MACHINE LEARNING

MACHINE LEARNING

Edited by
YAGANG ZHANG

In-Tech
intechweb.org

Published by In-Teh

In-Teh
Olajnica 19/2, 32000 Vukovar, Croatia

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any
publication of which they are an author or editor, and the make other personal use of the work.

© 2010 In-teh

www.intechweb.org

Additional copies can be obtained from:
publication@intechweb.org

First published February 2010
Printed in India

Technical Editor: Sonja Mujacic
Cover designed by Dino Smrekar

Machine Learning,
Edited by Yagang Zhang

p. cm.
ISBN 978-953-307-033-9

Preface

The goal of this book is to present the key algorithms, theory and applications that from the
core of machine learning. Learning is a fundamental activity. It is the process of constructing
a model from complex world. And it is also the prerequisite for the performance of any new
activity and, later, for the improvement in this performance. Machine learning is concerned
with constructing computer programs that automatically improve with experience. It draws
on concepts and results from many fields, including artificial intelligence, statistics, control
theory, cognitive science, information theory, etc. The field of machine learning is developing
rapidly both in theory and applications in recent years, and machine learning has been
applied to successfully solve a lot of real-world problems.

Machinelearning theory attempts toanswer questionssuchas “How doeslearning performance
vary with the number of training examples presented?” and “Which learning algorithms
are most appropriate for various types of learning tasks?” Machine learning methods are
extremely useful in recognizing patterns in large datasets and making predictions based
on these patterns when presented with new data. A variety of machine learning methods
have been developed since the emergence of artificial intelligence research in the early 20th
century. These methods involve the application of one or more automated algorithms to a
body of data. There are various methods developed to evaluate the effectiveness of machine
learning methods, and those methods can be easily extended to evaluate the utility of different
machine learning attributes as well.

Machine learning techniques have the potential of alleviating the complexity of knowledge
acquisition. This book presents today’s state and development tendencies of machine
learning. It is a multi-author book. Taking into account the large amount of knowledge about
machine learning and practice presented in the book, it is divided into three major parts:
Introduction, Machine Learning Theory and Applications. Part I focuses on the Introduction
of machine learning. The author also attempts to promote a new thinking machines design
and development philosophy. Considering the growing complexity and serious difficulties of
information processing in machine learning, in Part II of the book, the theoretical foundations
of machine learning are considered, mainly include self-organizing maps (SOMs), clustering,
artificial neural networks, nonlinear control, fuzzy system and knowledge-based system
(KBS).Part III contains selected applications of various machine learning approaches, from
flight delays, network intrusion, immune system, ship design to CT, RNA target prediction,
and so on.

Vi

The book will be of interest to industrial engineers and scientists as well as academics who
wish to pursue machine learning. The book is intended for both graduate and postgraduate
students in fields such as computer science, cybernetics, system sciences, engineering,
statistics, and social sciences, and as a reference for software professionals and practitioners.
The wide scope of the book provides them with a good introduction to many basic approaches
of machine learning, and it is also the source of useful bibliographical information.

Editor:
Yagang Zhang

Vi

Contents

Preface \'

PART | INTRODUCTION

1. Machine Learning: When and Where the Horses Went Astray? 001
Emanuel Diamant

PART Il LEARNING THEORY

2. SOMs for machine learning 019
Iren Valova, Derek Beaton and Daniel MacLean

3. Relational Analysis for Clustering Consensus 045
Mustapha Lebbah, Younés Bennani, Nistor Grozavu and Hamid Benhadda

4. A Classifier Fusion System with Verification Module for
Improving Recognition Reliability 061
Ping Zhang

5. Watermarking Representation for Adaptive Image Classification
with Radial Basis Function Network 077
Chi-Man Pun

6. Recent advances in Neural Networks Structural Risk Minimization based on
multiobjective complexity control algorithms 091
D.A.G. Vieira, J.A. Vasconcelos and R.R. Saldanha

7. Statistics Character and Complexity in Nonlinear Systems 109
Yagang Zhang and Zengping Wang

8. Adaptive Basis Function Construction: An Approach for Adaptive
Building of Sparse Polynomial Regression Models 127
Gints Jekabsons

9. On The Combination of Feature and Instance Selection 157
Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo
and Gustavo Augusto Campos de Lima

10. Fuzzy System with Positive and Negative Rules 173

Thanh Minh Nguyen and Q. M. Jonathan Wu

Vil

11. Automatic Construction of Knowledge-Based System using Knowware System 189
Sio-Long Lo and Liya Ding

12. Applying Fuzzy Bayesian Maximum Entropy to Extrapolating
Deterioration in Repairable Systems 217
Chi-Chang Chang, Ruey-Shin Chen and Pei-Ran Sun

PART Il APPLICATIONS

13. Alarming Large Scale of Flight Delays: an Application of Machine Learning 239
Zonglei Lu
14. Machine Learning Tools for Geomorphic Mapping of Planetary Surfaces 251

Tomasz F. Stepinski and Ricardo Vilalta

15. Network Intrusion Detection using Machine Learning and Voting techniques 267
Tich Phuoc Tran, Pohsiang Tsai, Tony Jan and Xiaoying Kong

16. Artificial Immune Network: Classification on Heterogeneous Data 291

Mazidah Puteh, Abdul Razak Hamdan, Khairuddin Omar
and Mohd Tajul Hasnan Mohd Tajuddin

17. Modified Cascade Correlation Neural Network and its Applications
to Multidisciplinary Analysis Design and Optimization in Ship Design 301
Adeline Schmitz, Frederick Courouble, Hamid Hefazi and Eric Besnard

18. Massive-Training Artificial Neural Networks (MTANN) in Computer-Aided
Detection of Colorectal Polyps and Lung Nodules in CT 343
Kenji Suzuki, Ph.D.

19. Automated detection and analysis of particle beams in
laser-plasma accelerator simulations 367

Daniela M. Ushizima, Cameron G. Geddes, Estelle Cormier-Michel, E.Wes Bethel,
Janet Jacobsen, Prabhat, Oliver R ubel, GuntherWeber, Bernd Hamann,
Peter Messmer and Hans Haggen

20. Specificity Enhancement in microRNA Target Prediction
through Knowledge Discovery 391
Yanju Zhang, Jeroen S. de Bruin and Fons J. Verbeek

21. Extraction Of Meaningful Rules In A Medical Database 411
Sang C. Suh, Nagendra B. Pabbisetty and Sri G. Anaparthi

22. Establishing and retrieving domain knowledge from semi-structural corpora 427
Hsien-chang WANG, Pei-chin YANG and Chen-chieh LI

Machine Learning:
When and Where the Horses Went Astray?

Emanuel Diamant
VIDIA-mant
Israel

1. Introduction

The year of 2006 was exceptionally cruel to me - almost all of my papers submitted for that
year conferences have been rejected. Not “just rejected” - unduly strong rejected. Reviewers
of the ECCV (European Conference on Computer Vision) have been especially harsh: "This
is a philosophical paper... However, ECCV neither has the tradition nor the forum to present
such papers. Sorry..." O my Lord, how such an injustice can be tolerated in this world?
However, on the other hand, it can be easily understood why those people hold their
grudges against me: Yes, indeed, I always try to take a philosophical stand in all my doings:
in thinking, paper writing, problem solving, and so no. In my view, philosophy is not a
swear-word. Philosophy is a keen attempt to approach the problem from a more general
standpoint, to see the problem from a wider perspective, and to yield, in such a way, a better
comprehansion of the problem’s specificity and its interaction with other world realities.
Otherwise we are doomed to plunge into the chasm of modern alchemy - to sink in partial,
task-oriented determinations and restricted solution-space explorations prone to dead-ends
and local traps.

It is for this reason that when I started to write about “Machine Learning”, I first went to the
Wikipedia to inquire: What is the best definition of the subject? “Machine Learning is a
subfield of Artificial Intelligence” - was the Wikipedia’s prompt answer. Okay. If so, then:
“What is Artificial Intelligence?” - “Artificial Intelligence is the intelligence of machines and
the branch of computer science which aims to create it” - was the response. Very well. Now,
the next natural question is: “What is Machine Intelligence?” At this point, the kindness of
Wikipedia has been exhausted and I was thrown back, again to the Artificial Intelligence
definition. It was embarrassing how quickly my quest had entered into a loop - a little bit
confusing situation for a stubborn philosopher.

Attempts to capitalize on other trustworthy sources were not much more productive (Wang,
2006; Legg & Hutter, 2007). For example, Hutter in his manuscript (Legg & Hutter, 2007)
provides a list of 70-odd “Machine Intelligence” definitons. There is no consensus among
the items on the list - everyone (and the citations were chosen from the works of the most
prominent scholars currently active in the field), everyone has his own particular view on
the subject. Such inconsistency and multiplicity of definitions is an unmistakable sign of

2 Machine Learning

philosophical immaturity and a lack of a will to keep the needed grade of universality and
generalization.

It goes without saying, that the stumbling-block of the Hutter’s list of definitions (Legg &
Hutter, 2007) is not the adjectives that were used- after all the terms “Artificial” and
“Machine” are consensually close in their meaning and therefore are commonly used
interchangeably. The real problem - is the elusive and indefinable term , Intelligence”.

I will not try the readers’ patience and will not tediously explain how and why I had arrived
at my own definition of the matters that I intend to scrutinize in this paper.

I hope that my philosophical leanings will be generously excused and the benevolent
readers will kindly accept the unusual (reverse) layout of the paper’s topics. For the reasons
that would be explained in a little while, the main and the most general paper’s idea will be
presented first while its compiling details and components will be exposed (in a discending
order) afterwards. And that is how the proposed paper’s layout should look like:

- Intelligence is the system’s ability to process information. This statement is true
both for all biological natural systems as for artificial, human-made systems. By
“information processing” we do not mean its simplest forms like information
storage and retrieval, information exchange and communication. What we have in
mind are the high-level information processing abilities like information analysis
and interpretation, structure patterns recognition and the system’s capacity to
make decisions and to plan its own behavior.

- Information in this case should be defined as a description - A language and/or
an alphabet-based description, which results in a reliable reconstruction of an
original object (or an event) when such a description is carried out, like an
execution of a computer program.

- Generally, two kinds of information must be distinguished: Objective (physical)
information and subjective (semantic) information. By physical information we
mean the description of data structures that are discernable in a data set. By
semantic information we mean the description of the relationships that may exist
between the physical structures of a given data set.

- Machine Learning is defined as the best means for appropriate information
retrieval. Its usage is endorsed by the following fundamental assumptions: 1)
Structures can be revealed by their characteristic features, 2) Feature aggregation
and generalization can be achieved in a bottom-up manner where final results are
compiled from the component details, 3) Rules, guiding the process of such
compilation, could be learned from the data itself.

- All these assumptions validating Machine Learning applications are false.
(Further elaboration of the theme will be given later in the text). Meanwhile the
following considerations may suffice:

- Physical information, being a natural property of the data, can be extracted
instantly from the data, and any special rules for such task accomplishment are not
needed. Therefore, Machine Learning techniques are irrelevant for the purposes of
physical information retrieval.

- Unlike physical information, semantics is not a property of the data. Semantics is a
property of an external observer that watches and scrutinizes the data. Semantics is
assigned to phisical data structures, and therefore it can not be learned
straightforwardly from the data. For this reason, Machine Learning techniques are

Machine Learning: When and Where the Horses Went Astray 3

useless and not applicable for the purposes of smantic information extraction.
Semantics is a shared convention, a mutual agreement between the members of a
particular group of viewers or users. Its assignment has to be done on the basis of a
consensus knowledge that is shared among the group members, and which an
artificial semantic-processing system has to possess at its disposal. Accomodation
and fitting of this knowledge presumes availability of a different and usually
overlooked special learning technique, which would be best defined as Machine
Teaching - a technique that would facilitate externally-prepared-knowledge
transfer to the system’s disposal .
These are the topics that I am interested to discuss in this paper. Obviously, the reverse
order proposed above, will never be reified - there are paper organization rules and
requirements, which none never will be allowed to override. They must be, thus, reverently
obeyed. And I earnestly promiss to do this (or at least to try to do this) in this paper.

2. When the State of the Art is Irrelevant

One of the commonly accepted rules prescribes that the Introduction Section has to be
succeeded by a clear presentation of a following subject: What is the State of the Art in the
field and what is the related work done by the other researchers? Unfortunately, I'm unable
to meet this requirement, because (to the best of my knowledge) there is no relevant work in
the field that can be used for this purpose. Or, let us put this in a more polite way: The work
presented in this paper is so different from other mainstream approaches that it would be
unwise to compare it with the rest of the work in the field and to discuss arguments in
favour or against their endless disagreements and discrepancies. However, to avoid any
possible allegations in disrespectfulness, I would like to provide here some reflections on the
departure points of my work, which (I hope) are common to many friends and foes in the
domain.

My first steps in the field were inspired by David Marr’s ideas about the “Primal” and the
“Two-and-a-half” image representation sketch, which is carrying out the information
content of an image (Marr, 1978; Marr, 1982). Image understanding was always the most
relevant and the most palpable manifestation of human intelligence, and so, those who are
busy with intelligence replications in machines, are due to cope with image understanding
and image processing issues.

“You see, - had I proudly agitated my employers, trying to convince them to fund my
image-processing enterprises, - meagre lines of a painter’s caricature provide you with all
information needed to comprehend the painter’s intention and to easily recognise the
objects drawn in the picture. Edges are the information bearers! Edge exploration and
processing will help us to reach advances in pattern recognition and image understanding. ”
My employers were skeptic and penny-pinching, but nevertheless, I was allowed to do
some work. However, very soon it had become clear that my problems are far from being
information retrieval issues - my real problem was to run (approximately in a real-time
fashion) a 3-by-3 (or 5-by-5) operator over a 256-by-256 pixel image. And only then, when
the run is somehow successfully completed, I was doomed to find myself inflated with a
multitude of edges: cracked, disjoint, and inconsistent. On one hand, an entire spectrum of
dissimilar edge pieces, and on the other hand - a striking deficit of any hints regarding how
to arrange them into something handy and meaningful. At least, to choose among them (to

4 Machine Learning

discriminate, to segment, to threshold) those that would be suitable for further processing.
Even though, it was at all not sure that anybody knows what such a processing should be.

It was not only my nightmare. Many people have swamped in this bog. Many are still trying
to tempt the fate - even today, the flow of edge extraction and segmentation publications
does not dry up, and new machine learning techniques are reportedly proposed to cure the
problem (Ghosh et al., 2007; Awad & Man, 2008; Qiu & Sun, 2009).

Human vision physiology studies, which have been always seen as an endless source of
computer vision R&D inspiration, have also proved to be of a little help here. Treisman’s
feature-integration theory (Treisman & Gelade, 1980) and Biederman’s recognition-by-
components theory (Biederman, 1987) - the cornerstones of contemporary vision science -
were fitting well the bottom-up image processing philosophy, (where initial feature
gathering is followed by further feature consolidation), but they have nothing to say about
how this feature aggregation and integration (into meaningful perceptible objects) has to be
realized. They only say that this process has to be done in a top-down fashion, in opposite to
the bottom-up processing of the initial features.

To overcome the problem, a great variety of so-called “binding” theories have been
proposed (Treisman, 1996, Treisman, 2003). However, all of them turned out as
inappropriate. In a desperate attempt to resolve this irresolvable contradiction, even a
theory of a mysterious homunculus has been proposed - a “little man inside the head” that
perceives the world through our senses and then unmistakably fulfils all the needed
(intelligent) actions (Crick & Koch, 2000). But the theory of the homunculus has not taken
roots. Human level intelligence has been and continues to be a challenge, and nothing in the
field has changed since the 50s of the past century, when the first steps of Artificial
Intelligence exploration have been carried out (Turing, 1950; McCarthy et al., 1955).

3. In Search for a Better Fortune

I am not trying to claim that I am more clever or wise than others. All the stupid things that
others have persistently tried to do, I have repeatedly tried as well. But in one thing,
however, I was certainly different from the others - I have never neglected my final goal: To
grasp the information content of an image. Together with other image-processing
“partisans” and “camarados” I fought my pixel-oriented battles, but a dream about object-
oriented image processing was always blooming in my heart.

As you can understand, nothing worthy had come out from that. Nevertheless, some of the
things that I was lucky to make happen (at that time) are worth to be mentioned here. For
example, I have invented a notion of “Single Pixel Information Content” and a way for its
quantitative evaluation (Diamant, 2003). I have also invented a notion of “Specific
Information Density of an Image”, and, relying on the pixel’s information content (measure),
I have attempted to investigate the effect of “Image Information Content Conservation”.
That is, when an image scale is successively reduced, Image Specific Information Density
remains unchanged (or even slightly grows up). Then, at some level of reduction, it rapidly
declines. This scale, actually the scale one step preceding the drop of Information Density, I
thought, should be the most advantageous (scale) to start image information content
explorations.

A paper, containing quantitative results and a proof of this idea, has been submitted to the
British Machine Vision Conference (Diamant, 2002), but, (as usually), was decisively

Machine Learning: When and Where the Horses Went Astray 5

rejected. Never mind, these investigations have led to an important insight that image
information content excavation has to be commenced at an optimal, low-dimensional image
representation scale.

I am proud to inform the interested readers that similar investigations have been performed
recently (and similar results have been attained) by MIT researchers (Torralba, 2009).
However, that was done about seven years later, and only in qualitative experiments
conducted on human participants (but not as a quantitative work).

Never mind, the idea of initial low-dimensional image exploration was in some way
consistent with a naive psychological vision conjecture about how humans look at a scene.
Since biological vision research was always busy with only foveated vision studies, one
principal aspect of human vision was always remained neglected: How does the brain know
where to look in a scene? We do not search our field of view in a regular, raster-scan
manner. On the contrary, we do this in an unpredictable, but certainly a not-random manner
(Koch et al., 2007; Shomstein & Behrmann, 2008). If so, how does the brain know where to
place the eye’s fovea - (the main means for visual information gathering) - before it knows
in advance where such information is to be found? Certainly, the brain must have a prior
knowledge about the scene layout, about the general map of a scene. Certainly, the scale of
this map must be several orders lower than the fovea resolution scale, and it is clear that
these information gathering maps are being used simultaneously and interchangeably.

Such considerations have inevitably led us to a conclusion that other theories, currently
unknown to us, which would be capable of explaining such multiscale brain performance
have to be urgently searched for. Indeed, very soon I came upon an appropriate theory. And
even not a single one, but a whole bundle of theories.

In the middle of the 60s of the previous century, three almost simultaneous, but absolutely
independently developed, theories have sprung up: Solomonoff’s theory of Inference
(Solomonoff, 1964), Kolmogorov’'s Complexity theory (Kolmogorov, 1965), and Chaitin’s
Algorithmic Information theory (Chaitin, 1966). Since among the three, Kolmogorov’s
theory is the most known one, I will first and mainly refer to it in our further discussion.

Just as Shannon’s Information theory (Shannon, 1948) published almost 20 years ahead,
Kolmogorov’s theory was aimed at providing means for measuring “information”.
However, while Shannon’s theory was dealing only with the average amount of information
conveyed by an outcome of a random source, Kolmogorov’s theory was busy with
information contained in a particular isolated object. Thus, Kolmogorov’s theory was far
more suitable to deal with human vision peculiarities.

However, I do not intend to bother the readers with explanations about Kolmogorov’s
theory merits. Such expanded enlightenment could be found else where, for example (Li &
Vitanyi, 2008; Grunvald & Vitanyi, 2008). My humble intention is, relying on the insights of
the Kolmogorov’s theory, to provide some useful illuminations, which can be deduced from
the theory and applied to the practice of image information content excavation.

