5. Ontology (Munn, 2009 ; Uschold & Gruninger, 1996):  
It is a representation of some pre-existing domain of reality which reflects the 
properties of the objects within its domain in such a way that there obtains a 
systematic correlation between reality and the representation itself. It is 
formalized in a way that allows it to support automatic information 
processing.   

22
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In this study, we adopted the concept of both ontology and frame-based approach for the 
knowledge representation. 

 
1.2 Domain Knowledge (Eco-knowledge) 
Many researches in 70’s revealed that attempting to make a general purpose intelligent 
system is an unrealistic idea (Newell and Simon, 1972). The inference engine for a general 
purpose system is hard to build, the knowledge base is also difficult to accumulate and 
integrate. To make intelligent systems feasible for real applications, it was suggested that 
one should focus his application on a specific domain. Thus, domain knowledge plays a 
very important role in the realization of an intelligent system. 
Accompany with the raising of eco-consciousness, going outdoor for an eco-tourism 
becomes a popular activity in these days. During an eco-tourism, people observe many 
animal and plant species, and will like to know about their names, characteristics, behaviors 
and further knowledge. To acquire eco-knowledge, people can listen to the explanation of a 
narrator or consult illustrated handbooks. However, it would be wonderful if we can build 
an intelligent system which is able to answer queries about specific eco-knowledge. 
This goal of building an intelligent eco-knowledge system engenders three problems: (1) it 
requires large amount of labor to sort out all the domain knowledge; (2) it has to deal with 
the problem that sentences with different wording maybe describe the same fact; (3) non-
expert person may not familiar with those proper nouns used by the narrator and the 
handbooks. 
Thanks to the massive progress of linguistic processing techniques, it is possible to deal with 
large amount of corpora to extract the most meaningful part for flexible applications. Also, 
the pattern matching techniques enable the matching and discrimination between different 
terms more efficiently and correctly. Thus it is very possible to make our goal realize, i.e., to 
build an intelligent system for ordinary people to inquire eco-knowledge.  
In Taiwan, the fact that there are over 500 wild bird species and eco-tourism being more 
popular makes bird watching a prevalent activity. Thus, this study is aimed to build an 
intelligent system for wild bird knowledge inquiring. The specific aims are: (1) to define the 
major key-features of the wild birds; (2) to collect the descriptions of wild birds; (3) to 
extract the linguistic features of the corpora; (4) to build up structural domain expertise 
automatically; (5) to define a coding schema for transforming key-features into lexical 
vectors; (6) to define the membership values of key-features; (7) to evaluate the similarity 
measurement of different key-features; (8) to illustrate the top-N answers for the input 
inquires. 

 
2. Materials and Methods 
 

Our research framework consists of four major parts as shown in Figure 1. They are 
described in detail in the following paragraphs. 

Linguistic processing:

• Domain lexicon extraction
• Word tagging
• Sentence expansion/reformatting
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(a)     (b) 
Fig. 1. The research framework for the intelligent wild bird knowledge system. (a). the 
training phase; (b). the testing phase. 

 
2.1 Semi-structural Corpora 
The input corpora are the so-called semi-structural domain knowledge, which contained the 
descriptions of each of the 442 wild bird species in Taiwan. Here, semi-structural means that 
the descriptions in the corpora seem follow a certain structural, however, variations often 
can be observed in such corpora. For example, the following sentences are all describing a 
fact that the bird has a white tail: 

 It has a white tail. 
 Its tail is white. 
 It has a tail in white. 

The above sentences, although in slightly different format, all consist of the part (of bird) 
and the attributes. Actually, it is the common format for most eco-knowledge descriptions 
found in the illustrated books. When describing an object (specie), the sentences are 
represented in the following form: 
 
 object  -> {[part]} 
 [part]  ->  [part name] + {[attributes]} 
 [part]   -> {[attributes]} + [part_name] 
 [attribute] -> [color] + [texture] + [shape] + [modifier] 
 [part_name] -> {head, neck, tail, wing, back, beak …} 
 [color] -> {black, brick-red, red, brown, dark grey …} 
 [modifier] -> {long, shinny, tiny, conspicuous …} 
 
Words in braces may appear repeatedly; words in square brackets are variable terms which 
can be further decomposed into other components; words without brackets are final 
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symbols, i.e., those which found in the original descriptions. The next step is to define the 
final symbols, i.e., the domain lexicon to reduce the complexity of processing. 