An essential part of my work has been already done in the past years, and has been even
published on several occasions (Diamant, 2004; Diamant, 2005a; Diamant, 2005b). (The
publications could be easily found at some freely accessible web repositories, like CiteSeer,
Eprintweb, ArXiv, etc. And also on my personal web site: http:/ /www.vidia-mant.info).
However, for the consistency of our discussion, I would like to repeat here the main points
of these previous publications.

6 Machine Learning

The key point is that information is a description, a certain alphabet-based or language-
based description, which Kolmogorov’s theory regards as a program that, being executed,
trustworthy reproduces the original object (Vitanyi, 2006). In an image, such objects are
visible data structures from which an image is comprised of. So, a set of reproducible
descriptions of image data structures is the information contained in an image.

The Kolmogorov’s theory prescribes the way in which such descriptions must be created: At
first, the most simplified and generalized structure must be described. Recall the Occam’s
Razor principle: Among all hypotheses consistent with the observation choose the simplest
one that is cohirent with the data, (Sadrzadeh, 2008). Then, as the level of generalization is
gradually decreased, more and more fine-grained image details (structures) become
revealed and depicted. This is the second important point, which follows from the theory’s
pure mathematical considerations: Image information is a hierarchy of decreasing level
descriptions of information details, which unfolds in a coarse-to-fine top-down manner.
(Attention, please! Any bottom-up processing is not mentioned here! There is no low-level
feature gathering and no feature binding!!! The only proper way for image information
elicitation is a top-down coarse-to-fine way of image processing!)

The third prominent point, which immediately pops-up from the two just mentioned above,
is that the top-down manner of image information elicitation does not require
incorporation of any high-level knowledge for its successful accomplishment. It is totally
free from any high-level guiding rules and inspirations. (The homunculus have lost his job
and is finally fired).

That is why I call the information, which unconditionally can be found in an image, - the
Physical Information. That is, information that reflects objective (physical) structures in an
image and is totally independent of any high level interpretation of the interrelashions
between them.

What immediately follows from this is that high-level image semantics is not an integrated
part of image information content (as it is traditionally assumed). It cannot be seen more as a
natural property of an image. Semantic Information, therefore, must be seen as a property
of a human observer that watches and scrutinizes an image. That is why we can say now:
Semantics is assigned to an image by a human observer. That is strongly at variance with
the contemporary views on the concept of semantic information.

As it was mentioned above, I have no intention to argue with the mainstream experts,
conference chaires, keynotes speekers and invited talks presenters about the validity of my
contemplations, about my philosophical inclinations or research duties and preferences.
These respected gentlemans would continue to teach you how to extract semantic
information from an image or how it should be derived from low-level information
features.

(I do not provide here examples of such claims. I hope, the readers are well enough
acquinted with the state of the art in the field and its mainstream developments, to be able
to recall the appropriate cases by themselves. I also hope that readers of this paper are ready
to change their minds - fifty or so years of Machine Learning triumfal marching in the head
of the Artificial Intelligence parade have not got us closer to the desired goal of Intelligent
Machines deployment and use. Partially and loosely defined (or it would be right to say,
undefined) departure points of this enterprise were the main reasons responsible for this
years-long wandering in the desert far away from the promissed land.)

Machine Learning: When and Where the Horses Went Astray 7

4. “Repetitio est Mater Studiorum”

(For those who are not fluent enough in Latin, the translation of this proverb would be:
Reiteration is the mother of learning). Okay, I am really sorry that instead of dealing with
the declared subject of this paper (that is, Machine Learning and all its corresponding
issues), I have to return again and again to topics that have been already discussed in the
past and even published at some previous occasions. (But that is the bad luck of an image-
processing partisan). Therefore, with all apologies to be due, I will continue our discourse
with some extended citations seized from my previously published papers.

4.1 Image Physical information Processing

The first citation is related to physical information processing issues and is taken from a five
years old paper (Diamant, 2004). The citation subject is - an algorithmic implementation of
image physical information mining principles.

The algorithm’s block-scheme looks as follows:

Bottom-up path Top-down path Object list
Last (top) level

Top level object descriptt
4to 1 comprsd|__|Segmentatiol Object shape& Op fevel object descriptors
image Classificatiol Labeled objects\

Y

4to1compressed Level n1 1to 4 expanded Level n1objects

image object maps

1 to 4 expanded

4to 1 compressed

. Level 1 . Levl 1 obj.
image > object maps
Level0 > 1to 4 expanded LO

Original image

object maps

Fig. 1. The block-diagram of physical information elucidation.

As can be seen at Fig. 1, the proposed schema is comprised of three main processing paths:
the bottom-up processing path, the top-down processing path and a stack where the
discovered information content (the generated descriptions of it) is actually accumulated.
The algorithm’s structure reflects the principles of information representation, which have
been already defined previously.

As it is shown in the schema, the input image is initially squeezed to a small size of
approximately 100 pixels. The rules of this shrinking operation are very simple and fast:
four non-overlapping neighbor pixels in an image at level L are averaged and the result is
assigned to a pixel in a higher (L+1)-level image. This is known as “four children to one
parent relationship”. Then, at the top of the shrinking pyramid, the image is segmented, and

8 Machine Learning

each segmented region is labeled. Since the image size at the top is significantly reduced and
since in the course of the bottom-up image squeezing a severe data averaging is attained, the
image segmentation/labeling procedure does not demand special computational resources.
Any well-known segmentation methodology will suffice. We use our own proprietary
technique that is based on a low-level (single pixel) information content evaluation
(Diamant, 2003), but this is not obligatory.

From this point on, the top-down processing path is commenced. At each level, the two
previously defined maps (average region intensity map and the associated label map) are
expanded to the size of an image at the nearest lower level. Since the regions at different
hierarchical levels do not exhibit significant changes in their characteristic intensity, the
majority of newly assigned pixels are determined in a sufficiently correct manner. Only
pixels at region borders and seeds of newly emerging regions may significantly deviate
from the assigned values. Taking the corresponding current-level image as a reference (the
left-side unsegmented image), these pixels can be easily detected and subjected to a
refinement cycle. In such a manner, the process is subsequently repeated at all descending
levels until the segmentation/classification of the original input image is successfully
accomplished.

At every processing level, every image object-region (just recovered or an inherited one) is
registered in the objects” appearance list, which is the third constituting part of the proposed
scheme. The registered object parameters are the available simplified object’s attributes,
such as size, center-of-mass position, average object intensity and hierarchical and
topological relationship within and between the objects (“sub-part of...”, “at the left of...”,
etc.). They are sparse, general, and yet specific enough to capture the object’s characteristic
features in a variety of descriptive forms.

Examples of algorithm’s performance and some concrete palpable results are provided in
several previously published papers (Diamant, 2005a; Diamant, 2005b).

In our current discussion it is worth to be mentioned that: First, image segmentation
(physical image structures delineation, physical image information elicitation) is performed
in a top-down manner, not in a conventional bottom-up mode. Second, the suggested image
segmentation principle does not require any knowledge about high-level rules, which are
used to support the segmentation process and which are an obligatory part of any bottom-
up proceeding procedure. Third, canceling the necessity of these high-level rules, makes all
Machine Learning techniques useless and invalidates all efforts that are specially carried out
to meet this sacred requirement! In this way, Machine Learning loses its role as the main
performer in physical information recovery enterprises.

4.2 Image Semantic Information Processing

The context of this sub-section is also an extended quotation from a recently published
paper (Diamant, 2008). The key point of this quotation is a semantic information processing
architecture based on the same information-defining rules and the same (top-down)
information representation principles that were already introduced in Section 3. The block-
schema of such a semantic information processing architecture is borrowed from the above
mentioned paper (Diamant, 2008), and is depicted in the Fig. 2.

Machine Learning: When and Where the Horses Went Astray 9

Semantic Information (Knowledge Base) Hierarchy

Physical Information Hierarchy

Fig. 2. Physical and Semantic Information processing hierarchies.

Scrutinizing of this general image information processing architecture must be preceded by
some remarks: Semantic information, which (as we understand now) is a property of an
external observer, is separated and dissociated from the physical information processing, in
our case an image. Therefore it must be treated (or modeled) in accordance with observer-
specific (his/her) cognitive information processing rules.

10 Machine Learning

It is well known that human cognitive abilities (including the aptness for image
interpretation and the capacity to assign semantics to an image) are empowered by the
existence of a huge knowledge base about the things in the surrounding world kept in
human brain.

This knowledge base is permanently upgraded and updated during the human’s life span.
So, if we intend to endow our design with some cognitive capabilities we have to provide it
with something equivalent to this (human) knowledge base.

It goes without saying that this knowledge base will never be as large and developed as its
human prototype. But we are not sure that such a requirement is valid here. After all,
humans are also not equal in their cognitive capacities, and the content of their knowledge
bases is very diversified as well. (The knowledge base of an aerial photographs interpreter is
certainly different from the knowledge base of an X-ray images interpreter, or an IVUS
images interpreter, or PET images). The knowledge base of our visual thinking machine has
to be small enough to be effective and manageable, but sufficiently large to ensure the
machine acceptable performance. Certainly, for our feasibility study we can be satisfied
even with a relatively small, specific-task-oriented knowledge base.

The next crucial point is the knowledge representation issue. To deal with it, we first of all
must arrive at a common agreement about what is the meaning of the term “knowledge”. (A
question that usually does not have a single answer.) We state that in our case a suitable
definition of it would be: “Knowledge is memorized information”. Consequently, we can
say that knowledge (like information) must be a hierarchy of descriptive items, with the
grade of description details growing in a top-down manner at the descending levels of the
hierarchy.

One more point that must be mentioned here, is that these descriptions have to be
implemented in some alphabet (as it is in the case of physical information) or in a
description language (which better fits the semantic information case). Any farther
argument being put aside, we will declare that the most suitable language in our case is the
natural human language. After all, the real knowledge bases that we are familiar with are
implemented in natural human languages.

The next step, then, is predetermined: if natural language is a suitable description
implement, the suitable form of this implementation is a narrative, a story tale (Tuffield et
al., 2005). If the description hierarchy can be seen as an inverted tree, then the branches of
this tree are the stories that encapsulate human’s experience with the surrounding world.
And the leaves of these branches are single words (single objects) from which the story parts
(single scenes) are composed of.

The descent into description details, however, does not stop here, and each single word
(single object) can be farther decomposed into its attributes and rules that describe the
relations between the attributes.

At this stage the physical information reappears. Because the words are usually associated
with physical objects in the real world, words’ attributes must be seen as memorized
physical information (descriptions). Once derived (by the human visual system) from the
observable world and learned to be associated with a particular word, these physical
information descriptions are soldered in into the knowledgebase. Object recognition, thus,
turns out to be a comparison and similarity test between currently acquired physical
information and the one already retained in the memory. If the similarity test is successful,
starting from this point in the hierarchy and climbing back up on the knowledgebase ladder

Machine Learning: When and Where the Horses Went Astray 11

we will obtain: first, the linguistic label for a recognized object; second, the position of this
label (word) in the context of the whole story; and third, the ability to verify the validity of
an initial guess by testing the appropriateness of the neighboring parts composing the
object, that is, the context of a story. In this way, object’s meaningful categorization can be
reached, and the first stage of image annotation can be successfully accomplished, providing
the basis for farther meaningful (semantic) image interpretation.

One question has remained untouched in our discourse: How does this artificial
knowledgebase have to be initially created and brought into our thinking machine disposal?
This subject deserves a special discussion.

4.3 Can Semantic Knowledge be Learned?

There is no need to reiterate the dictums of the today’s Internet revolution, where access and
exchange of semantic information is viewed as a prime and an ultimate goal. Machines are
supposed to handle the documents’ semantic content, and Machine Learning techniques,
thus, supporting this knowledge mining venture are supposed to be the leading force, the
centre forward of this exciting enterprise. Semantic Knowledge mining is now the hottest
topic of every conference discussion, most recent research projects and many other applied
science initiatives. However, in the light of our new definition of information, which was
recently introduced in my work and re-introduced in the Section 3 of this paper, I am really
skeptic about the Machine Learning ability to meet this challenge.

Again, some philosophy would not be out of place here. At first, it must be reiterated that
semantics is not a natural property of an image (or a natural property of the data, if you
would like a more general view on the subject). Semantics is a property of a human observer
that watches and scrutinizes the data, and this property is shared among the observer and
other members of his community. By the way, this community does not have to embrace the
whole mankind, it can be even a very small community of several people or so, which,
nevertheless, were lucky to establish a common view on a particular subject and a common
understanding of its meaning. That is the reason why this particular (privet) knowledge can
not be attained in any reasonable way, including Machine Learning techniques and tricks.
On the other hand, an intelligent information-processing system has to have at its disposal a
memorized knowledgebase hierarchy (implemented, as we postulate, as a collection of
typical stories) against which the physical information of its input sensors is matched and
associated. Finding the suitable story whose attributes most closely match the sensors’
physical information is equivalent to finding the interpretation for the input sensor data (the
input physical information). That is the novelty of our proposed architecture. That is the
most important feature of our design approach: The knowledgebase hierarchy is used for a
linguistic input interpretation, but this knowledge is not derived (by the system) from the
input data. It is not learned from the data. On the contrary, in accordance with the top-down
information unfolding principle, the knowledge-base hierarchy (as a whole) has to be
transferred to the system disposal from the outside. The system doesn’t learn the
knowledgebase, it is taught to use the knowledgebase (In our case, a pool of task related
stories and their ramifications putted at system disposal in advance).

Thus, providing the system with the needed new knowledge each time when the system is
due for a new task accomplishment is becoming a natural duty of Artificial Intelligence
(Machine Intelligence) system designer. This shift from Machine Learning to Machine
Teaching paradigm should become the key point of intelligent system design and

12 Machine Learning

development roadmap. But unfortunately, that has not happen although it has been about
three years since the idea was at first articulated and even occasionally published (Diamant,
2006b).

4.4 Some additional remarks

That is a very important and an interesting twist in the philosophy of intelligent artificial
systems design. It does not result from the understanding of the principals of biological
systems intelligence or other proudly declared biological inspirations. On the contrary, it
results from pure mathematical considerations of the Kolmogorov’s complexity theory.
Only now, drawing on the insights of Kolmogorov’s theory, we can seize the interpretation
of the facts that we usually come across in our natural (biological) surrounding.

It is a very subtle issue among the topics of machine intelligence that I would like to
address. “Biologically inspired” means that we borrow from the nature some fruitful ideas,
which we intend to replicate in our artificial designs. That is, we presume that we
understand or at least are very close to the state of understanding how some biological
mechanisms operate, performing their natural duties. But that is not true!. We don’t have
even a slightest hint about how the nature works. What we have are gambling guesses,
intuitive feelings, speculations, and - nothing more than that.

Another important remark in this regard, is that Nature is not an Engineer. It does not
invent new mechanisms and new solutions for its problem-solving. On the contrary, it
gradually adjusts and adapts what it already has on the hand. Although the final results are
really remarkable, it takes a lot of time to reach them in the course of natural evolution,
millions and billions of years. Despite all this, the nature has never reached some very
important human-life-shaping revelations - for example, the wheel (as a means for
transportation), the cooked food, the writing and numbering practice, etc.

The inventors of “Genetic Programming” provide very interesting quotations from Turing’s
early works considering Machine Intelligence (Koza et al., 1999; Koza et al., 2002). In his
1948 essay “Intelligent Machines” Alan Turing has identified three broad approaches by
which machine intelligence could be achieved: “One approach... is a search through the
space of integers representing candidate computer programs, (a logic-driven search)...
Another approach is the “cultural search” which relies on knowledge and expertise
acquired over a period of years from others. This approach is akin to present-day
knowledge-based systems... The third approach is “genetical or evolutionary search”...”
(Koza, et al., 1999). From the three, the inventors of Genetic Programming pick up the idea
of biological relevance to the problem of machine intelligence acquisition. However, from
our point of view (from the point of view inspired by Kolmogorov’s theory) this can not be
true. Genetic Programming and Neural Networking are pure bottom-up information-
processing approaches. As we know today, the right way of information retrieval is a top-
down coarse-to-fine approach. Therefore, it might be more intelligent to embrace the first
Turing’s alternative - the logic-driven approach. That is, relying on pure logical and
engineering approaches to find out the best ways of intelligence reification, and only then to
verify our hypothetical solutions against known (or unknown) biological evidences and
facts. That is exactly what we are intended to do now.

The first issue is the bottom-up versus top-down information-processing alternatives.
Despite the traditional dominance of the bottom-up approach, evidence for top-down
preliminary processing in biological vision systems is present in research literature since the

Machine Learning: When and Where the Horses Went Astray 13

early 80s of the previous century (Navon, 1977; Chen, 1982). Unfortunately, they were
overlooked both by biological and computer vision communities.

The next phenomenon which is usually misunderstood (and consequently mistreated) is the
knowledge transfer (in human and animal world), which is usually mistakenly defined as a
Learning process. We have proposed a more suitable definition - a Teaching process.
Indeed, it turns out that in nature, teaching is a universal and a wide-spread phenomenon.
Only recently this fact has become recognized and earned its careful investigation (Csibra,
2007; Hoppitt et al., 2008). Teaching in nature does not mean human-like mentoring -
animals do not possess spoken language capabilities. Teaching in nature assumes specific
semantic knowledge transfer, specific information relocation from a teacher to a pupil, from
one community member to another. And examples of this knowledge transfer are really
abundant in our surrounding, if only we are ready to look at them and see them in a proper
way.

In this regard, dancing bees that convey to the rest of the hive the information about
melliferous sites (Zhang et al., 2005), ants that learn in tandem (Franks & Richardson, 2006),
and even bacteria developing their antibiotic resistance as a result of a so-called horizontal
gene transfer when a single DNA fragment of one bacteria is disseminated among other
colony members (Lawrence & Hendrickson, 2003), all these examples convincingly support
our claim that meaningful information (the semantic knowledge base) is always transfered
to the individual information processing system from the outside, from the external world.
The system does not learn it in a traditionally assumed Machine Learning manner.

Another benefit which biological science can gain from our logically-driven (engineering)
approach is the issue of astrocyte-neuron communication. Only defining information as a
description message you can explain how astrocities, (the dominant glial cells), “listen and
talk” with neuronal and synaptic networks. In their paper, Voltera & Meldolesi wrote that:
“One reason that the active properties of astrocytes have remained in the dark for so long
relates to the differences between the excitation mechanisms of these cells and those of
neurons. Until recently, the electrical language of neurons was thought to be the only form
of excitation in the brain. Astrocytes do not generate action potentials, they were considered
to be non-excitable and, therefore, unable to communicate. The finding that astrocytes can
be excited non-electrically has expanded our knowledge of the complexity of brain
communication to an integrated network of both synaptic and non-synaptic routs” (Voltera
& Meldolesi, 2005). That is, traditional belief that a spiking neuron burst is a valid form of
information exchange and representation does not hold any more, and has to be replaced
by a chemical molecular-language-based discription-massages transfer mechanism.

A very important issue of our discussion about semantic information processing is the issue
of knowledge representation. As it was already mentioned above, and it also stems from the
insights of Kolmogorov’s theory, the best form of knowledge representation has to be a
language-based description, a narrative, a story. I do not intend to expand here on the
implementaition deatails of this issue. I would like to continue to maintain our discussion on
a philosophical level. What follows from this is that we have always to consider intelligence
as being carried out in a language, in a linguistic structure. That is, although the block-
schema depicted in Fig. 2 outlines only visual information incorporation into the semantic
processing hierarchy, you can easily imagin physical information of other modalities
(hearing, haptics, olfactory senses information) being subjected (usually in parallel with
information from other sensors) as attributes of semantic (linguistic) objects into the

14 Machine Learning

knowledgebase processing hierarchy. (That will again explain you why functional Magnetic
Resonance Imaging shows you that visual stimuli are processed in audio stimuli processing
zones, which are naturally associated with speech processing. The simple explanation for
this is that all modalities are finally processed in the language processing zone, as it is
proposed by our approach.)

The next important issue, which naturally follows the preceeding ones, is the narrative story
form of knowledge representation accepted for the discussed case of semantic information
processing. Linguistic tagging, that means labeling image objects with words, is a well
known and widely used methodology of image semantics retrival supported by a special
class of Machine Learning techniques (Barnard et al., 2003; Duygulu et al., 2008; Blondin
Masse et al., 2008). This way of thinking naturally stems from another wide-spread
assumption that ontology (the basis of semantic reasoning and elaboration) is a vocabulary,
a thesaurus, a dictionary. What follows from our descriptive form of knowledge
representation is that ontology has to be treated as a story, a narrative, which naturally
describes the system’s behavior in various real-life-encountered situations. However, this
very important aspect of intelligent systems design philosophy leads us far away from the
main theme of our discussion - the philosophy of Machine Learning. And for that reason I
will quit at this point, and not continue further.

5. Conclusions

In this paper I have attempted to promote a new Thinking Machines design and
development philosophy. The central point of my approach is a new definition of
information, that is, a notion of information as a language-based description. Then, above it
the notion of intelligence can be placed, defining intelligence as the system’s ability to
process information. The principles of information mining should be placed in the lower
part of the construction. Thus, it seems to me, a proper frame for a rational Artificial or
Machine Intelligence devices research and development enterprise can be established.
Essentially, the declared focus of the paper’s subject is the issue of Machine Learning, which
is assumed to be a bundle of techniques used to support all information-processing
machinery. But, as you know, Machine Learning as by now (and already for a very long
time) is treated as an independent and stand alone discipline, totally detached from its
original destination - Thinking Machines research and development (Turing, 1950). The
roadmap for this challenge was formulated at the Dartmouth College meeting in the
summer of 1956 (McCarthy, et al. 1955). The date of this meeting is considered today as the
Artificial Intelligence (Al) birthday. (The very name of Al was coined at this time by John
McCarthy, one of the authors of the Dartmouth Proposal).

At first, the excitement and hopes were really high, and the goals have seemed to be
reachable in a short while. In the Panel Discussion at the Artificial General Intelligence
(AGI) Workshop in 2006, Steve Grand has recalled that “Rodney Brooks has a copy of a
memo from Marvin Minsky (another father of the Dartmouth Proposal), in which he
suggested charging an undergraduate for a summer project with the task of solving vision. I
don’t know where that undergraduate is now, but I guess he hasn’t finished yet” (Panel
Discussion, 2006).

Indeed, problems of Vision, as well as all other Al troubles, have turned out to be much
more complicated and problematic than it looked out at the beginning. Within a decade or

Machine Learning: When and Where the Horses Went Astray 15

so, it became clear that Al tribulations are immense, maybe even intractable. As a
consequence, the Al community to a large extent has abandoned its original dream, and
turned to more “practical” and “manageable” problems (Wang & Goertzel, 2006). “Al has
evolved to being a label on a family of relatively disconnected efforts” (Brachman, 2005).
Exactly the same were the milestones of Machine Learning. Machine Learning, which was
always perceived as an indispensible component of intelligence, has undergone all the
metamorphoses as its general domain. At first, there was a generous offer to let the system
by itself (in an autonomous manner) to find out the best way to mimic Intelligence. Why to
trouble oneself trying to grasp the principles of intelligence? Let us give the machine the
chance to do this by itself. (I can not to withstand the temptation to provide an example of
such a fatal misunderstanding: IGI Global Publisher (formerly Idea Group Inc.) has
published a Call for Chapter Proposals for a future book “Intelligent Systems for Machine
Olfaction: Tools and Methodologies” (Can be found at the publisher site: http:/ /www.igi-
global.com/requests/details.asp?ID=610). You can read in the Introduction part of it:
“Intelligent systems are those that, given some data, are able to learn from that data. This
ability makes it possible for complex systems to be modeled and/or for performance to be
predicted. In turn it is possible to control their functionality through learning/training,
without the need for a priory knowledge of the system’s structure”. Once more, I apologize
for such a so long quotation.)

Then, when the first idealistic objective has failed, Machine Learning was broken into pieces,
disintegrated and fragmented to many partial tasks and goals. Now the question in the
paper’s title - “When and Where the Horses Went Astray?” - can be answered beyond any
doubts: It has happened about 50 years ago!

From the standpoint that we possess today, we can even spell out the fundamental flaws
which are responsible for this derailment: First, the bottom-up philosophy of information
retrieval. (As we know today, the right way of information treatment is the top-down
coarse-to-fine line of information processing). Second, is the lack of a proper definition of
information, leading, consequently, to a lack of a clear distinction between physical and
semantic information. (This failure had a tremendous impact on the Machine Learning
disruption). The same can be said about the third misleading factor - misunderstanding of
the very nature of semantic information, which has led to an endless, infamous race for
knowledge and semantic meaning extraction directly from the raw data. (Which is,
obviously, a philosophical lapse).

For the same reasons, the basic notion of intelligence has been overlooked and defined
erroneously. I hope, in this paper I was lucky to repair some of these misconceptions.

6. References

Awad, A. & Man, H. (2008). Similar Neighbourhood Criterion for Edge Detection in Noisy
and Noise-Free Images, Proceedings of the International Multiconference on Computer
Science and Information Technology, pp. 483-486, Wisla, Poland, October 2008.

Barnard, K.; Duygulu, P.; Forsyth, D.; de Freitas, N.; Bley, D. & Jordan, M. (2003). Matching
Words and Pictures, Journal of Machine Learning Research, Vol. 3, pp. 1107-1135.

Biederman, I (1987). Recognition-by-Components: A Theory of Human Image
Understanding, Psychological Review, Vol. 94, No. 2, 1987, pp. 115-147.

16 Machine Learning

Blondin Masse, A.; Chicoisne, G.; Gargouri, Y.; Harnad, S.; Picard, O. & Marcotte, O. (2008).
How Is Meaning Grounded in Dictionary Definitions? Available:
http:/ /arxiv.org/abs/0806.3710.

Brachman, R. (2005). Getting Back to “The Very Idea”. Al Magazine, Vol. 26, pp. 48-50,
Winter 2005.

Chaitin, G. (1966). On the length of programs for computing finite binary sequences. Journal
of the ACM, Vol. 13, pp. 547-569, 1966.

Chen, L. (1982). Topological structure in visual perception, Science, 218, pp. 699-700, 1982.

Crick, F. & Koch, C. (2000). The Unconscious Homunculus, In: The Neuronal Correlates of
Consciousness, Metzinger, T. (Ed.), pp. 103-110, MIT Press: Cambridge, MA, 2000.

Csibra, G. (2007). Teachers in the wild. Trends in Cognitive Science, Vol. 11, No. 3, pp. 95-96,
March 2007.

Diamant, E. (2002). Image Segmentation Scheme Ruled by Information Density
Optimization, Submitted to British Machine Vision Conference (BMVC-2002) and
decisively rejected there. Available: http:/ /www.vidia-mant.info.

Diamant, E. (2003). Single Pixel Information Content, Proceedings SPIE, Vol. 5014, pp. 460-
465, IST/SPIE 15th Annual Symposium on Electronic Imaging, Santa Clara, CA,
January 2003.

Diamant, E. (2004). Top-Down Unsupervised Image Segmentation (it sounds like an
oxymoron, but actually it isn't), Proceedings of the 3rd Pattern Recognition in Remote
Sensing Workshop (PRRS’04), Kingston University, UK, August 2004.

Diamant, E. (2005a). Searching for image information content, its discovery, extraction, and
representation, Journal of Electronic Imaging, Vol. 14, Issue 1, January-March 2005.

Diamant, E. (2005b). Does a plane imitate a bird? Does computer vision have to follow
biological paradigms?, In: De Gregorio, M., et al, (Eds.), Brain, Vision, and Artificial
Intelligence, First International Symposium Proceedings. LNCS, Vol. 3704, Springer-
Verlag, pp. 108-115, 2005. Available: http:/ /www.vidia-mant.info.

Diamant, E. (2006a). In Quest of Image Semantics: Are We Looking for It Under the Right
Lamppost?, Available: http://arxiv.org/abs/cs.CV/0609003; http://www.vidia-
mant.info.

Diamant, E. (2006b). Learning to Understand Image Content: Machine Learning Versus
Machine Teaching Alternative, Proceedings of the 4th IEEE Conference on Information
Technology: Research and Education (ITRE-2006), Tel-Aviv, October 2006.

Diamant, E. (2007). The Right Way of Visual Stuff Comprehension and Handling: An
Information Processing Approach, Proceedings of The International Conference on
Machine Learning and Cybernetics (ICMLC-2007), Hong Kong, August 2007.

Diamant, E. (2008). Unveiling the mystery of visual information processing in human brain,
Brain Research, Vol. 1225, 15 August 2008, pp. 171-178.

Duygulu, P.; Bastan, M. & Ozkan, D. (2008). Linking image and text for semantic labeling of
images and videos, In: Machine Learning Techniques for Multimedia, M. Cord & P.
Cunnigham (Eds.), Springer Verlag, 2008.

Floridi, L. (2003). From Data to Semantic Information, Entropy, Vol. 5, pp. 125-145, 2003.

Franks, N. & Richardson, T. (2006). Teaching in tandem-running ants, Nature, 439, p. 153,
January 12, 2006.

Machine Learning: When and Where the Horses Went Astray 17

Gerchman, Y. & Weiss, R. (2004). Teaching bacteria a new language. Proceedings of The
National Academy of Science of the USA (PNAS), Vol. 101, No. 8, pp. 2221-2222,
February 24, 2004.

Ghosh, K,; Sarkar, S. & Bhaumik, K. (2007). The Theory of Edge Detection and Low-level
Vision in Retrospect, In: Vision Systems: Segmentation and Pattern Recognition, G.
Obinata and A. Dutta, (Eds.), I-Tech Publisher, Viena, June 2007.

Goertzel, B. (2006). Panel Discussion: What are the bottlenecks, and how soon to AGI?,
Proceedings of the Artificial General Intelligence Workshop (AGI 2006), Washington DC,
May 2006.

Grunvald, P. & Vitanyi, P. (2008). Algorithmic Information Theory, In: The Handbook of the
Philosophy of Information, P. Adriaans,]J. van Benthem (Eds.), pp. 281-320, North
Holland, 2008. Available: http:/ /arxiv.org/abs/0809.2754.

Hoppitt, W.; Brown, G.; Kendal, R;; Rendell, L.; Thornton, A.; Webster, M. & Laland, K.
(2008). Lessons from animal teaching. Trends in Ecology and Evolution, Vol. 23, No. 9,
pp- 486-493, September 2008.

Hutter, M. (2007). Algorithmic Information Theory: A brief non-technical guide to the field,
Available: http:/ /arxiv.org/abs/cs/0703024.

Koch, C,; Cerf, M,; Harel,].; Einhauser, W. (2007). Predicting human gaze using low-level
saliency combined with face detection, Proceedings of the Twenty-First Annual
Conference on Neural Information Processing Systems (NIPS 2007), Vancouver, Canada,
December 2007. Available: http:/ /papers.klab.caltech.edu/ view /year/2007. html.

Kolmogorov, A. (1965). Three approaches to the quantitative definition of information,
Problems of Information and Transmission, Vol. 1, No. 1, pp. 1-7, 1965.

Koza,]J.; Bennett, F.; Andre, D. & Keane, M. (1999). Genetic Programming: Turing’s Third
Way to Achieve Machine Intelligence. EUROGEN Workshop in Jyvdskyld, Finland,
May 1999. Available: http:/ /www.genetic-programming.com/jkpdf/eurogen1999.

Koza, J.; Bennett, F.; Andre, D. & Keane, M. (2002). Genetic Programming: Biologically
Inspired Computation that Exhibits Creativity in Solving Non-Trivial Problems. In:
Evolution as Computation: DIMACS Workshop, Princeton, 2002. Available:
http:/ / gridley.res.carleton.edu/~kachergg/docs/ geneticProgramming.pdf.

Lawrence, J. & Hendrickson, H. (2003). Lateral gene transfer: when will adolescence end?,
Molecular Microbiology, vol. 50, no. 3, pp. 739-749, 2003.

Legg, S. & Hutter, M. (2007). Universal Intelligence: A Definition of Machine Intelligence,
Available: http:/ /arxiv.org/abs/ 0706.3639.

Li, M. & Vitanyi, P. (2008). An Introduction to Kolmogorov Complexity and Its Applications,
Third Edition, New York: Springer-Verlag, 2008.

McCarthy, J.; Minsky, M.; Rochester, N. & Shannon, C. (1955). A proposal for the Dartmouth
summer research project on Artificial Intelligence, AI Magazine, Vol. 27, No. 4, 2006.
Avail.: //www.aaai.org/ojs/index.php/aimagazine/article/viewFile/1904/1802.

Marr, D. (1978). Representing visual information: A computational approach, Lectures on
Mathematics in the Life Science, Vol. 10, pp. 61-80, 1978.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information, Freeman, San Francisco, 1982.

Navon, D. (1977). Forest Before Trees: The Precedence of Global Features in Visual
Perception, Cognitive Psychology, 9, pp. 353-383, 1977.

18 Machine Learning

Panel Discussion, (2006). Panel Discussion: What are the bottlenecks, and how soon to AGI?,
Proceedings of the AGI Workshop, Washington DC, USA, May 2006.

Qiu, P. & Sun, J. (2009). Using Conventional Edge Detectors and Post-Smoothing for
Segmentation of Spotted Microarray Images, Journal of Computational and Graphical
Statistics, Vol.18, No. 1, pp. 147-164, 2009.

Saba, W. (2008). Commonsense Knowledge, Ontology and Ordinary Language. International
Journal of Reasoning-based Intelligent Systems, Vol. n., No. m., pp. 43-60, 2008.
Available: http:/ /arxiv.org/abs/0808.1211.

Sadrzadeh, M. (2008). Occam’s razor and reasoning about information flow, Available:
http:/ /arxiv.org/abs/cs/0808.1354.

Shannon, C. E. (1948). The mathematical theory of communication, Bell System Technical
Journal, Vol. 27, pp. 379-423 and 623-656, July and October 1948.

Shomstein, S. & Behrmann, M. (2008). Object-based attention: Strength of object
representation and attentional guidance. Perception & Psychophysics, Vol. 70, No. 1,
pp- 132-144, January 2008.

Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, Part
1: Vol. 7, No. 1, pp. 1-22, March 1964; Part 2: Vol. 7, No. 2, pp. 224-254, June 1964.

Torralba, A. (2009). How many pixels make an image? Visual Neuroscience, Vol. 26, Issue 1,
pp- 123-131, 2009. Available: http:/ /web.mit.edu/torralba/www/.

Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, Vol. 6, pp.171-
178, 1996.

Treisman, A. (2003). Consciousness and perceptual binding. Available:
http:/ /www.csbmb.princeton.edu/conte/ pdfs/project2/ Proj2Pubbanne.pdf.

Treisman, A. & Gelade, G. (1980). A feature-integration theory of attention, Cognitive
Psychology, Vol. 12, pp. 97-136, Jan. 1980.

Tuffield, M.; Shadbolt, N. & Millard, D. (2005). Narratives as a Form of Knowledge Transfer:
Narrative Theory and Semantics, Proceedings of the 1st AKT (Advance Knowledge
Technologies) Symposium, Milton Keynes, UK, June 2005.

Turing, A. (1950). Computing machinery and intelligence. Mind, Vol. 59, pp. 433-460.
Available: http:/ /scholar.google.co.il/.

Vitanyi, P. (2006). Meaningful Information, IEEE Transactions on Information Theory, Vol. 52,
No. 10, pp. 4617-4624, October 2006. Availbl: http:/ /www.cwi.nl/~paulv/papers.

Voltera, A. & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements:
the revolution continues, Nature Reviews, Neuroscience, vol. 6, No. 8, pp. 626-640.

Wang, P. (2006). The Logic of Intelligence. In: Artificial General Intelligence, Wang, P. &
Goertzel, B. (Eds.), pp. 31-62. Springer Verlag, May 2006. Available:
http:/ /nars.wang.googlepages.com/nars%3Application.

Wang, P. & Goertzel, B. (2006). Introduction: Aspects of Artificial General Intelligence. In:
Artificial General Intelligence, Wang, P. & Goertzel, B. (Eds.), Springer Verlag, 2006.
Available: http:/ /nars.wang.googlepages.com/nars %3Application.

Zhang, S.; Bock, F.; Si, A,; Tautz, J. & Srinivasan, M. (2005). Visual working memory in
decision making by honey bees, Proceedings of The National Academy of Science of the
USA (PNAS), vol. 102, no. 14, pp. 5250-5255, April 5, 2005.

SOMs for machine learning

Iren Valova, Derek Beaton and Daniel MacLean
University of Massachusetts Dartmouth
USA

1. Introduction

In this chapter we offer a survey of self-organizing feature maps with emphasis on recent
advances, and more specifically, on growing architectures. Several of the methods are
developed by the authors and offer unique combination of theoretical fundamentals and
neural network architectures. Included in this survey of dynamic architectures, will also be
examples of application domains, usage and resources for learners and researchers alike, to
pursue their interest in SOMs.

The primary reason for pursuing this branch of machine learning, is that these techniques
are unsupervised - requiring no a priori knowledge or trainer. As such, SOMs lend
themselves readily to difficult problem domains in machine learning, such as clustering,
pattern identification and recognition and feature extraction. SOMs utilize competitive
neural network learning algorithms introduced by Kohonen in the early 1980’s. SOMs
maintain the features (in terms of vectors) of the input space the network is observing. This
chapter, as work emphasizing dynamic architectures, will be incomplete without presenting
the significant achievements in SOMs including the work of Fritzke and his growing
architectures.

To exemplify more modern approaches we present state-of-the art developments in SOMs.
These approaches include parallelization (ParaSOM - as developed by the authors),
incremental learning (ESOINN), connection reorganization (TurSOM - as developed by the
authors), and function space organization (mnSOM). Additionally, we introduce some
methods of analyzing SOMs. These include methods for measuring the quality of SOMs
with respect to input, neighbors and map size. We also present techniques of posterior
recognition, clustering and input feature significance. In summary, this chapter presents a
modern gamut of self-organizing neural networks, and measurement and analysis
techniques.

2. Overview of competitive learning

2.1 Unsupervised and competitive learning

Very broadly defined, neural networks learn by example and mimic human brain in its
decision or object identification capabilities. The concept of artificial neural networks (ANN)
is based on two different views of the human brain activity, both of which rely on the
functionality of a single neuron. The neurons are perceived as adding devices, which react,

20 Machine Learning

or fire, once the incoming signals sum reaches a threshold level. Fig.1 illustrates the
functionality of a single neuron, which receives signals from other neurons it is connected to
via weighted synapses. Upon reaching the firing level, the neuron will broadcast a signal to
the units connected to its output.

inputs

output

Fig. 1. Artificial neuron functionality

Returning to the two major types of ANN, one view generally relies on the individual
neuron and its ability to respond, or fire, given sufficient stimulus. The topology of neurons
and the connections among them is not the goal of this type of ANN, but rather the output
produced by the respective neuron.

The second view banks on the neurons functioning as a team. As such, it takes into account
the concept of map formed by neuron positions, much like the visual cortex map, producing
a two dimensional image of the perceived visual field. This type of ANN produces a
topology of neurons, connected by weighted synapses and features the natural grouping of
the input data (Fig.2). This translates into input density map and necessitates the
development of evaluation procedures on the formed clusters for the purpose of identifying
or matching patterns in the data.