 
2.2 Linguistic Processing 
As shown in the previous section, the domain lexicon contains five types: [part_name], 
[color], [texture], [shape] and [modifier]. Since [part_name] contains the domain specific 
words, it has to be defined first by domain experts. The other four types of lexicon can be 
derived automatically by applying linguistic processing tools: CKIP AutoTag (CKIP, 2009) 
and HowNet (Dong & Dong, 2009).  
In order to derive the domain lexicon, we apply the auto-tagging program, which is 
developed by CKIP group, to perform word segmentation and obtain the POS (part-of-
speech) tags of each word. The semi-structural corpora are fed to the auto-tagging program, 
and the resulting POS-tagged words are then processed by HowNet (Dong & Dong, 2009). 
HowNet is an on-line common-sense knowledge base unveiling inter-conceptual relations 
and inter-attribute relations of concepts. For each meaningful word, HowNet provide its 
semantic attributes. For instance, we can extract words with the attribute “color” easily from 
HonNet. Thus, by examining all the processed words, we can group those words with 
attribute “color” together and thus form the [color] domain lexicon. Same procedure can be 
applied to the [part], [texture] and [modifier] domain lexicons. 
The derived domain lexicon may contaian words which are too rare or too detailed. It will 
cause further processing inefficient. Thus, those lexicon need to be refined. For the four 
types of lexicon, i.e., [part], [color], [texture] and [shape], the refinement processing is 
described below.  
The [part] lexicon originally contain more than 130 words, however, they can be reduced to 
the most foundamental parts. For example, the words {forehead, upper head, backhead, hair, 
tophead} are reduced to the foundamental form „head“.  
The [color] lexicon contains 152 color words. Based on the theory of basic color (Berlin & 
Kay, 1969), they are reduced to 11 foundamental colors: {black, grey, white, ping, red, 
orange, yellow, green, blue, purple, brown}. 
The [texture] lexicon is reduced to 16 words: {M-shape, Z-shapre, V-shape, fork-shape, T-
shape, triangular,  mackerel scale, worm hole, round, wave, point, line, thick spot, thin spot, 
horizontal, vertical}. 
The [modifier] lexicon contains those with HowNet attributes „modifier“. Those words are 
used as emphasized words, such as {striking, shinny, straight, interlaced, ...} 

 
2.3 Vector Encoding 
Each sentence in the corpora is transformed into two types of vectors, i.e., the lexical vector 
and the fuzzy vector. The lexical vector concerns the lexical part of the described sentences. 
Lexical vector encoding is simply binary encoding. The elements of the lexical vector are 
either 0’s or 1’s. The dimension of lexical vector equals to the number of all reduced lexicon 
terms. (That’s why we reduced the lexicon terms as mentioned above, i.e., to reduce the 
dimension for faster processing). For each word in the sentence to be encoded, it causes an 1 
in the corresponding dimension of the vector.  
 

The fuzzy vector of a sentence consists of the membership value between sentence-words 
and lexicon-words. The membership values are divided into three types: part, color and 
texture.  We can use three tables to illustrate how fuzzy vector encoding is done. 
For fuzzy membership of [part], each detailed-part word is valued by the relationship of 
how it closes to the fundamental parts. This process is done by averaging several expert’s 
opinions of the membership values. An example membership table is shown below: 
 

 Fundamental parts 
Head Back Tail Body Wing Ear Beak ... 

Detailed 
parts 

Forehead 0.8 0 0 0 0 0 0 ... 
Upper 
beak 

0.1 0 0 0 0 0 0.9 ... 

... ... ... ... ... ... ... ... ... 
Table 1. Membership table for detailed parts. 
 
The [color] membership is obtained by the subjective opinions of 10 tagers. For each 
detailed-color word, the membership value for the eleven fundamental colors are taged and 
averaged to produce a membership table. An example membership table is shown below: 
 

 Fundamental colors 
Black Red White Orange Pink Grey Brown ... 

Detailed 
colors 

Dark 
brown 

0.1 0.4 0 0 0 0 0.9 ... 

Rust 0.2 0.5 0 0 0 0.1 0.6 ... 
... ... ... ... ... ... ... ... ... 

Table 2. Membership table for detailed colors. 
 
The [texture] membership table can be derived by a similar process. Combining all three 
membership values, a sentence can then be encoded into a fuzzy vector.  

 
2.4 Vector Similarity Measure 
In vector space, the similarity of two vectors X and Y can be calculated using five methods 
(Manning & Schutze, 1999) as shown in the Table 3. 
 