Fig. 2. The black area denotes input space distribution, where the neurons have organized to
cover that input topology as a team

The taxonomy of learning methods and algorithms for ANN is multifaceted and includes
many hierarchical classifications (Fig.3). In this chapter we are concerned with unsupervised
learning that is also competitive. Learning in ANN is the process of connection weight
adjustment, which, in turn guides the neuron to a better position in terms of input data
configuration.

In the case of supervised learning, the weight adjustment will be guided by the teaching
signal and the penalty/reward of the error in the ANN response. Unsupervised learning
methods do not benefit from teacher signal guidance. The neurons compete to match the
input as closely as possible, usually based on Euclidean distance. The neuron closest to the
considered input exemplar is the winner taking it all, i.e. adjusting its weight to improve its
position and thus move closer to the input.

SOMs for machine learning 21

We are describing the extreme case of competition, i.e. winner-take-all. Depending on the
learning algorithm and the ANN application, while the winning neuron will be selected, a
neighbourhood of influence may be established, whereby the winning neuron neighbours
will also move in the same direction albeit at a lesser distance.

’7 ANN training paradigms

Supervised | Unsupervised
Hopfield Backpropagation Associative ART SOM
memory

Fig. 3. Taxonomy of ANN learning methods

Unsupervised learning (UL) is generally based on competition. UL seeks to map the
grouping or patterns in the input data. This can be accomplished either by neurons
resonating with the input exemplar (e.g. adaptive resonance theory) or by neurons winning
the distance from the input exemplars competition. It must be noted that there are ANN
models that learn in unsupervised manner, but are not based on competition. Among those,
the principal component network should be mentioned here as a prelude to later sections in
this chapter.

2.2 Kohonen’s SOM

The brains of higher animals are organized by function, e.g. the visual cortex processes the
information received through the optical nerve from the eyes, the somatosensory cortex
maps the touch information from the surface of the body, etc. Inspired by the mapping
abilities of the brain, the self-organizing feature map (SOM) was introduced in early 1980’s
by Teuvo Kohonen (Kohonen, 1995). SOMs are used to topologically represent the features
of the input based on similarity usually measured by Euclidean distance. SOMs are useful
tools in solving visualization and pattern recognition tasks as they map a higher dimension
input space into a one- or two-dimensional structure. SOMs are initialized usually randomly
(Fig.4b), in a topology with fixed number of neurons, that can be ordered in a chain (i.e. each
neuron has at most two neighbors) or in a two-dimensional grid of rectangular (Fig.4c) or
hexagonal nature, where the neurons have at most four neighbors.

Fig. 4. Input space: a) distribution; b) with randomly initialized neurons; c) two-dimensional
rectangular grid

22 Machine Learning

Before a brief overview of the SOM algorithm, let us take the reader through the concept of
Kohonen’s ANN. The input space of Fig.4a is used along with the random initialization in
Fig.4b. As every input vector (in this case a two-dimensional x, y representation of the
location of each dot comprising the black area in Fig.4a) is presented to the network, the
closest neuron responds as a winner of the Euclidean distance-based competition and
updates its weight vector to be closer to the input just analyzed. So do its neighbors
dependent on the neighborhood radius, which can be reduced as the time progresses. The
rate of reduction is determined by the learning rate. As inputs are presented in a random
order, the neurons move closer to the input vectors they can represent and, eventually, the
movement of neurons becomes negligible. Usually, that is when the map is considered to
have converged. This process is illustrated in Fig.5a for one-dimensional SOM and Fig.5b for
rectangular SOM.

Fig. 6. Hilbert curve initialization approach: a) initialized network; b) resulting map

While the classic SOM features random initialization of the weight vectors, the authors have
demonstrated the advantages of one-dimensional SOM initialization based on a Hilbert
curve (Buer, 2006; Valova, Beaton, & MacLean, 2008a) with neurons positioned in a chain
following the space-filling curve (Fig.6a). Kohonen posited that one-dimensional SOM
converge in a shape resembling Peano curves. The authors followed this observation and
utilized the idea in the initialization process to speed up convergence and ensure linearity of
the network. Fig.6b demonstrates the resulting map. It is obvious that the map is not
tangled, and the neurons that are physical neighbors also represent topologically close input
vectors unlike the map on Fig.5a, which is tangled and topologically close neighbors do not
always share physical proximity.

The algorithm can now be formalized. Each neuron in the network has a weight or reference
vector & =[x,,x,,...,x,,] where x, is an individual attribute of & . The neurons are gradually

organized over an n-dimensional input space V". Each input 9=[u,,,....,4,]€ V", where
4, is an attribute in §, has the same number of attributes as the weight vector & of each

neuron in the network.

SOMs for machine learning 23

Once the network is initialized, the input is presented sequentially to the network. The best-
matching unit in the network is determined by comparing each neuron to the current input
based on Euclidean distance, with the winner being the neuron closest to the input.

c=arg, min{& — u} 1)

where c is the best-matching unit.

The winning neuron and all neurons falling within the neighborhood radius for an iteration
i update their reference vectors to reflect the attraction to 4. To change the reference
vector of a neuron, the following equation (which is a very common SOM learning equation)
is used:

S+ =3O+ hOa()(8-35) @

where t is the current iteration and « (t) is a monotonically decreasing learning rate, and
h(t) is the neighborhood function.

2.3 Visualizing a SOM

In low dimensional patterns, such as one- or two-dimensional, the input and the SOM can
be visualized by using positions of pixels. However, when scaling to three, or five
dimensions, pixels can be used for dimensions that represent two-dimensional space, but
the remaining one or three attributes in this case would be represented by gray scale or
RGB, respectively. This, however, implies that the visualization of the data, and the SOM
can be expressed in x, y and color values.

When dealing with complex data that is not directly visualized, or even very high
dimensional data (e.g. greater than 10) visualization becomes an issue. One of the methods
used for showing the lattice structure style network for high dimensional data, is to use a
dimensionality reduction or dimensionality mapping technique. One of the simplest, and
most well known is Sammon’s mapping (Eq.3) (Sammon 1969).

o\ G) -y nw,))
d (i,) 3
[(i.éf (l])] u,;e:f dA(iaj) ()

This mapping measure effectively takes the distances between high dimensional objects, e.g.
neurons, and allows them to be plotted in two-dimensions, so the researcher may visually
inspect the geometric relations between neurons. Often, when the number of inputs is very
high, or patterns are non-distinct and complex, the visualization does not include input
data, rather, just the neurons.

To form the lattice structure correctly, the connections between known neighbors should be
illustrated. The neurons are often recorded in one- or two-dimensional arrays, to allow the
physical neighbors of each neuron to be recorded.

24 Machine Learning

3. Growing Self-organizing Algorithms

3.1 Fritzke’s growing SOM variants

Self-organizing Maps, as introduced by Kohonen, are static sized network. The obvious
disadvantage to the predetermined number of neurons is that number is either not high
enough to adequately map the input space or too high, thus leaving many neurons
underutilized. SOM being trained without supervision, is not expected to know the input
space characteristics apriori. Hence, a topology which allows the addition/removal of
neurons, is a logical step in the development of self-organization. Fritzke introduced three
architectures in the 1990’s - growing grid (GG), growing cells (GC), and growing neural gas
(GNG) (Fritzke, 1992, 1993a, b, ¢, 1994, 1995). All three start with minimal number of
neurons and add neurons as needed. The need is based on an age parameter, while an error
parameter determines which neuron will be joined by a new neighbor (GC, GNG) or a new
set of neighbors (GG).

In the case of GC, once a neuron with the highest error value is selected, its longest
connection (or edge) is replaced by two edges and a neuron is added to facilitate their
connection (Fig.7).

Fig. 7. Growing cells at: a) 3333 iterations; b) 15000 iterations

L

W

Fig. 8. Growing grid at: a) 33333 iterations; b) 100000 iterations

{

GG also utilizes an age parameter for the neurons. Every time a neuron wins, its age is
incremented. At intervals, the neuron with the most wins is slated to receive new neighbors
and the furthest direct topological neighbor from the selected neuron is found. GG utilizes a
rectangular grid topology, which is maintained during growth. If these two neurons are in
the same row of neurons, a column will be added between the two - thus affecting neurons

SOMs for machine learning 25

in other rows. If the selected neurons are in the same column, then a new row will be added
between them - thus affecting neurons in other columns (Fig. 8).

In the third Fritzke contribution - the GNG - a similar concept to GC is observed. However,
the connections between the neurons are assigned the age parameter. Therefore, GNG adds
and removes connections, based on neuron selection. GNG is also capable of attaining
configurations with multiple networks (Fig. 9).

One of the major drawbacks to GNG, as well as other growing methods, is that the number
of nodes are ever increasing. This is, in part, compensated for by an extension to GNG,
Growing neural gas with utility (GNG-U), which features removal of neurons based on the
criterion of low probability density in the underlying input space “beneath” the neuron. The
downfalls to these methods are than they do not exhibit incremental learning - a problem
that is discussed in a later section on ESOINN.

IL_/E%\(\f %\ /'

Fig. 9. Provided by (DemoGNG); At 7500 iterations (left) the map is starting to take the form
of the input; At 12000 iterations (right) the map is a much better topological representation
of the given input.

Fritzke’s growing methods can be explored by the reader interactively at the DemoGNG
website (DemoGNG), provided by the Institut fiir Neuroinformatik.

3.2 ParaSOM

The ParaSOM is architecture developed by the authors (Valova, Szer, Gueorguieva, & Buer
2005), which shares several similar attributes with the classic SOM and the growing
architectures developed by Fritzke. However, it improves the effectiveness of the network
and allows for different approaches to cluster analysis and classification, which will be
demonstrated in later sections. The unique characteristics of the architecture include:
parallel input processing, the adoption of cover region to manage the influence area of a
neuron, and network growth, which is inspired by the GC architecture.

The ParaSOM is designed to process the entire input space in parallel. The classic SOM
presents the network with one input at a time and determines the winner to move closer to
that input. With the ParaSOM, however, the entire input space is presented to the network
at the same time. Therefore, multiple neurons can adapt to nearby inputs independently of
other neurons. This trait helps the network in recognizing patterns that it has already
learned. For instance, imagine the network adapted itself to a particular pattern A, and
another pattern B, that is very similar to A, is presented to the network. Because the
neurons process the input space independently of each other, the ones that are already
covering the pattern (most of them, since A is very similar to B) will not move. As a result,
adapting to B is much faster, as the network only needs to learn the small differences
between A and B.

ParaSOM features the following parameters that are unique to the architecture. The network
produces a cover matrix, which represents the approximation of an input pattern made by

26 Machine Learning

the network in its current state. The cover matrix calculation is based on the cover region,
which is an attribute of every neuron. This is the area surrounding the point in space where
the neuron exists and is considered to be the region of space that the neuron is covering. The
move vector is another neuron attribute, which indicates the amount a neuron should move
and in which direction is calculated, and added to the neuron’s reference (weight) vector.
The age parameter, which represents for how long a neuron has been well or poorly
positioned is closely related to the inertness of a neuron. The inertness is the measure of how
effectively a neuron covers the input space. Both, age and inertness determine when and
where the network should grow or contract.

The ParaSOM in action is illustrated in Fig.10. The network is initialized with a minimal
number of neurons, which have large cover regions (denoted by the large circles in Fig.10a).
As the input space is shown to the network, the move vectors are calculated along with the
other parameters gauging the performance of individual neurons (i.e. age, inertness, cover
region) and the neurons are moved, new ones are added or some are removed in order to
achieve the final comprehensive coverage illustrated in Fig.10c.

| - :.:.a,_,__\ (» n
X g
Fig. 10. ParaSOM in action: a) randomly initialized with a predetermined number of

neurons; b) the network position at iteration 25; c) the network at iteration 500

e 4

The formalization of the algorithm will begin with the cover matrix which consists of
subtracting a set of cover regions from the input space. Each such region is associated with a
single neuron, and represents the contribution of the neuron to the total approximation. The
job of the cover region is to weaken the signals of the inputs that are being covered, where
the weaker the signal, the better the neuron is covering that region. Each cover region also
maintains a radius which decreases in each epoch. The cover matrix is formulated as

=130 @

with the cover region calculated as

< threshold ©)

{1<j<k}

0, else

6.(x;)= {f'”' (x)’ifo/ —m,

where the modified Gaussian cover function is defined as

SOMs for machine learning 27

|:(/11_x1)2+"'+(,u,,—x,,)2T (6)
A

Jo, (X)=exp |~

for radius A and u being an attribute of the input vector.
The cover function is utilized in the computation of a cover value, which indicates how well
the neuron is covering the inputs and is calculated as

G = Ci : fm, (7)
where the local cover matrix is represented by
¢ =(C+0) ®

The inertness, is an indicator as to whether the neuron should be moved, removed, or is in a
place where new neurons ought to be added nearby. The lower the inertness the better the
coverage and hence position of the neuron. The inertness is given by

(pi = ci/cmax (9)
where the cover value max is calculated by

Cpu = | 1, () (10)

The network utilizes the inertness to determine whether and where to grow/shrink. A high
inertness indicates that the neuron is well positioned and should not move (or move very
little), while a low inertness indicates poor positioning and greater neuron movement.
Inertness is one of two components that dictate network growth, with age being the second.
Each neuron has an age attribute that. When a neuron is well positioned, as determined by
a high-inertness threshold, its age is incremented. The same is true with a poorly positioned
neuron having its age decremented based on a low-inertness threshold. When a neuron is
well (or poorly) positioned for a sufficient period of time, it becomes a candidate to have a
neuron added as a neighbor, or to be removed from the network, respectively.

Finally, the move vector, which indicates the amount a neuron should move and in which
direction is calculated, and added to the neuron’s reference vector. The attractions also affect
immediate neighbors of the neuron but to a lesser degree where the amount of movement is
proportional to the distance between the neuron and neighbor. The move vector v, = (v,,v,,,

.., v,) consists of components v, = .[C'f, (x)dx.
o

The authors have explored the effect a Hilbert initialization has on ParaSOM. As with the
classic SOM, this network is also positively influenced by this mode of initialization. Fig.11
shows some results. Fig.1la features the network at iteration 0, using the same input
topology as Fig.10. Fig.11b illustrates the intermediate result at iteration 25, and Fig.11lc
illustrates the final converged state of ParaSOM at iteration 500, same as the iteration in

28 Machine Learning

Fig.10c. The last point is made to focus the reader attention to the tangled state of the
randomly initialized network in Fig.10c. The Hilbert initialization, as the same iteration,
features untangled, well-organized network.

Fig. 11. ParaSOM in action: a) Hilbert initialized with a predetermined number of neurons;
b) the network position at iteration 25; c) the network at iteration 500

Other investigations with ParaSOM include parallelization (Hammond, MacLean, & Valova,
2006) via message-passing interface (MPI) among 4 worker and 1 director machines (Valova
et al., 2009), controlling the parameters of ParaSOM with genetic algorithms (MacLean &
Valova, 2007), and more recently, testing and network adjustment for multidimensional
input.

3.3 ESOINN

The Enhanced Self-Organizing Incremental Neural Network (ESOINN) (Furao, Ogura, &
Hasegawa 2007) represent growing architectures, which are partially inspired by GNG and
GNG-U. According to the authors of ESOINN, it addresses the stability-plasticity dilemma
(Carpenter & Grossberg 1988), by providing the ability to retain knowledge of patterns it has
already learned (stability), while still being able to adapt to, and learn, new patterns that it is
yet to be exposed to (plasticity). ESOINN identifies clusters during execution by joining
together subclusters that form within a larger cluster. Thus, overlap in multiple clusters can
be identified and effectively separated.

Typically with growing architectures, the network grows by adding neurons in sufficiently
dense area of the input space. In ESOINN, neurons are added when the current input is
adequately distant from the closest neuron. A new neuron is added to the network
containing the same (not similar) reference vector as the input.

ESOINN decides on adding a neuron based on similarity threshold. It is basically a dynamic
distance measure calculated by the distance of the neuron’s neighbors, or, if no neighbors
are available, all other neurons in the network. When an input is presented to the network,
the first and second winners, or best matching unit (BMU) and second matching unit
(2BMU), are determined. The network then decides if a connection between the winner and
second winner should be created, if one does not already exist.

In ESOINN, knowledge of the neuron density in a given area of the input space is critical to
performing tasks such as creating connections between neurons and detecting overlap in
clusters. By being able to measure the density, the network can better determine whether a
particular section of the input space is part of a single cluster or of an overlapped section.
After detection of overlapped areas, connections between neurons of different subclasses are

SOMs for machine learning 29

removed. This separates the subclasses belonging to different composite classes. This
process is performed at regular intervals, where the number of inputs presented to the
network is evenly divisible by predetermined integer value.

Fig. 12. Neurons in {A, B, C, D} are all connected by paths and therefore are in the same
cluster. The same is true with {E, F, G}, and {H, I}. Conversely, A and E have no path to
each other, and therefore are not in the same class

Connections in ESOINN are used to identify subclasses. To aide in this identification, they
are created and removed from neurons as new data is presented to the network. When a
connection is removed between two neurons, a boundary is identified between the different
classes that each neuron is a part of. The paths created by connections are also the way that
neurons are classified at the end of ESOINN execution. Any given neuron i, and all other
neurons that are connected to i by a path, are considered to be in the same class. Neurons
that cannot be connected by a path are said to be in different classes (Fig.12).

Connections in ESOINN are created when there is no existing connection between a winner
and second winner. In this case, the newly created connection has an age attribute that is set
to zero. If a connection already exists between the winner and second winner, the age of
that connection is reset to zero. In either scenario, the ages of all existing connections
between the winner and its neighbors are increased by one (except the connection between
it and the second winner). Deletion of connections occurs when the ESOINN algorithm
determines that the current winner and second winner are in different subclasses and those
subclasses should not be merged.

ESOINN adds neurons because they represent noisy input which is likely to be distant from
relevant patterns. As a result, the input will be outside of the similarity threshold of the
winner and second winner, and a new neuron is created. These neurons are undesirable
because they are generally placed in low-density areas and can skew the cluster
identification. ESOINN removes neurons with two or fewer neighbors utilizing average
density value. When a neuron is deleted, all connections associated with it are also removed.
This process also occurs after predetermined number of inputs has been presented.

The connection removal and addition features of ESOINN make it very powerful at finding
distinct patterns in a wide array of problem domains. ESOINN is a major step forward in
unsupervised learning. Since ESOINN addresses the stability-plasticity dilemma (continued
learning with no forgetting), it is an algorithm that can be used for varying types of data
sets, including overlapping Gaussian distributions.

3.4 TurSOM

TurSOM (the amalgamation of Turing and SOM) is a new variant of the Kohonen Self-
organizing Map, introduced by the authors (Beaton, 2008; Beaton, Valova, & MacLean,
2009a, b, c). TurSOM'’s primary contribution is the elimination of post-processing techniques

30 Machine Learning

for clustering neurons. Its features are inspired in part by Turing’s work on unorganized
machines (Turing, 1948). Turing’s unorganized machines (TUM) represent early
connectionist networks, meant to model the (re)organization capability of the human cortex.
In Kohonen’s SOM algorithm, the neurons are the components of self-organization, whereas
with Turing’s idea, the connections also fulfil that role. In TurSOM, we capitalize on both
methods of self-organization.

While the neurons of TurSOM adhere to the same learning rules and criteria of the standard
SOM, the major differentiating feature of TurSOM is the ability to reorganize connections
between neurons. Reorganization includes the removal, addition, or exchanging of
connections between neurons. These novelties make TurSOM capable of identifying unique
regions of input space (clustering) during execution (on-the-fly), as demonstrated in Fig.13.
The clustering behavior is achieved by allowing separate networks to simultaneously
execute in a single input space. As TurSOM progresses, connections may be removed, or
exchanged - causing a network to split into two networks, and two into three or four, and so
on. Additionally, when separate networks get closer to one another they may join to form a
single network.