Similarity measure Definition 
Mathcing coefficient  
Dice coefficient 

 

Jaccard (or Tanimoto) coefficient  

Overlap coefficient  

Cosine measure  

Table 3. Definitions of Vector similarity. 
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While calculating the similarity of two vectors, most approached used the cosine measure of 
vector intersection angle. However, since it’s hard to predict the fuzzy degree of object 
description made by user, fuzzy encoding vectors should not use the same similarity 
measure as literal vectors did.  In this study, we use Cosine similarity measure for lexical 
vectors and Overlap coefficient for fuzzy vectors. The final similarity of two descriptions is 
evaluated according to the measure combining the weight of lexical similarity (SLex) and 
fuzzy similarity (SFuz). The similarity can be evaluated by the following formula: 
 

  (1) 
 
The literal similarity of two vectors can be defined by equation (2). 
 

  (2) 

Where, m is the dimension of the literal vector. 
 
Let S and T be two-dimensional matrix (table) of two sentences. The fuzzy vector similarity 
can be expressed as equation (3) below. 
 

  (3) 
 
Where, olp(A,B) represent the overlap coefficient of vector A, B. The equation for olp(A,B) is 
shown below: 
 

  (4) 

 
where, C=(c1,c2,…cn), ci=min(Ai,Bi) 

 
3. Results and Discussion 
 

The training corpus is a popular illustrated handbook (Wang et al, 1991) with detail 
descriptions of the features of 442 wild birds in Taiwan. The content is highly recommended 
by the bird watchers in Taiwan. The structures of the descriptions are very similar, however, 
the sentences may not grammatically valid due to the need of reducing the page amount. 
There are totally 6257 sentences in the training corpus.   
The testing material varies from three scopes: 1) content of 40 birds from another illustrated 
handbook (Wu and Hsu, 1995); 2) descriptions of 20 random chosen birds made by a 
domain expert; 3) naive people’s descriptions of 20 randomly chosen birds. The testing 
handbook contains similar description format as the training one, but was published by 
different group of people. The expert is a senior birdwatcher with experience of bird 
watching more than eight years. The naive people had no experience or expertise of wild 
birds. Figure 2 shows the four types of description for a bird named Black-browed Barbet. 
 
 
 

五色鳥 (Black-browed Barbet) 
Corpus 
source Description in Chinese Description in English 

A 

嘴粗厚，黑色，腳鉛灰色。頭

部大致為藍色，額、喉黃色，

眉斑雜有黑色羽毛，眼先有紅

色斑點，前頸亦有紅斑。後

頸、背部鮮綠色，胸以下鮮黃

綠色。 

Beak is thick, black, foot is lead-grey. Head is 
almost blue, forehead and throat is yellow, 
eyebrow contain black feather, red dot in 
front of eye, fore_neck has red dot too. 
Back_neck and back is bright green, yellow-
green below chest.  

B 

頭部由鮮豔的紅、黃、青、

綠、黑組成，所以才稱為五色

鳥。頭部大致為藍色，額、喉

黃色，眉斑雜有黑色羽毛，眼

先有紅色斑點，前頸亦有紅

斑。後頸、背部均為鮮綠色，

胸以下鮮黃綠色。 

Head consist of five bright colors: red, yellow, 
blue, green and black, that’s why it is named 
“five-color bird”. Head is almost blue, 
forehead and throat is yellow, eyebrow 
contain black feather, red dot in front of eye, 
fore_neck has red dot too. Back_neck and 
back is bright green, yellow-green below 
chest.  
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全身綠色。嘴基粗厚，鐵灰

色。腳灰綠色。頭藍色，額頭

跟喉黃色。眼先有紅點，眉斑

黑色。 

The whole body is green. Beak-base is thick, 
iron-grey. Foot is grey-green. Head is blue, 
forehead and throat is yellow. A red dot 
before its eye, eyebrow is black. 

D 
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色、黑色。頭部藍色，額頭、

喉嚨黃色，頸部有紅斑。後頸

部、背面綠色。 

Its head is red, yellow, blue, green and black. 
Head is blue, forehead and throat is yellow, 
neck contain red dot. Back_neck and back is 
green. 

Table 4. Example of descriptions for the Black-browed Barbet. The description comes from 
the (A) training handbook, (B) testing handbook, (C) expert and (D) naive people, 
respectively. 
 
The experiments were performed with the weight factor α set to 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1 
respectively. The value of α is equal to zero if we want to ignore the lexical score; and is 
equal to one if we want to ignore the fuzzy score. For each testing bird, the top-N scores are 
recorded with N=1, 3, 5, and 10. The experimental results are shown in Figure 3 and Figure 
4. 
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  (1) 
 
The literal similarity of two vectors can be defined by equation (2). 
 