Y
- -®

Fig. 13. TurSOM on connection reorganization: a) TurSOM at initialization; b) TurSOM at
250 iterations - exemplary of TurSOM reorganizing connections; ¢) TurSOM at 350 iterations
- exemplary of TurSOM identifying unique patterns

In order for TurSOM to achieve the behavior it exhibits, several new mechanisms are
introduced to the Kohonen SOM.

In SOM algorithms, there is a neuron learning rate. The point of the neuron learning rate is
to decrease the movement of winning neurons (and subsequently their neighbors) as time
progresses. As a SOM adapts to input, it should require less drastic organization, i.e.,
smaller movements.

Similarly, TurSOM introduces a connection learning rate (CLR), which regulates the
reorganization of connections as TurSOM progresses. The CLR is a global value controlling
the maximum allowable distance between two neurons. If the distance between any two
neurons exceeds the CLR, they must disconnect. CLR is computed as follows:

CLR = Qs+(i X (Q3-Q1) (11)

The CLR formula is derived from the upper outlier formula from box-plots (a statistical
technique of measuring distribution by analyzing four quartiles). In CLR, the . in Q
represents which quartile it is, and i, is an incrementing value as time progresses. The data

SOMs for machine learning 31

being measured (for the quartiles), is the length of all connections available in the current
input space. The CLR is instrumental to the reorganization process in TurSOM as it
effectively decides which connections are unnecessary.

VNSO e S S S

Fig. 14. CLR in TurSOM: a) the square pattzrn with random initialization; b) the first 50
iterations of TurSOM, where its behavior is the same as a SOM; c) CLR has been active for
100 iterations and a rapid, and sudden reorganization of connections is evident

Fig.14a, b and ¢ demonstrates a simple solid pattern for the first 150 iterations of TurSOM.
The CLR determines which connections will be eliminated. The connections that are not
considered optimal are removed and as evident by the figure, the removed connections
were negatively impacting the network.

So far, we have described how TurSOM may separate into different networks, but we have
not addressed how two networks can rejoin into one. The neuron responsibility radius
(NRR), inspired by ParaSOM’s neuron cover region (addressed in section 3.2), becomes
active in TurSOM when two neurons disconnect from one another. However, there is one
requirement for networks that disconnect - they must be of size three or greater.
Empirically, it has been shown (in TurSOM) that networks smaller than three (i.e. 2 or a
single neuron) become “pushed aside” for other neurons that are active in a network. A
neuron with an active radius still has one neighbor.

The neuron responsibility radius, is effectively a “feeler”, actively searching for other “free”
neurons with similar features. To calculate the NRR, the following formulae are used when
the dimensionality of input space is even:

- [%}% (12)
5

N (13)

e=|—=!l xx?

2
If the dimensionality is odd:
Vs (14)
_|p

A
N - 15
55,071, o (15)

0= 2 |xz?

32 Machine Learning

where & represents the number of dimensions, and p represents the number of inputs a
neuron is responsible for. p is calculated by dividing the number of neurons, by the

number of inputs. To follow along with the example provided in the previous section on
connection learning rate, the following Fig.15) demonstrate the remaining iterations of
TurSOM, where the effects of the NRR are seen.

Segereneny §
semsiey |

Fig. 15. The effects of NRR: a) demonstrates the reconnection process, which is governed by
the NRR; b) The single pattern in an optimal mapping, where the Peano-like curve of the
network must be noted

As demonstrated in Fig.15, the NRR determines the reconnection process, and works in
cooperation with the CLR (the disconnection process). TurSOM also provides for a neuron
to sense nearby neurons that are betfer suited to be connected neighbors than current
neighbors. Simply stated, this is a check that neurons perform by knowing the distance to
their neighbors, and knowing of other neurons in the network that are nearby. This process
is considered to be a part of the reorganization process.

Similar to Frtizke’s growing grid algorithm, TurSOM has a growth mechanism. TurSOM
begins as a one-dimensional chain, which upon convergence, will spontaneously grow (SG) to
two-dimensional grids. The term convergence is used loosely here to mean a network
reaching a fairly stable representation of the input where further computation would not
benefit the network significantly. During the spontaneous growth phase, connection
reorganization (which implies network splitting and rejoining) is turned off. Presumably, at
this point, the one-dimensional networks have settled to satisfactory positions, and do not
require further adaptation. The growing process is demonstrated in Fig.16. Fig.16a
illustrates the input pattern. The converged one-dimensional SOM is shown in Fig.16b.
Finally, the SG is demonstrated in Fig.16c, where it is evident that each one-dimensional
network grows independently.

Lihbe ;

Fig. 16. TurSOM in action: a) Input space with 4 distinct patterns, which are five-dimensional
data (X,Y, R, G, B); b) TurSOM in one-dimensional form mapping each of the distinct patterns;
¢) TurSOM with SG for a better representation of the patterns

SOMs for machine learning 33

TurSOM’s growing capabilities are an instrumental part facilitating the performance of the
network. Often times, one-dimensional networks do not represent the underlying data well
enough. Two-dimensional networks have a better representation, or, a better resolution.
Finally, the TurSOM algorithm can be summarized in the following steps:
a) Select Input
b) Find best-matching unit (BMU)
c) Update BMU and BMU’s neighbors
1) Record the distances between all connected neighbors
d) Check lengths of all connections (Step c.1)
1) If connection is too large
- Disconnect neurons
- Update Connection Learning Rate
- Activate Neuron Responsibility Radius
e) Check neuron physical locations
1) If neuron A is a neighbor of B, but not C (which is a neighbor of B), but
A is closer to C than B, switch connections - thereby changing neighbors
f) Check neuron responsibility radius for proximity to other neurons
1) Reconnect neurons that have overlapping NRR
g) If TurSOM has reached convergence
1) Spontaneous Growth

3.5 Modular Network Self-organizing Map

While not a growing architecture, a very recent SOM architecture called the modular
network Self-Organizing Map (mnSOM) (Tokunagaa & Furukawa, 2009) is mentioned here.
This architecture is a hybrid approach to neural network computing. The mnSOM
architecture consists of a lattice structure like that of a typical SOM. Additionally, the
neurons in the SOM behave in a similar self-organizing fashion. However, each neuron is
composed of or “filled with” a feed-forward network, such as a multi-layer perceptron
(MLP).

The major difference between SOMs and feed-forward networks, is that SOMs learn the
topology or structure of data. Feed-forward architectures learn functions about input.

The effective outcome of this network is that it self-organizes function space. That is to say,
when presented with various types of input patterns where functional knowledge might be
very important, mnSOM is able to topologically order functions based on similarity.

4. Methods for SOM analysis

Self-organizing maps are powerful analytical tools. Visualization is often employed to
analyze the resulting topological map. However, sometimes networks do not represent
optimal mappings. This can skew the understanding, or even representation of the data that
is supposed to be visualized. In this section we provide methods of analyzing the quality of a
SOM network. Commonly, these techniques are used post-execution, in order to analyze how
well the SOM converged to the given data. A survey of SOM quality measures can be found
in (Polzlbauer 2004).

34 Machine Learning

4.1 Quantization Error
Quantization error (QE) is a simple measure used in other fields, including clustering and
vector quantization as a technique for verifying that inputs are with their proper (or best
suited) clusters. As SOMs perform clustering, QE can be utilized. However, one major draw
back is that QE does not address the quality of organization of the network. Rather, it
measures neuron placement to inputs.
Quantization error is measured by computing the average distance from inputs to their
appropriate outputs. One point to note about this measure, is that when the number of
neurons is decreased or increased for the same input space, the value acquired by
quantization error is increased or decreased respectively. Effectively, more neurons mean a
smaller error, and vice versa for less neurons. The QE is calculated by computing the
average distance from inputs to their associated neuron. Short pseudocode is given below:
uniquely number all neurons
for each input
find best-matching unit (BMU); aka neuron
array[BMU#][1] = array[BMU#][1] + distance from input to BMU
array[BMU#][2] = array[BMU#][2] + 1;
end
for each neuron as x
errvor[x] = array[x][2] / array[x][1]
end

4.2 Topographic Error

Topographic error (TE) measures the quality of organization of SOMs, and provides
information of how well organized neurons are with respect to other neurons. This measure is
used to see if neurons are correctly identified as topological neighbors, with respect to
inputs.

Conceptually, TE is attempting to give an idea as to how twisted, or tangled a SOM network
is. An example of a 2-dimensional pattern, with a 1-dimensional map is shown in Fig.17.
Topographic error is represented as a value between 0 and 1, where 0 indicates no
topographic error, therefore, no tangling, and 1 would indicate maximum topographic error
or complete tangling.

T

Fig. 17. This pattern shows (in the bottom right) a 1-dimensional network that intersects, or
crosses connections. Effectively, this network is tangled, as there are more appropriate
neighbors for some of the neurons.

Topographic error is computed as follows:
error =0
for each data sample
find best-matching unit (BMU)
find second best-matching unit (2BMU)

SOMs for machine learning 35

if BMU is not a lattice neighbor of 2BMU
error = error + 1;
end
end
error = error / number of neurons;

4.3 Topographic Product

Topographic product (TP), introduced by (Bauer & Pawelzik, 1992), is a measure to indicate
if a SOM is too large or too small for the input it is representing. TP measures the suitability
and size appropriateness of a map, for a given set of input. Two primary variables are utilized
for the computation of TP, Qy and Px. Qx is a ratio of distances found in input and output
spaces, and Py is a multiplicative normalization of it's respective Qy value. Below are the
initial steps for TP:

Step 1: For the weight (in input space) (w) of neuron j (w;), find the kt:
a. Closest data in input space, as distance dl

b. Closest neuron in output space, as distance d}
Step 2: For the neuron j, find the k#:
a. Closest neuron in output space, as distance dlA

b. Closest data in input space, as distance d4
Step 3: Create two ratios:
QuiK) = d / d
Qaj k) = di'] df , where k represents an iterative value.
When using k in the SOM, the iteration occurs through all other neurons besides j (steps 1a
and 2a). Similarly, when calculating Qs, the iteration occurs through all inputs, excluding w;
if w; is equal to one of the inputs (steps 1b and 2b).
These two values, Qi and Q, optimally would be equal to 1, if and only if neighbors are
correctly preserved and suitably organized. However, Bauer and Pawelzik point out that
this is far too sensitive. A normalization of Q; and Q is required, via IT function (pseudo
code provided):
Px(jk) =1;
for each neighbor of a neuron j, represented by k
Px(j k) = Px(j,k) * Qx(j,k)
end
Px(j k) = power(Px(j k), (1/k))

x of Py, and Q are either 1 or 2, defined from the previous steps. At this point, P1 2 1, and
P, <1, as Py is a value created from all the data in input space, based on the weights of all
neurons. If there is a 1-to-1 mapping of neurons to input, then this value should be 1.
Additionally, P, will be less than or equal to one, because it is a representation of
neighboring neurons in the output space. This occurs because the denominator of Q. comes
from input space distances and the numerator comes from neurons distances.

However, having two numbers to explain a mapping is not desirable, so Bauer and
Pawelzik introduce P (provided below in pseudo code):

P3(jk) =1;

36 Machine Learning

for each neighbor of a neuron j, as k
P5(j,k) = P3(j,k) * (P1(j,k) * P2(j,k))
end

Ps(j,k) = power(Ps3(j,k), (1/2k))

P3 is normalized. The relationship of P; and P; is inverse, thereby giving way to these rules:

1: P3 > 1 means the map is too large, P; > (1/P2)

2: P3 <1 means the map is too small, P; < (1/P»)
The final step in topographic product is computing an average of the values already
obtained, when using all neurons in a SOM:

P=0;
for each neuron, as j
for each neighbor as k
P =P +log(Ps(j k)
end
end

P = P/(N*(N-1)) // where N is the number of neurons

All values of P that deviate from 1, should be of concern. The same rules apply to P as do P,
concerning deviation from 1. The formulaic view of P; is provided by Egs. (16) and (17).

1/2k (16)
) at ()
(/ an (J))

S log(P3(j.k)) a

i*

k dV(Wi
M Wk

N(N) Z

4.4 Other Measures

We have presented three measures of SOM that evaluate fundamental aspects of SOM
quality, namely, correct neuron to input positioning (QE), network organization quality
(TE), and suitability of map size (TP).

However, there are several measures beyond these that attempt to combine these
fundamental aspects, or measure other characteristics of SOMs. Some of these measures
include Trustworthiness and Neighborhood Preservation (Venna & Kaski, 2001), which aim
to measure data projection relations, by comparing input data relations to output data
relations; and Topographic Function (Villmann et al., 2007), a measure which accounts for
network structure, and neuron placement.

5. Pattern identification and clustering

Over the years many methods of analyzing the patterns of the neurons of SOMs have been
introduced. One of the simplest methods is the gray scale clustering presented by Kohonen
in his book, on the poverty map data set (Kohonen, 1995). Kohonen’s example colors
distances between nodes a shade of light gray, if the nodes are close, or dark gray, if the
nodes are far. However, visual methods leave interpretation up to the reader. In this section

SOMs for machine learning 37

we present two methods of analyzing and identifying patterns exhibited by the neuron
configurations of SOMs. These are methods for post-convergence analysis. When a SOM
converges, it is not always necessary to perform any post-processing techniques, especially
in lower dimensionality. At the time of convergence, what we do know is that each neuron
has found a suitable region of space, where it is representing a given amount of inputs.
Exactly what inputs is not always clear unless another technique is used (one technique to
map inputs to neurons is QE). Additionally, there may be a relationship that exists between
neurons. This section will explain methods of measuring similarity and the relationships
between neurons.

5.1 PCA

Principal components analysis (PCA) is a well-established statistical technique, used in a
variety of fields on high-dimensional data. The primary goals of PCA are dimensionality
reduction and explanation of covariance (or correlation) in variables. Effectively, PCA
provides linearly separable groups, or clusters within high-dimensional data along a given
dimension (variable). Additionally, the principal components computed by PCA can
identify which variables to focus on, i.e. which variables account for the most variance.
Variables are determined to be unnecessary when they do not explain much variance. For a
detailed explanation on PCA and how to implement it, please see (Smith 2002, Martinez, &
Martinez 2005).

PCA can be used as a pre- (Kirt, Vainik & Vdhandu, 2007; Sommer & Golz, 2001) and post-
(Kumar, Rai & Kumar 2005; Lee & Singh, 2004) processor for SOM. Additionally, a SOM has
been created to combine the capabilities of both PCA and SOM (Lépez-Rubio, Mufioz-Pérez,
Gomez-Ruiz, 2004).

When analyzing a SOM for potential clusters, understanding the relationship among
neurons usually presents great challenge. This analysis can become difficult when analyzing
a converged map when there are very few (small network) or very many (large network)
neurons. Additionally, it may be more useful to ignore certain variables prior to executing a
SOM on a data set. This is where PCA becomes a very useful tool.

It is important to note that PCA is a linearly separable unsupervised technique. Effectively, a
vector is drawn from the origin to a point in space and it is determined that the groups to
one side and the other are significantly distinct (based on a given variable or dimension).
SOM on the other hand, is non-linear, and each neuron can be thought of as a centroid in the
k-means clustering algorithm (MacQueen, 1967). Neurons become responsible for the input
that they are closest to, which may be a spheroid, or even a non-uniform shape.

In the case PCA is performed prior to executing a SOM on a data set, it will be determined
which variables, or dimensions, are most important for a SOM, and now the neurons in a
SOM will have less weights than the original data set. In case PCA is performed after a SOM
has executed, the method will determine which variables in the weights of the SOMs are
most important. This will help explain which neurons are more similar than others, by
contrast to other methods like distance measures and coloring schemes. In summary, PCA
helps eliminate attributes that are largely unnecessary.

38 Machine Learning

5.2 ParaSOM modifications

The ParaSOM architecture takes a unique approach to performing cluster identification. It
relies heavily on the features of the network and the behavior it exhibits because of those
features (Valova, MacLean & Beaton, 2008b).

When the network is well-adapted and near the end of execution, the cover regions of the
neurons are generally small and covering their respective sections of the input space
precisely. Therefore, in dense regions the neurons should be plentiful and in very close
proximity. A key property of the network at convergence is that the distances between
intra-cluster neurons will likely be much smaller than the distance between inter-cluster
neurons. This is the central concept of the cluster identification algorithm that ParaSOM
takes advantage of.

Once convergence takes place, the network will perform clustering in two phases. The first
phase utilizes statistical analysis to initially identify clusters. The second phase employs
single and complete linkage to combine any clusters that may have been separated, but are
in close enough proximity to be considered a single cluster.

In order to determine the minimal distance between neurons in different clusters we make
use of the mean of the distances between neighboring neurons, x , as well as their standard
deviation, 0. The standard deviation is used to determine how far away from the mean is
considered acceptable in order for a neighbor to be labeled in the same cluster as the neuron
in question.

The overwhelming majority of the connections between neighbors will be within clusters.
Therefore, the number of standard deviations away from the mean connection distance that
a certain majority of these connections is within will be a good indicator of an adequate
distance threshold.

To discover the initial clusters, the mean of the distances between neighbors is determined
through iteration on all neurons. Following that, the standard deviation of the distances
between neighboring neurons is computed via Eq. (18).

: (18)

o= Z(’?_di)z

i=l1

where d; is the distance between a pair of neighboring neurons.
Further, determine how many neuron pairs lie within x+m standard deviations, for

eachm e {ln} . Based on some threshold a, where 0.0<= a <=1.0, determine the minimum

distance X +mo that the percentage of neurons specified by a are within. This distance will
become the initial cutoff threshold . Finally, iterate through the neurons one final time to
determine where new clusters are formed. When a neuron’s distance to a neighbor exceeds
K, add the neighbor to new cluster.

The method used to determine x is based on Chebyshev's theorem (Sternstein, 1994), which

states that at least 1- %72 of the values in a set of data lie between p standard deviations of
the mean. This theorem is applicable to generalizations that are valid for any set of data.

However, the behavior of the ParaSOM requires heuristic modifications to the theorem. We
modify the original theorem to obey the following principle:

SOMs for machine learning 39

K=X+p-o (19)

where p satisfies the minimum p-o from x that the percentage of neurons specified by a
lie within. Since the ParaSOM provides a narrow normal distribution of distances between
neighbors, the determination of « for it to be fine-tuned provides effective adaptation to any
input space distribution.

There are situations where separating clusters based on distances between neighbors leads
to undesired results. Ideally, the cutoff threshold x should be adequate to accurately
determine cluster membership. However, a number of factors that influence the location of
neurons can cause erroneous decisions by the method described above. There are cases
where the distance between neighboring neurons is outside the cutoff threshold because of
the insertion of neurons between them (Fig.18).

|'

Fig. 18. Neurons N1 and N2 are neighbors, but their distance exceeds the cutoff threshold
because N3 is between them.

The cluster identification algorithm takes this into account and will recombine clusters that
are originally determined to be disjoint, but have sufficient similarity to merge. This cluster
recombination is facilitated by two techniques used in tandem: single and complete linkage.
Single linkage is a technique that links together clusters based on the minimal distance
between any one element in one cluster and any one element in a second cluster. Single
linkage recombination sometimes has a tendency to chain together clusters and produce
potentially undesirable results. Being aware of this tendency, ParaSOM’s recombination
algorithm uses a threshold value § to make sure the linkage distance between clusters does
not exceed this value. The S threshold determination also relies on the ParaSOMs
tendency to create an abundance of tightly packed neurons in dense input regions.

Looking again at Fig.18, let us assume that the distance separating N1 and N2 is greater than
k. Therefore, according to the initial clustering, N1 and N2 are in different clusters. Let us
also assume that N2 and N3 are in the same cluster. Because N1, N2, and N3 are all in such
close proximity, it makes sense that they should be in the same cluster. When single linkage
occurs, the distance between cluster containing N1 and the cluster containing N2 (or N3)
will be well within the g threshold, and these clusters will be combined.

Since the ParaSOM covers space as effectively as possible, in a mature network adaptation
of the input space the distance between neighboring clusters that should be combined will
be very close to 2r, where r is the cover region radius. As a result, any reasonable B value
will recombine these two clusters. For the ParaSOM, Bissetto x+o .

40 Machine Learning

The second aspect of the cluster recombination process is using complete linkage to rejoin
stray clusters that were mishandled by the initial clustering and not accounted for by single
linkage. Complete linkage is utilized by taking the maximum distance, or dissimilarity,
between elements of two clusters. Complete linkage is employed to join small clusters and
clusters containing only a single neuron. These are cases where the clusters may have been
too distant for single linkage to recombine them. Generally, when complete linkage is used,
there is a chance that the quality of clusters may degrade if the farthest neighbors that join
two clusters together happen to be closer to other clusters than they are to their own.
However, such an event will not be the case. Since complete linkage measures cluster
distance based on the furthest neighbors, the threshold that determines if clusters are
recombined is more lenient than . For complete linkage, we use a threshold of «, which
was introduced previously.

Following the methodology description, we provide two examples of the pattern
identification capabilities of ParaSOM. Figs.19 and 20 take the network through its progress
in adjusting to the input topology and proceeding to evaluate the number of distinct regions
the input space features. The pattern in Fig.19 is clearly requiring one class, however due to
the two very distant shoulders, presents problems for most unsupervised clustering
methods. Not so for ParaSOM, which recognizes and configures the final result into one
cluster. The pattern in Fig.20 presents the difficulty of the two clusters being very close
together. Within 600 iterations and the above described algorithm, ParaSOM clearly
identifies the correct number of clusters.

Fig. 19. Identification of patterns with ParaSOM: a) network at 100 iterations; b) network

state at 400 iterations; c) 600 iterations; d) inspite of the input distribution, the single object is
identified

o i v) z L,

i

2,

“is

Fig. 20. Identification of patterns with ParaSOM: a) network at 100 iterations; b) network
state at 300 iterations; c) 600 iterations; d) the two distinct regions are recognized

6. Conclusions

In summary, we present a number of SOM algorithms, with a primary focus on growing
architectures. The goal of this chapter is to introduce, in chronological order, the

SOMs for machine learning 41

development of growing SOM-based techniques, featuring various variants based on
Kohonen and Fritzke algorithms. The authors present their two major contributions -
ParaSOM and TurSOM along with the ESOINN network which features incremental
learning and cluster identification. We also present methods for SOM analysis which we
have used in our research to facilitate the comparison between the methods we develop and
the state-of-the-art algorithms presented by other researchers.

As a point of future work, we are continuing the development of both ParaSOM and
TurSOM for various applications and further improve the algorithms in terms of complexity
of performance and implementation.

7. References

Bauer, H. U. and Pawelzik, K. R., (1992) Quantifying the neighborhood preservation of self-
organizing feature maps, IEEE Trans. on Neural Networks, vol. 3, no. 4, July 1992.

Beaton, D. (2008). Bridging Turing unorganized machines and self-organizing maps for cognitive
replication. Master’s Thesis, University of Massachusetts Dartmouth.

Beaton, D., Valova, 1., & MacLean, D. (2009a). TurSOM: a Turing inspired self-organizing
map, International Joint Conference on Neural Networks.

Beaton, D., Valova, I, & MacLean, D. (2009b). Growing Mechanisms and Cluster
Identification with TurSOM, International Joint Conference on Neural Networks.

Beaton D., Valova, I, & MacLean, D. (2009c). The Use of TurSOM for Color Image
Segmentation. IEEE Conference on Systems, Man and Cybernetics.

Buer, A. (2006). Initialization of self-organizing maps with self-similar curves. Master’s Thesis,
University of Massachusetts Dartmouth.

Carpenter, G. A., & Grossberg, S., (1998) The ART of Adaptive Pattern Recognition by a Self-
Organizing Neural Network, Computer, vol. 21, no. 3, pp. 77-88.

Carpenter, G.A., & Grossberg, S. (1990) ART 3: hierarchical search using chemical
transmitters in self-organizing pattern recognition architecture, Neural Networks,
3:129-152.

Chien-Sing, Lee & Singh, Y.P., (2004) Student modeling using principal component analysis
of SOM clusters, IEEE International Conference on Advanced Learning Technologies,
30:480-484.

Fritzke, B. (1992). Growing cell structures -- a self-organizing network in k dimensions. In L
Aleksander, &]. Taylor (Eds.), Artificial neural networks II. North-Holland,
Amsterdam.

Fritzke, B. (1993a). Growing cell structures - a self-organizing network for unsupervised and
supervised learning. Neural Networks, 7, 1441-1460.

Fritzke, B. (1993b). Supervised learning with growing cell structures. In Proceedings of Neural
Information Processing Systems, pp. 255-262.

Fritzke, B. (1993c). Kohonen feature maps and growing cell structures - a performance
comparison. In Proceedings of Neural Information Processing Systems, pp. 123-130.

Fritzke, B. (1994). A growing neural gas network learns topologies. In Proceedings of Neural
Information Processing Systems, pp.625-632.

Fritzke, B. (1995). Growing grid - a self-organizing network with constant neighborhood
range and adaptation strength. Neural Processing Letters, 2, 5: 9-13.

42 Machine Learning

Furao, S., Ogura, T., & Hasegawa, O. (2007). An enhanced self-organizing incremental
neural network for online unsupervised learning. Neural Networks, 20, 8:893-903.

Furao, S., Hasegawa, O. (2006). An incremental network for on-line unsupervised
classification and topology learning. Neural Networks, 19, 1:90-106.

Hammond, J., MacLean, D., & Valova, 1., (2006) A Paralle] Implementation of a Growing
SOM Promoting Independent Neural Networks over Distributed Input Space,
International Joint Conference on Neural Networks (IJCNN),1937 - 1944.

Institut fiir Neuroinformatik from DemoGNG website: http:/ /www.neuroinformatik.ruhr-
uni-bochum.de/VDM/research/gsn/DemoGNG/GNG.html

Kirt, T., Vainik, E., Vohandu, L., (2007). A method for comparing self-organizing maps: case
studies of banking and linguistic data. In: Local Proceedings of the 11th East-European
Conference on Advances in Databases and Information Systems, 107 - 115.

Kohonen, T. (1995) Self-Organizing Maps, Springer, Berlin, Heidelberg, New York.

Kumar, D., Rai, C.S., Kumar, S., (2005) Face Recognition using Self-Organizing Map and
Principal Component Analysis, Neural Networks and Brain, 2005. ICNN&B '05.
International Conference on, pp.1469-1473.

Loépez-Rubio, E., Mufoz-Pérez,]. & Goémez-Ruiz,]J.A., (2004) A principal components
analysis self-organizing map, Neural Networks, 17:261-270.

MacLean, D., (2007) Clustering and classification for a parallel self-organizing map. Master’s
Thesis, University of Massachusetts Dartmouth.

MacLean, D., & Valova, I. (2007) Parallel Growing SOM Monitored by Genetic Algorithm,
International Joint Conference on Neural Networks (IJCNN), 1697-1702.

MacQueen, J., (1967) Some methods for classification and analysis of multivariate
observations, Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., 281-297.

Martinez, W.L, & Martinez, A.R., (2005). Exploratory Data Analysis with MATLAB. Chapman
& Hall/CRC Press, Boca Raton.

Polani, D. (2002). Measures for the organization of self-organizing maps. In U. Seiffert, & L.
C. Jain (Eds.), Self-organizing neural networks, Physica Verlag.

Polzlbauer, G.,(2004) Survey and comparison of quality measures for self-organizing maps.

In Jan Paralic, Georg Polzlbauer, and Andreas Rauber, editors, Proceedings of the Fifth
Workshop on Data Analysis, 67-82, Elfa Academic Press.

Sammon, J.W. Jr., (1969) A nonlinear mapping for data structure analysis, IEEE Transactions on
Computation, C-18, 401-409.

Smith, L (2002) A tutorial on Principal Components Analysis. Website:
www.cs.otago.ac.nz/cosc453 /student_tutorials/ principal_components.pdf
Sommer, D., & Golz, M. (2001). Clustering of EEG-Segments Using Hierarchical
Agglomerative Methods and Self-Organizing Maps. In Proceedings of the

international Conference on Artificial Neural Networks. 642-649.

Sternstein, M., (1994). Statistics. Barron’s Educational Series, Inc., Hauppage, N.Y.

Tokunaga, K. & Furukawa, T., (2009) Modular network SOM, Neural Networks, 22:82-90.

Turing, A.M. (1948) 'Intelligent Machinery'. National Physical Laboratory Report. Collected
Works of A.M. Turing: Mechanical Intelligence. Ince, D.C. (ed.) (1992), North Holland,
Amsterdam.

Valova, I, Szer, D., Gueorguieva, N., & Buer, A. (2005). A parallel growing architecture for
self-organizing maps with unsupervised learning. Neurocomputing, 68C, 177-195.

SOMs for machine learning 43

Valova, L., Beaton, D., & MacLean, D. (2008a) Role of initialization in SOM networks - study
of self-similar curve topologies, In Proceedings of International Conference on Artificial
Neural Networks in Engineering (pp. 681-688).

Valova, 1., MacLean, D., & Beaton, D. (2008b) Identification of Patterns via Region-Growing
Parallel SOM Neural Network, International Conference on Machine Learning and
Applications (ICMLA), 853 - 858.

Valova, I, Beaton, D., MacLean, D., Hammond, J., & Allen, J. (2009) NIPSOM: Parallel
Architecture and Implementation of a Growing SOM, The Computer Journal, Oxford.

Venna, J., Kaski, S., (2001) Neighborhood preservation in nonlinear projection methods: An
experimental study. Lecture Notes in Computer Science, 2130:485-491.

Villmann, T. et al., (1997) Topology Preservation in Self-Organizing Feature Maps: Exact
Definition and Measurement; IEEE Transactions on Neural Networks, vol 8. no. 2, pp
256-266.

44

Machine Learning

3

Relational Analysis for Clustering Consensus

Mustapha Lebbah, Younés Bennani and Nistor Grozavu
LIPN - UMR 7030 CNRS, Université Paris 13,

99, avenue Jean-Baptiste Clément

93430 Villetaneuse.

e-mail firstname.secondname@lipn.univ-paris13.fr

France

Hamid Benhadda

Thales Land & Joint 160, Bld de Valmy - BP 82
92700 - Colombes cedex.
e-mail:Hamid. BENHADD A@fr.thalesgroup.com
France

1. Introduction

One of the most used techniques among many others in the data mining field is the clus-
tering. The aim of this technique is to synthetize and summarize huge amounts of data by
splitting it into small and homogenous clusters such that the data (observations) inside the
same cluster are more similar to each other than to the observations inside the other clus-
ters. This definition assumes that there exists a well defined clustering quality measure that
quantifies how much homogeneous are the obtained clusters. The aim of this chapter is to
expose an original approach to merge different partitions, related to the same data set, which
are obtained either by applying different clustering techniques either by the same cluster-
ing technique with different parameters. Fusing partitions has been broadly studied and has
been given several names, depending on different scientific fields, like machine learning or
bioinformatics (Dudoit & Fridlyand, 2003; Kim & Lee, 2007; Monti et al., 2003). Among these
names we can quote: consensus clustering, clustering aggregation, clustering combination,
fusion of clustering, ...etc. Several studies (Frossyniotis et al., 2002; Minaei-Bidgoli et al., 2004;
Strehl & Ghosh, 2002; Topchy et al., 2004; 2005) have pioneered clustering data sets as a new
branch of the conventional clustering methodology. In (Topchy et al., 2004) the authors pro-
pose a probabilistic formalism of clustering concensus using a finite mixture of multinomial
distributions in a space of clustering. The approach proposed in (Frossyniotis et al., 2002)
is designed for combining runs of clustering algorithms with the same number of clusters.
In (Strehl & Ghosh, 2002) the authors proposed combiners based on a hyper-graph model to
solve the cluster fusion problem. The authors discuss two manners of consensus clustering:
(1) Feature Distributed Clustering (FDC): a set of clustering are obtained from partial view of
variables using all observations (2) Object-Distributed Clustering (ODC): with this technique
the ensemble clustering has limited to subset of observation with access to all variables. The

46 Machine Learning

authors provide three techniques (CSPA!, HGPA?, MCLA3), but indicate that HGPA delivers
poor scores for the both data sets used in this chapter. Our work is in FDC category. In (Az-
imi et al., 2007) authors propose a modification of k-means for clustering a multiple runs of
k-means. It's named intelligent k-means, which is especially defined for clustering ensemb]es.
All these models assume that the correct number of clusters is given as parameter of model.
In (Gionis et al., 2007) the authors give a formulation of ensemble clustering titled clustering
aggregation, which does not require a number of clusters. The authors give a nice review of
algorithm dedicated to ensemble clustering.

In this chapter, we offer a representation of consensus clustering as a set of new variables
characterizing the observations. This leads to a formulation of the fusion problem as categor-
ical clustering problem. We propose to use Relational Analysis (RA) as consensus method for
unsupervised learning.The concensus clustering is provided as solution of the minimization
of the objective function for a given consensus clustering. The main idea, shared with other
algorithm is : If many clustering algorithms assign two observations in the same cluster, it
will not benefit to consensus clustering to split these observations.

There are several advantages of RA consensus function: first we have low computational
complexity, and second ability to deal with huge data set. Another purpose of our algorithm
is not to neglect the weak clustering result. Often in the ensemble/aggreation/fusion
clustering we combine only the best results. Given observations and m clustering result
proposed with categorical variables, the purpose is to produce a single clustering that agree
as much as possible with all results of clustering algorithms. The algorithm we propose for
the problem of consensus clustering takes advantage of statistical formulation, (Benhadda &
Marcotorchino, 2007).

Relational Analysis as clustering fusion can be applied in various settings. Multiple runs of
clustering algorithm, like self-organizing map, generate a new variable space, which is signif-
icantly better than pure or normalized variable space. Therefore, running a simple clustering
algorithm on generated variable space can provide the consensus cluster significantly better
than pure observations. In this chapter we present another features of our framework:

o Clustering categorical variable: Consensus clustering provides a natural method for clus-
tering categorical data.

o Determining the correct number of clusters: The formulation we propose don’t require as
parameter the number of clusters. The only parameter needed by RA is the similarity
threshold.

® Clustering mixed data : the clustering fusion method can be particularly effective in the
cases where data are defined over heterogeneous variables that contain incomparable
values. We consider in this chapter a particular case, that we deal with continuous and
categorical variables. In such cases the data set can be divided vertically into sets of
homogeneous variables. Thus we apply an appropriate clustering algorithm and then
combine the individual clustering into single clustering using categorical data cluster-
ing method.

! Cluster-based Similarity Partitioning Algorithm
2 HyperGraph Partitioning Algorithm
3 Meta-Clustering Algorithm

Relational Analysis for Clustering Consensus 47

The rest of the chapter is structured as follows: In section 2 we describe in detail the proposed
model for consensus clustering. In section 3 we present a special case of global fusion based
on self-organizing map. In section 4 we present experiments on public data set.

2. Relational analysis framework

Relational analysis theory is a mathematical data analysis approach with a broad application
field. It was initiated and developed by (Marcotorchino & Michaud, 1978) at the IBM’s Euro-
pean Center of Applied Mathematics (ECAM) by the end of the seventies. This technique uses
the concept of "pairwise comparisons" which has been introduced in the statistical literature
by the end of the thirties, through the work of (Kendall & Smith, 1940). Nevertheless the
concept which has inspired the previous authors, dates of 1785 based upon some works of
the "marquis de Condorcet" (Condorcet, 1785), related to "voting theory". In a general way,
Relational Analysis makes it possible to model and solve problems whose general formulation
can be stated as : Seeking a particular relation ‘R which fits "as well as possible” single (or several)
given relations (R, R?,... R™) .

Unlike the existing clustering techniques, RA methodology does not need necessarily, neither
to do sampling to be able to get results in a raisonable computing time, nor to fix arbitrarily
the number of clusters that could be hidden in the data.

The principle of "pairwise comparisons" consists in transforming, each variable V measured
on N objects into a N x N squared matrix C representing the similarity, with regards to vari-
able V, between the N? couples of objects. An illustration of the "pairwise comparison princi-
ple" can be found in (Benhadda et al., 2007).

2.1 Relational analysis clustering methodology

To cluster a data set P composed of n observations (01, Oy, ..., O,) described by m variables
(Vl, V2, ., V™), we firstly start by transforming each column Vk into a relational matrix C*
with general term ci-‘l-, defined by:

[

ko { 1 if O; and Oy have the same modality of variable vk 1)

P .
i 0 otherwise

This term representing the similarity between the observations O; and Oy, with respect to
variable V. Once all the m matrices C¥ had been built up, we construct a global relational
matrix C called "Condorcet’s matrix" of general term c;; representing the global similarity of

m
O; and Oy with respect to the whole set of the m variables: ¢;;y = Z . This global similarity

i

k=1
has the so called "self maximal similarity property defined by: ¢; < M;#VO;, Oy, where
My = Min(cjj, cpyr) is the "maximum possible similarity" between the two observations O;

and Oi’ .

Using the global similarity c;7 and the "maximum possible similarity" M;; between O; and
O;, we define their dissimilarity c;» as the complement of their global similarity to their "max-
imum possible similarity":

G = My —ciy 03]

48 Machine Learning

Two observations will be, a priori, in the same cluster of the final expected partition as soon
as their similarity will be greater than their dissimilarity i.e.: ¢; > ¢;». The required final par-
tition will be represented by a N x N binary squared matrix X with general term x;; defined
as follows:

1 if O; and Oy are in the same cluster
X = of the final partition 3)
0 otherwise

This partition will be obtained by maximizing the Condorcet’s criterion C(X) defined here-
after:
n n
C(X) =YY (cipxip +Civ %)
i=1i'=1

where:
g = 1—xp (4)

Using the expressions (2) and (4), the criterion C(X) can be rewritten as:

n n n n
C(X) =YY (i — My)xip + Y Y cii (5)
i=1i'=1 i=1i'=1
As the second member of the sum of expression (5) is a constant, we deduce that maximizing
the Condorcet’s criterion is equivalent to maximizing the following criterion C’(X)

n Mg
cXx)=3 3 (Cii' -=")xii’
i=1i'=1

The cost function of the criterion C’(X) will be positive when the similarity c; between two
observations O; and Oj is greater or equal to half of their "possible maximal similarity". This
condition is sometimes very difficult to reach, especially when the number of variables (or
descriptors) is very high compared to the number of observations i.e. m >> n, this is usually
the case when the data set to be clustered is a set of documents. In that case, the number of
clusters of the final partition will be so high that it could deprive the clustering task of its
interest for practical purpose. As the goal of the clustering task is to summarize the amount
of data into simpler structures, to avoid this problem, a solution consists in relaxing the cost
function related to the clustering criterion. To reach that goal it is sufficient to replace the
coefficient 1/2 of M,y by a parameter « such that 0 < « < 1/2. The new formulation of the
criterion €’ (X) will be then:

n n
C'(X) =YY (ciig —ax M) xii

i=1i'=1

Thus, the mathematical formulation of the relational analysis clustering problem is:

max C'(X)
X
under the constraints:
Xjit € {0,1} v (O,‘, O,'/) € Pz (binarity)
xi;i=1 vYO;eP (reflexivity)
Xy —xp; =0 ¥ (0;,0y) € P? (symmetry)

Xt + Xjpir — X < 1 v (Oi,O,-/,Olw) € p3 (transitivity)

Relational Analysis for Clustering Consensus 49

2.2 The RA heuristic

The exact solution of the problem above can be obtained by linear programming techniques
when the studied population is relatively small (few hundreds). But, in practice, the data set
size can often exceed hundreds of thousands or millions of observations. This situation leads
to use heuristics, to get the "best" and closest partition to the exact one, in reasonable time
processing. We give below the description of the heuristic which was used by the relational
analysis methodology in the eighties.