  (2) 

Where, m is the dimension of the literal vector. 
 
Let S and T be two-dimensional matrix (table) of two sentences. The fuzzy vector similarity 
can be expressed as equation (3) below. 
 

  (3) 
 
Where, olp(A,B) represent the overlap coefficient of vector A, B. The equation for olp(A,B) is 
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  (4) 

 
where, C=(c1,c2,…cn), ci=min(Ai,Bi) 
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Fig. 4. The averaged score of top-N results for handbook, expert and naive user with alpha 
ranged from 0 to 1. 

 
The first experiment is to compare the precision and inclusion rate of different testing data. 
Suppose the number of total testing data set is K, the number of correct answers appeared in 
the top-N candidates is C. The precision rate is defined as: 
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Suppose the total number of top-N candidates is T, the inclusion rate is defined as: 

 
  (6) 

 
The precision rate, as defined in usual cases, tells if the correct answer is retrieved. The 
inclusion rate shows whether redundant answers are also reported while retrieving the 
answers. Figure 3 shows that, if the weighting (α) of lexical vector closed to 1.0, the precision 
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rate will be high and, the inclusion rate will be low. This is because redundant answers with 
the same similarity scores are also retrieved if consider only the lexical scores. 
In Figure 4, the average matching score of expert increases as the value of α moving from 0 
to 1. This is because that the wording of expert is similar to those in the handbook and thus 
has higher score while using large α value. (Note that higher α means higher lexical 
weighting.)  
On the other hand, the score of naive is higher when choosing smaller α value. That is, the 
weighting of fuzzy vector affects the similarity score. This result corresponds with the fact 
that naive people are not familiar with the domain specific wordings, and introducing the 
fuzzy vector score has the advantage of compensating the mismatch between their wordings 
to those in the training corpus. 
Fig. 5 and Fig. 6 show the precision rate and inclusion rate of top-10 results for all three 
types of testing corpora. The notation in these two figures are: 

 
 B2: corpos from another illustrated handbook; 
 E: corpos from a domain expert; 
 U: corpos from a noive user; 
 _P: precesion ratio; 
 _I: inclusion ratio; 
 _1: use cosine measure for literal and fuzzy similarity; 
 _2: use overlap measure for literal and fuzzy similarity; 
 _3: use cosine for literal similarity and overlap as fuzzy similarity; 
 

 
Fig. 5. Top-10 precision ratio for all testing corpora. 
 

 
Fig. 6. Top-10 inclusion ratio for all testing corpora. 
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Since the training corpus is the descriptions of wild bird in an illustrated handbook, corpus 
B2 (another illustrated book) had the best average precision ratio; corpus E (domain expert) 
also achieve good result; however, corpus U (naive user) can only got good result when α is 
closed to 0. The results showed that to allow user query in spontaneous descripiton, the 
system should have high weighting in the fuzzy vector instead of literal vector. 

 
4. Conclusion and Future Works 
 

In this study, we proposed an approach to establish and retrieve domain knowledge 
automatically. The domain knowledge is established by combining the method of linguistic 
processing and frame-based representation. The features of descriptions consist of two 
major types: literal vectors and fuzzy vectors. The cosine and overlap measure is chosen to 
compute the similarity between literal vectors and fuzzy vectors respectively.  
 
According to our study, several results were observed: 

1. The proposed approach for domain knowledge processing is useful for 
establishing and retrieving eco-knowledge. 

2. For some birds, its features maybe marked directly on the figures in the book, 
a few descriptions may be missed in the text data. This will cause some 
mismatch in the experiment.  

3. If an experienced bird watcher wants to use the inquiry system, the literal 
weighting should be increased. Experiment results showed that the 
weighting factor could be set as 0.9.  

4. For a naive use to user the inquiry system, the literal weighting should be 
decreased. The weighting factor could be set as 0.2. 

For queries made by expert, it seems that only lexical matching is enough. However, for 
naive people who have no expertise on how to use specialized wording for the description 
of birds, combining lexical vector score with the fuzzy ones is a good choice. 
Since color attributes are essential for discrimination of birds, it plays an important role in 
the visual cognition of birds. Currently, our study adopted only the eleven basic colors, 
more sophisticate color membership determination should be considered to obtain better 
results.  
The further interesting research topic will be discovering the commonality and difference 
between book-style knowledge and knowledge collected from large amount of spontaneous 
description about objects. 
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