Phase 1
This step consists in intializing the clustering process by building a first partition. To build up
this first partition we construct progressively its clusters according the operations described
bellow:

1. Initialization: we take randomly a first observation which constitutes the first cluster of
the unknown partition

2. We take an observation O; € P, and compute its link £;), (expression 6) with all the
existing clusters V.

Liy =Y Li (6)
i'ey
where the link £;; between O; and O;:
‘Cfi’ =Cjjr —a X Mii’ (7)

This observation is assigned to the cluster which has the biggest strictly positive link
with. If all the links are negative, then we create a new cluster to put in this new obser-
vation.

3. Repeat this process until all observations of population P had been assigned to a clus-
ter.

Phase 2
At the end of the first step, we obtain a partition with a number of clusters®.

1. Merging two clusters: We take, now, the clusters one after another and we compute the
link £y (expression 8) of each cluster V with all the others V'.

‘CVV/ = AVV’ —a X MVV’ (8)
where the agreement Ay between the two clusters:
Ay =3 Y cir
ieyi'eV’
The disagreement Ay between the two clusters is:
Ay =3 Y @,
ieviey
and the possible maximal agreement M, between the two clusters:

Myy =3,) M.

ieVi'eV’

This number is not fixed a priori, but will be discovered automatically during the first process

50 Machine Learning

We will, then, merge the clusters, which have the best link (higher strict positive value).
This must be carried out as long as there is a possibility to improve the criterion ' (X).

2. Transferring an observation from a cluster to another one. When no cluster’s
merging is possible, we take the observations of each cluster and compute the link £;),
(expression 6) of each observation O; with the other clusters V. If an observation has a
better link with another cluster than its own, then this observation is transferred from
its own cluster to this new cluster. This will be carried out, as long as improvement of
the criterion C’(X) occurs.

When, no observation’s transfer is possible, we turn back to the merging step to see whether
it is possible to improve the Condorcet’s criterion by merging other clusters. These four steps
will be applied, until no more improvements of the criterion occurred.

2.2.1 lllustrative example
Let us suppose that the studied population P is composed of seven observations
(01,03, ...,07) which have three qualitative variables (Vl, V2,3) were measured. The data
set is presented in table 1.

vt vz ys
0, 1 1 1
O, 1 1 1
O3 1 2 2
O, 2 2 2
Os 2 2 2
Oy 3 2 3
O, 3 3 3

Table 1. Data set

After transformation of the three qualitative variables into their relational matrix represen-
tations, and after summing up those matrices, we obtain the Condorcet’s global matrix C
represented in table 2

O1 Oz O3 O4 O5 O6 O7

00 3 3 1 0 0 0 0
O, 3 3 1 0 0 0 0
o0 1 1 3 2 2 1 0
o0 0 0 2 3 3 1 0
Os 0 0 2 3 3 1 0
O, 0 0 1 1 1 3 2
o0 0 0 0 0 0 2 3

Table 2. Condorcet’s global matrix C.

As the number of variables measured on this population is equal to three, it represents also
the "maximum possible similarity" that can occur between two observations O; and O;. We

Relational Analysis for Clustering Consensus 51

can then deduce, that the global dissimilarity between those observations is ¢;y = 3 — cjj.
The binary squared matrix X, representing the obtained final partition of population P has
the following general term:

©)

Yoy — 1 if Cijr > Eii’
=30 otherwise

Due to the transitivity constraints, the solution is not so trivial® because of the so called "Con-
dorcet’s effect” cf. (Marcotorchino & Michaud, 1978; 1982), but the proposed heuristic is able
to take into account some of those constraints limitations and avoid getting untransitive so-
lutions. Applying the heuristic to the example (see Table 3), one gets the following optimal
solution:

e Cluster 1: 01,0,
e Cluster 2: 03,04, Os5
e Cluster 3: Og, Oy

The relational representation X of this partition is then:

0, 0, O3 O; Os 0O O
00 1 1 0 0 0 0 0
o0 1 1 0 0 0 0 0
o0 0 0 1 1 1 0 0
o0 0 0 1 1 1 0 0
o 0 0 1 1 1 0 0
O 0 0 0 0 0 1 1
o0 0 0 o0 0 0 1 1

Table 3. Binary matrix representation X of the final partition .

The corresponding Condorcet’s criterion value is: C(X) = 131.

3. Special case of clustering mixed data: Global Fusion

A specific SOM (Self-Organizing Map) model has been developed for mixed data using
the similar cost function as the model presented in Kohonen (2001); Lebbah et al. (2005).
The model dedicated to binary and continuous data is called MTM (Mixed Topological
Map). As with a traditional self-organizing map, we assume that the lattice C (map) has
a discrete topology defined by an indirect graph. Usually, this graph is a regular grid
in one or two dimensions. For each pair of cells (¢,r) on the map, the distance é(c,r) is
defined as the length of the shortest chain linking cells and ¢. Let P = {O;,i = 1l.n}
the learning data set where each observation O; = (O},Oiz,...,Of.‘,..., Olm) is made of
two parts: continuous part ol = (O;[l],O:[Z],...,O;[d’]) (O;H € R%) and binary part

ol = (of“],ofm,...,of[k],...l,xf[d”
'k

1

) where the kth component O?[k] is binary variable

le B = {0,1}) such as each observation O; is thus, a realization of a random variable
bl]

which belongs to R% x %. With these notations a particular observation O; = (O;H, 0;")is

5 Just applying the rule (9) could yield to untransitive solution.

52 Machine Learning

a mixed of subvectors (continuous and binary variables) of dimension m = d, + d,.

Since for binary vectors the Euclidean distance is no more than the Hamming distance H, then
the Euclidean distance can be rewritten by:

110 — wel[? = |0 — w2+ H(0bH, whl]y

where 'H(Ob[‘],w?[']) the complement of global similarity between a binary part of an
observation O and referent wlg[']).

Using this expression, the cost function of the traditional SOM algorithm, which is dedicated
to mixed data can be expressed as:

Gew) = ¥ Y K@re©0))0]) - w2

O;ePreC
+ Y YK, 9(0:))H O, wht)
O;ePreC
(10)

Where ¢ assigns each observation O; to a single cell in C. K is a particular kernel function
which is positive and symmetric (| l‘im K(y) =0).
y —00

The first term is the classical cost function used by the Kohonen Batch algorithm Kohonen
(2001), and the second term is the cost function used in BinBatch model Lebbah et al. (2000).
The cost function (10), is minimized using an iterative process with two steps.

1. Assignment step, which leads to the use of the following assignment function:

VO, $(0) = argmin (HOrH —wiH|2 4 H(Ob[,],wg[.]n

2. Optimization step: It is easy to see that this two minimizations of both terms allow to
define:

[

of the referent vector w, as the mean vector as:

Y K(6(c,¢(0:)0r

¢ The continuous part W,

wr[] _ O;eP
‘ Y. K(3(c,¢(01)
O,eP

¢ The binary part WIC)H
part of the observations Oib['] € P weihted by K(é(c,$(O;))). Each component

w?['] = (w?m,.u, w?[k],‘..,w?[d”])

of the referent vector w, as the median center of the binary

is then computed as follows:

b 0 if [ZO,-EP K(6(c, p(0:)))(1 —Of[k])] N
we' = [Zoie’p K(‘S(C'fl’(oi)))of’[k]] ’

1 otherwise

Relational Analysis for Clustering Consensus 53

4. Experimental evaluation

In the following, the RA is used as the clustering consensus/fusion based algorithm for
categorical and mixed data. First, the original data set is divided into two sub-data sets: pure
categorical data set and pure continuous data set. Next, existing well established clustering
algorithms designed for different data types are employed to provide corresponding clusters.
We can run many algorithms or the same with different parameter using the same data.
Finally the clustering results are combined as categorical data set to provide a consensus
single clustering.

As quality evaluation criterion we use purity index. However, when class labels are available
for each observation, we can use purity measure to indicate the match between cluster labels
and class labels. The purity assess clustering quality from 0 (worst) to 1 (best).

5. Relational analysis for clustering categorical dataset

We used our RA clustering technique to cluster textual database "20 Newsgroups", which
is a reference, for benchmarks for the data analysis scientific and technical community.
This database is composed of 19997 documents, stemming from 20 different forums and
described by 145980 descriptors (or variables). A major characteristic of this database is its
heterogeneity both in terms of size of the documents and in terms of their themes and styles
citelemoine.

At the end of the clustering process, we obtain 330 clusters. These clusters were sorted out
in decreasing of magnitude (their size) order. As an example, we give here the list of the
7 first bigest clusters. Each cluster is described by the words or expressions (descriptors)
participating the most into its constitution

Cluster Descriptors Cardinal
1 game, team, player, hockey, season, 1325
playoff, fan, baseball, league, coach
2 file, directory, program, window, FIP, 1144
archive, DOS, disk, server
3 Government, right, law, constitution, weapon, 1095
citizen, president, gun, policy

4 Car, engine, mile, tire, mileage, 755
brake, dealer, wheel, auto, clutch

5 Clipper, encryption, key, chip, escrow, 673

crypto, wire tap, algorithm, privacy, government
6 Drive, SCSI, IDE, disk, controller, 628
ram, floppy, CD-ROM, jumper, software

7 Card, video, driver, ISA, monitor, 579

bus, VGA, VLB, SVGA, graphics

Table 4. The first seven clusters of the final partition.

54 Machine Learning

Interpretation attempt
We can observe, in view of the descriptors characterizing the clusters that:

e the cluster 1 is compound of documents which generally deal, with "sport",

e the cluster 2 is compound of documents which are mainly related to "software" in gen-
eral,

e the cluster 3 is built up with documents which are concerned with "politics"("policy"),
e the cluster 4 gathers documents which deal, in general, with "motorcar”,
¢ the cluster 5 is made up of documents dedicated to "encoding and data protection”,

e the cluster 6 is compound of documents which deal, generally, with "computer hard-
ware" and more particularly with the choice between IDE or SCSI, and finally,

e the cluster 7 gathers documents which are also concerned with "computer hardware"
and more particularly with video material.

5.1 Artificial data sets for fusion

We illustrate the cluster consensus applications on two artificial data sets downloaded
from http://strehl.com/ and used by (Strehl & Ghosh, 2002). The first data set (2D2K) was
artificially generated and contains 500 observations each of two 2-dimensional (2D) Gaussian
clusters. The second data set (8D5K) contains 1000 observations from multivariate Gaussian
distributions (200 observations each) in 8D space.

For this experiment we take several clustering results provided by Strehl in his website
http://strehl.com/. The authors provide two simulations of clustering ensemble: (FDC, Exp1)
Feature-distributed Clustering (ODC, Exp2): Object-distributed Clustering. Table 5 indicates
different results provided by Strehl and Ghosh adding the result obtained with our consen-
sus clustering technique RA in both experimentations. Our purpose through this comparison,
is not to assert that our method is the best, but to show that RA method can obtain quite the
same good results as the two previews ones, without making any arbitrary assumptions about
the number of clusters to be found. Indeed, as shown in the table bellow, we can see that RA
method give similar results and quite comparable to the ones obtained by both proposed tech-
niques (FDC, ODC). The main difference between these three methods is that, unlike the two
other methods, RA doses not require a priori knowledge of the number of clusters.

8D5K RA
FDC (Expl) | 0.9970 | 0.9930
ODC (Exp2) | 0.9480 | 0.9330

2D2K RA
FDC (Expl) | 0.9440 | 0.9440
ODC(Exp2) | 0.9680 | 0.9700

Table 5. Comparison of consensus clustering. FDC: Feature-Distributed Clustering; ODC:
Object-Distributed Clustering; RA: Relational Analysis; Exp: Experimentation

Relational Analysis for Clustering Consensus 55

5.2 Real data sets and fusion

We will use three data sets coming from UCI repository (Asuncion & Newman, 2007). These
data are mixed, in the sense that they contain both numerical and categorical data. These data
are decribed bellow.

Heart disease data set: this data set, which is D. Detrano’s heart disease data set, was
generated by the Clevlande Clinic. It consists in 303 observations, described by 6 numerical
and 8 categorical variables. The observations are also classified into two classes: healthy class
(buff) and with heart-disease class (sick).

Credit data set : The data set has 690 instances, each being described by 6 continuous and 9
categorical variables. The observations were classified into two classes, approved class and
rejected class.

Handwritten data: this data set consists of the handwritten numerals ("0"—"9") extracted
from a collection of Dutch utility maps. There are 200 samples of each digit such that there is a
total of 2000 samples. Each sample is a 15 x 16 binary pixel image. The data set is represented
as a 2000 x 240 binary data matrix. Each categorical variable is a pixel with two possible
values "On=1" and "Off=0".

In the first experiment we simulate such clustering result by running several clustering algo-
rithms, each one having access to only a restricted categorical or continuous variables. Thus,
each clusters has a partial view of the observations. The clusters are found using subspaces
and adapted clustering technique. In the consensus clustering, cluster labels are clustered us-
ing RA technique. In order to compare our result, we cluster the data using a dedicated Self-
organizing map for mixed categorical and continuous data. This technique is titled Mixed
Topological Map (MTM), and provide a small cluster organized as map (see section 3). Of-
ten we use hierarchical clustering to reduce the number of the clusters (Vesanto & Alhoniemi,
2000). The combining method is indicated by MTM+HC and the number of clusters between
bracket.

The figures 1 and 2 show the comparative results in term of number of clusters and the
purity index. As can be seen, the both figures indicate that RA provides the high scores when
compared for the same number of clusters. Note in this case for the both data set we have, a
priori, two classes, and the RA (2) provides high purity for this case. We note also that RA
don’t require two steps of clustering, comparing to the MTM and other clustering ensemble
algorithms found in the literature which needs an agglomerative clustering technique to
reduce the number of clusters. The only parameter needed by RA is the similarity threshold.

In this second experiment we use Handwritten data set. The purpose is to use RA as
consensus clustering of several runs of the same clustering algorithm. In this case we simu-
late 16 cluster results obtained with Self-organizing map dedicated to categorical data and
hierarchical clustering, using different parameters (Lebbah et al., 2005; Vesanto & Alhoniemi,
2000). We use 5 cluster results with purity score lower than 0.4, and four results lower than
0.72, and the rest results are between 0.74 and 0.76. Thus the RA consensus clustering provide
a stable purity with 0.76.

Machine Learning

56

ey
)
Tslsls

w
o

ustering. The number between brackets indicates

5555555555

DDDDDDDDD

—_—

@ RA (3)

:
RA(7) MTM+HC

+ _ ¥ P e _ +
9999999999

DDDDDDDDD

Fig. 1. Credit data set. Purity scores for consensus clustering. RA : Relational Analysis; MTM:

Mixed Topological Map. HC: Hierarchical C
the number of clusters provided automatically

Fig. 2. Heart disease data set. Purity scores for consensus clustering. RA : Relational Analysis;

MTM: Mixed Topological Map. HC: Hierarchical Clustering.The number between brackets

indicates the number of clusters provided automatically

Relational Analysis for Clustering Consensus 57

The figure 3 shows the distribution of each class of digit in all 15 consensus clusters. The
figure 4 shows the best map obtained among the 16 maps used for consensus clustering. We
visualize this figure in order to interpret the results of consensus. We note that RA grouped
in a cluster numbered 12, 13, 15, the mix of digit 7, 9 and digit 5. It is clear to see on the map
(Fig.4) that some figures such as "9" are written in the same way as "5" and "7". The same
analysis could be done with the other clusters.

Fig. 3. Consensus clustering with RA. Each bar shows the distribution of each cluster.

6. Conclusions

In this chapter, we formally defined the problem of clustering and we presented an origi-
nal and new approach of fusion/ensemble/consensus/aggregation clustering. The main idea
was to find a clustering (or partition) of observations that represents the best consensus be-
tween several other clustering related to the same data set. The goal of the proposed algorithm
is the improvement of confidence in cluster assignments by evaluating a history of cluster as-
signments for each observation. If we compare our algorithm (or method) to some recent
clustering algorithm, we can assert that, unlike these new algorithms, our method is scalable,
linear, in memory use and computational time and can handle data represented as observa-
tions cross attributes or as similarity matrix. Our clustering method handles missing values
without replacing them by values that could be very far away from the true ones. It also
contains a preprocessing module that, among other processings, can compute how discrimi-
nant are the attributes measured on the observations to be clustered. Finally we verified the
intuitive appeal of the proposed approach and we studied the behavior of our algorithm on
real and synthetic heterogeneous data sets. We observed that the proposed method increases
performance as more as iterations of the process are performed. Another advantage of our
method is that, neither do we need to re-process the data; nor do we need to fix the same
cluster numbers for each application or clustering algorithm. In the future, we would like to
perform a more detailed analysis involving huger data set and investigating the collaborative
clustering.

58 Machine Learning

EEWEEHHIIIEIEE
IDDBDBBE
1B 8
B8 4
B I BB 8AaA&8&86
HEEEHEDHHDIIHH@E
-1 EEEEET Y YS
et -0 0 E 0C K 00 0 W ¢
3355559191999 wRE 2R
L1105 kG E & drde 4y d-d
FEF3IFIIIIIRR2ZZ2Z22Z
FIIISTIIIFIITR22Z222Z
SEIIODIIITTTIZTZZ22
B999999FFTTTTTZ22

99999992977 TTT7Z22
29999 FITTIXTTTTZZ

Fig. 4. 16 x 16 map using MTM with only categorical data

7. References

Asuncion, A. & Newman, D. (2007). UCI machine learning repository,
http:/ /www.ics.uci.edu/~mlearn/MLRepository.html.

Azimi,]., Abdoos, M. & Analoui, M. (2007). A new efficient approach in clustering ensembles,
IDEAL, International Conference on Intelligent Data Engineering and Automated Learning.

Benhadda, H. & Marcotorchino, F. (2007). L'analyse relationnelle pour la fouille de grandes
bases de données., Revue des Nouvelles Technologies de I'Information, RNTI-A-2, Cé-
padues, pp. 149-167.

Benhadda, H., Patino, J., , Corvee, E., Bremond, F. & Thonnat, M. (2007). Data mining on large
video recordings, Colloque V.5.5.T.2007 : Veille Strategique Scientifique & Technologique
(21-25 Octobre) Marrakech .

Condorcet, M. N. D. (1785). Essai sur ’application de 1’analyse a la probabilité des décisions
rendues a la pluralité des voix, De I'imprimerie royale, Paris .

Dudoit, S. & Fridlyand, J. (2003). Bagging to improve the accuracy of a clustering procedure,
Bioinformatics 19.

Frossyniotis, D. S., Pertselakis, M. & Stafylopatis, A. (2002). A multi-clustering fusion algo-
rithm, SETN ’02: Proceedings of the Second Hellenic Conference on Al, Springer-Verlag,
London, UK, pp. 225-236.

Gionis, A., Mannila, H. & Tsaparas, P. (2007). Clustering aggregation, ACM Trans. Knowl.
Discov. Data 1(1): 4.

Kendall, M. G. & Smith, B. B. (1940). On the method of paired comparisons, Biometrica 31: 324—
345.

Kim, S. Y. & Lee, W. (2007). Ensemble clustering method based on the resampling similarity
measure for gene expression, Stat Methods Med Res 16: 539-564.

Kohonen, T. (2001). Self-organizing Maps, Springer Berlin.

Lebbah, M., Chazottes, A., Badran, F. & Thiria, S. (2005). Mixed topological map., ESANN,
pp- 357-362.

Relational Analysis for Clustering Consensus 59

Lebbah, M., Thiria, S. & Badran, F. (2000). Topological map for binary data, Proceedings Eu-
ropean Symposium on Artificial Neural Networks-ESANN 2000, Bruges, April 26-27-28,
pp. 267-272.

Marcotorchino, F. & Michaud, P. (1978). Optimisation en analyse ordinale des données, Bio-
metrica 31: 324-345.

Marcotorchino, F. & Michaud, P. (1982). Agrégation des similarités en classification automa-
tique, Revue de statistique appliquée 30(2): 21-44.

Minaei-Bidgoli, B., Topchy, A. & Punch, W. E. (2004). Ensembles of partitions via data resam-
pling, ITCC '04: Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC’04) Volume 2, IEEE Computer Society, Washington, DC,
USA, p. 188.

Monti, S., Tamayo, P., Mesirov, J. & Golub, T. (2003). Consensus clustering: A resampling-
based method for class discovery and visualization of gene expression microarray
data, Mach. Learn. 52(1-2): 91-118.

Strehl, A. & Ghosh, J. (2002). Cluster ensembles —a knowledge reuse framework for combining
multiple partitions, Journal on Machine Learning Research (JMLR) 3: 583-617.

Topchy, A. P, Jain, A. K. & Punch, W. F. (2004). A mixture model for clustering ensembles,
SDM,proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena
Vista, Florida, USA, April 22-24.

Topchy, M.-A,, Jain, F-A. K. & Punch, W. (2005). Clustering ensembles: Models of consensus
and weak partitions, IEEE Trans. Pattern Anal. Mach. Intell. 27(12): 1866—-1881.
Vesanto, J. & Alhoniemi, E. (2000). Clustering of the self-organizing map, Neural Networks,

IEEE Transactions on 11(3): 586-600.

60

Machine Learning

A Classifier Fusion System with
Verification Module for Improving
Recognition Reliability

Ping Zhang

Department of Mathematics and Computer Science
Department of Advanced Technologies

Alcorn State University

USA

1. Introduction

Recognition reliability is a vital and sensitive issue in the pattern recognition applications.
Recognition with a proper rejection option provides a means to reduce the error rate and to
increase recognition reliability (Chow, 1970). It deals with how research projects can be
developed into real applications. Relatively few research papers on this topic have been
reported in literature (Frelicot & Mascarilla, 2002). In order to clearly explain the
recognition reliability problem, the Recognition Rate (RR), Mis-Recognition Rate (MR),
Rejection Rate (R]), and Reliability (Re) are defined and their relationships are analyzed as
follows:

The Recognition Rate (RR) is defined as:

R R __ Number of correctly recognized objects 1
- Total number of testing objects ()

The Misrecognition Rate (MR) is presented as:

MR __ Number of misrecognized objects 5
" Total number of testing objects ()

The Rejection Rate (R]) is written as:

R J __ Number of rejected objects 3
" Total number of testing objects ()

62 Machine Learning

The Reliability (RE) can be denoted as:

RE = Total number of testing objects—Number of misrecognied objects
- Total number of testing objects (4)
The reliability can also be deduced as:
RE =1- MR = RJ + RR)

Technically speaking, there is a tradeoff for a recognition system to pursue a very high
recognition rate and a very low misrecognition rate at the same time given a specific set of
feature set and a classifier or a combination of classifiers (Chow, 1970). It is common sense
that setting a relatively low threshold for a recognition system can achieve a high
recognition rate; however, it also introduces more misrecognitions.

In many pattern recognition systems, the goal is to seek the highest reliability and the
highest recognition rate as possible at the same time. In other words, the misrecognition rate
must be suppressed. When designing a sensitive object recognition system, it is preferred
rejecting objects with low confidences over mistakenly recognizing the objects
(Zimmermann, Bertolami & Bunke, 2002). For example, in an automatic bank check
processing system, a very high recognition reliability is a vital criterion. The misrecognition
is absolutely forbidden and a small percentage of rejection is allowed. The rejected checks
can be sent for manually handling.

An automatic bank check processing system can be divided into the following aspects: 1)
magnetic ink character recognition (MICR); 2) handwritten legal amount recognition
(English character recognition, or other language character recognition); 3) handwritten
courtesy amount recognition (handwritten digital recognition); 4) payer’s signature
verification or recognition; 5) the recognition of name and address of a payer, etc.

Among the above mentioned recognitions, MICR plays an important role in the automatic
bank check processing system based on the following reasons:

a) Information in the MICR area includes the account number of a payer and bank
identification number; both of which need to be firstly recognized in order to verify the
payer’s identification and the payer’s bank number while transition is processed;

b) Individual character recognition rate in the MICR area is very high (over 99%), it is
possible to use an automatic process.

However, some errors have been reported in the bank applications due to the following
reasons: the mechanical deficiency of MICR scanners; the distortion of the printed characters
in the MICR area, and others.

In this paper, we will propose a novel classifier fusion system with a verification module to
improve system’s reliability. The arrangement of the paper is as follows: In Section 2, the
concept of MICR is briefly introduced, which includes one dimensional MICR waveform
process and two dimensional image process. The flowchart of the new classifier fusion
system with a verification module is proposed in the section 3; In Section 4, the basic
concepts of classifiers: Artificial Neural Networks (ANNs), modified K-Nearest Neighbor
(KNN) classifier and Support Vector Machines (SVMs) are reviewed. A gating network for
congregating the outputs of ANN and KNN is applied to the classifier fusion system. Three

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 63

experiments conducted on the MICR character recognition are reported, and the recognition
reliability is analyzed in the section 5. Finally, the conclusion ends this paper.

2. MICR Information Processing

Fig. 1 shows a blank bank check image. The MICR area is located at the bottom of the check.
In North America, E13B font has been officially used as the printed fonts in the MICR area
for almost commercial banks. E13B symbols include ten numerals and four symbols: On-Us
symbol, Transit symbol, Amount symbol, and Dash symbol.

2529

TR
DaTE

EE:TI":GI 1§ il

DoLLAms BEE—

'NON-NEGOTIABLE
Fon. -

Li23L567B0N L23LSE7A90" 2529

Fig. 1. MICR area at the bottom of check

MICR characters are printed with a magnetic ink or toner. A specially designed MICR
scanner can read not only the E13B character waveforms (one dimensional signals), but also
the characters’ images with different resolutions (two dimensional images). The standard
font images and their waveforms of the fourteen characters are shown in Fig. 2.

;

Traosit

| 7o Average|
-
m?
o Lt
|1 00 | Averaae | BT Ao erage
] el Y
Orn-Us Daskh

Fig. 2. E13B MICR fonts and their waveforms

2.1 One Dimensional MICR Waveform

One dimensional MICR waveform processing and recognition has been extensively
researched for a long time. The very high recognition rate was reported under an ideal
condition. However, there are still some recognition errors and rejections reported in the
commercial applications due to unstable paper feeding mechanism of scanners, the

64 Machine Learning

distoration of printed MICR characters on the checks and other factors, which lead to
waveform distortions and noise on MICR images. Fig. 3 shows two MICR waveforms
scanned from two personal bank checks: one has two sub-MICR areas; another has four
sub-MICR areas.

A waveform segmentation algorithm can segment each sub-MICR waveform into individual
waveforms, each representing one character. The detail algorithm for waveform

segmentation is beyond the scope of this paper.
i:h |‘ N

o 00 7000 1500 2000 2500 3000 o 500 1000 1800 2000 3300 3000 3809 4000

(a) Two sub-MICR areas (b) Four sub-MICR areas
Fig. 3. MICR waveform

<
7
& i 2 8

o

2.2 Image-based Character Segmentation

For the recognition of image-based MICR characters, the key issue is how to deal with image
segmentation, noise removal, image enhancement, feature extraction, and the design of
classifiers for recognition. The image-based character image segmentation in the MICR area
can be divided into two steps: 1) locating top and bottom lines of the characters; 2)
segmenting each character from the vertical direction.

In order to accurately locate the top and the bottom lines of the MICR characters in the
check images, a fast algorithm is proposed as follows: scanning each line in the horizontal
direction, counting the number of zero-crossing points in each horizontal line as NC; If the
number of characters in the MICR area is N, then following conditions apply to locate the
top or the bottom lines of MICR characters:

Condition 1: If NC >= 2*N, then the line likely belongs to MICR character area.

Condition 2: Beginning at the Lth line of the MICR image, then moving downwards, if there
are a few consecutive lines satisfy condition 1, then the Lth line is the top line of MICR
character area. The same method is applied to locate the bottom line of MICR character area.
Condition 3: if a check is scanned with certain angle w, the line seeking algorithm presented
in Condition 2 is also traced with this angle.

As soon as the top line and the bottom line of the MICR character area are located, the
characters are segmented based on character’s connectivity and vertical profiles. As to four
special symbols, each symbol consists of three black blocks. The following criteria are used
to combine three black blocks as a symbol:

a) The distance between two adjacent black blocks is shorter than the distance between two
characters;

b) The length and the width of any black block of the four symbols are shorter than that of
the ten numerals.

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 65

Fig. 4 (a) shows an MICR character image; Fig. 4 (b) shows the segmentation result of Fig. 4
(a). MICR area image with background is shown in Fig. 5 (a) and the segmented image is
shown in Fig. 5 (b)

Vadndd

*EOSE 7 KESLIm 7 0ge 87wESL3 2w 4098 755,370,

Fig. 4 (a) Original MICR character image

IVI‘ "”W’

H|E) B?"EEL

j -

| o

Fig. 4. (b) Segmentation result of Fig. 4 (a)

OLEL 110952 2wmQ 301 L7wL 2BEBN"

Fig. 5. (a) MICR character image with background

H L. HOHEE WD Um:

Fig. 5. (b) Segmented image of Fig. 5 (a)

L _=d

Al EBEB

3. Classifier Fusion System with SVM Verification Module

It is difficult for a single classifier to obtain a very high reliability and recognition rate at the
same time for a complex pattern recognition system. Some theoretical advancements have
been proposed in literature (Kuncheva, 2002; Kittler, Hatef, Duin & Matas, 1998). There are a
few possible solutions to help reduce the number of errors. One solution is to employ a
verification module. Another solution is to use a combination of multiple classifiers (Suen &
Tan, 2005). The different features extracted by different means, which are inputted to
different ensemble classifiers for classification, have different merits for recognition because
some of the features are complementary (Zhang, Bui. & Suen, 2007). It is reasonable to
combine two classifiers to produce a higher reliability and at the same time to seek the
lowest misrecognition rate. A classifier fusion system with SVM verification module is
proposed and it is shown in Fig. 6.

In the proposed recognition and verification scheme, a classifier fusion system consists of an
ANN classifier and a KNN classifier, which are trained by two sets of feature vectors
respectively. As the two sets of feature vectors may be complementary, the trained ANN
and KNN as recognizers have their merits on character recognition. Experiments will prove
that the combination of two classifiers can achieve a higher recognition rate.

66

Machine Learning

Verification
Module

A

Gating Network

W1,0~13 W2,0~13
ANN KNN SVM
Classifier | Classifier Il Classifier Ill
A
NN i "1{-DMICR "
ge-based Feature : Waveform

Extraction

Segmentation

MICR Scanner

Fig. 6. Classifier Fusion system with SVM verification module

There are fourteen characters in the E13B character set. For the verification purpose,
fourteen two-class SVMs are applied to classify the MICR waveforms. the result of SVMs is
used to verify the image-based recognition result. The detail recognition and verification
process will be elaborated in Section 5.

4. Classifier Design and Feature Extraction

4.1 Artificial Neural Network Classifier

An ANN is an interconnected group of artificial neurons (Duda, Hart & Stork, 2000). ANN
refers to electrical, mechanical, or computational simulations or models of biological neural
networks. One of the most popular methods for training a multilayer network is based on
the gradient descent principle using the back-propagation algorithm or generalized delta
rule. The principle is a natural extension of the Least Mean Squares (LMS) algorithm
because it is powerful, useful, and relatively easy to understand and implement.

An ANN classifier consists of input units, hidden units, and output units. In terms of
classifying fourteen numerals and symbols in this research, the ANN will have fourteen
output units. The signal from each output unit is the discriminant function gk(x). The
discriminant function can be expressed as:

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 67

r d
gk(x)EZk:f(zwlg'f(zwjixi+wj0)+wk0) (6)
j=1 i=1

where X; is a feature component; W;; is a weight between the input layer and the hidden

layer; W is a weight between the hidden layer and the output layer; i=1,...,d, and d is the

number of nodes in the input node; j=1,..., r, and r is the number of nodes in the hidden
layer; k=0,1,2,..., m, which represents the number of nodes in the outputs layer. For example,
fourteen nodes of outputs represent ten digits and four special symbols used in this paper.
Thus, the discriminant function can be implemented by a three-layer neural network. The
configuration of the three-layer neural network for the recognition is drawn in Fig. 7.

We now turn to the crucial problem of setting the weights based on training patterns and
the desired output. Backpropagation algorithm is used to train the classifier. Some of
considerations in the training and testing procedures are listed as follows:

Target Values: The target value (the desired output) of the output category is chosen as +1,
while others are set equal to 0.0.

Number of Nodes in the ANN: According to a convenient rule of thumb, the total number
of weights in the net is roughly chosen as n/10~n/4. Here n is the number of training
samples.

Initializing Weights: Random data are generated for all weights in the range of -1.0< all
weights <+1.0.

Learning Rates: In general, the learning rate is small enough to ensure convergence. A
learning rate of (0.1-0.4) is often adequate as a first choice.

Training Different Patterns: We used the following strategies to train the classifiers: our
training procedure concentrates on the “difficult” patterns. Firstly, an ANN classifier is
trained on all training samples, then the same set of training samples are fed into the ANN
for testing. Those “difficult” patterns, which are not correctly recognized, are copied several
times and randomly put into the training set for training again. As more “difficult” patterns
are in the training set, the ANN can adaptively learn how to correctly recognize those
“difficult” patterns without losing its generality.

Target t
Hidden Output z fg? “rgfterz
Layery 'foura"
special
chars

Input x

z 0"
z 1

zZ3 ur

Z145pec 4

Fig. 7. Configuration of three-layer neural networks

68 Machine Learning

4.2 KNN Classifier
In a KNN classifier, for each testing sample, the Euclidean distance between the testing
sample and all the training samples are calculated. Let the testing sample x; be represented

by the feature Vector[xf,x;,xé,,,,,x;v]T, where ! denotes the value of the kth feature

component in the ith sample. The distance between x; and x; can be calculated by

d(x,~x;) =,/i(xi -x) @

If the number of training data is N, then N distances will be identified as neighbors. If K=1,
then the class label of the testing sample is equal to the closest training data. If K>1, then the
class label of the testing sample is equal to the class label that most of the neighbors belong.
The output of the KNN algorithm can be interpreted as a posteriori probability. Hence,
instead of labeling the output class label equal to the class label that most of the neighbors
have, we assign the following class confidence values of x:

pe(x)=(no. of neighbors with class label c)/K)]

Here, p. is the a posteriori probability that x belongs to the class ¢; K denotes the number of
nearest neighbors. We can assign class label j to the testing sample x when

p;()=max,, ,ip.(x)} ©)
Here M is the total number of classes.
One improvement to the KNN algorithm is to weigh the contribution of each of the K

neighbors based on its distance to the testing sample. The closest neighbor should receive
the highest weight. It can be represented by modifying the equation into following;:

1

Py (10)
Py =3 (g
o d(x,x j)z
The equation can be normalized as:
M
2.p.(x)=1
c=1

The KNN algorithm with this refinement is also known as the fuzzy K-nearest neighbor
algorithm (Keller, Gray and Givens, 1985). The normalized p.(x) can be used as input of gating
network indicated in Fig. 6.

4.3 SVM Classifier
SVMs rely on the preprocessing the data to represent patterns in a higher dimension by an
appropriate nonlinear mapping ¢(.). Data from two categories can always be separated by a

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 69

hyperplane. The detail theory can be referred to the references (Decoste & Scholkopf, 2002;
Heisele, Serre, Prentice & Poggio, 2003).
In this research, the kernel function is a Gaussian radial basis kernel:

Kx,z)=exp(—||x-z|* /o?) (1)

Training a support vector machine for the pattern recognition problem leads to the
following quadratic optimization problem:

1 11
W(a) ==Y a +5>.> vy,eak(x,x)
i=l i=l j=l (12)
and subject to:
!
ZJ’fai =0
i=1
Vi:0<a, <C (13)

The number of training examples is denoted by I, «is a vector of [variables. Each
component ¢, corresponds to a training examples (x;y;). The solution is the vector ¢ for

which (12) is minimized and the constraints (13) are fulfilled.

SVM is a two-class classifier. For each testing sample, we compare the coefficients of
fourteen classifiers and assign a class with maximum coefficient as overall recognition
output. If the output matches the character’s label, it means that the testing character is
correctly recognized. Otherwise, this character is misrecognized. For example, SVMO
classifier can be employed to distinguish character 0 from all other characters. The overall
recognition is congregated from all SVM classifiers.

Fig. 8 shows the flowchart of MICR waveform recognition using fourteen SVM classifiers.

Class “0”
———| SVMO

Class “1”

SVM1 > Congregation

....... l

Class
“Dash” Overall Recognition
—»{ SVM13 Output

Fig. 8. Flowchart of MICR waveform recognition using SVMs

4.4 Feature Extraction

Feature extraction is a very important step for the image-based character recognition in the
MICR area. Three feature extraction methods (Zhang, Bui & Suen, 2005) are used to
construct two hybrid feature sets. The feature sets include: Directional-based Wavelet

70 Machine Learning

Feature Set, Medial Axial Transformation (MAT) Gradient Feature Set, and Geometrical
Feature Set.

4.5 Genetic Algorithm Used to Envolve Gating Network

A new combination scheme of classifiers is proposed in order to achieve the lowest error
rate while pursuing the highest recognition rate for the recognition of E13B characters. The
schematic diagram is shown in Fig. 6. The output confidence values of the ANN are
weighted by w1,0~w1,13 and the output confidence values of the KNN classifier are weighted
by w2,0~w2,13.

A genetic algorithm is used to evolve the optimal weights for the gating network from the
confidence values of ANN classifier and KNN classifier.

Suppose the outputs of two classifiers are represented as: {c1,0, c1,1,.-.,c1,13}, {20, C21,-..,C213}-

The weighted outputs of the two classifiers’ confidence values can be calculated as follows:

X =w'cC (14)

1 1 1

where w7 =[w, ., ,.ow, 310 C =[€0,C 150 Cips] =12

1,02 TVi 10 Y3 i

Add two weighted confidence values into a Y vector:

Y=> X, (15)

Y=[50, 150451
In order to generalize the output, the j-th output g, of the gating network is the “softmax”

function of), as follows (Friedman, 1997):

Vi

e
T (16)
k

G= [g07g19'"9g13]T
G is the output of the gating network.

Our goal is to pursue a lowest misrecognition rate and at the same time to seek the highest
recognition performance. We can create a vector Oy With fourteen elements, which
represent ten numerals and four symbols of the E13B fonts. In the vector, the value of the
corresponding label is set equal to 1.0, while others are set equal to 0.0. A fitness function fis
chosen to minimize the difference between the output G and the corresponding training
sample vector Oyrger @S follows:

f :‘ G - Otarget |2 (17)

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 71

By minimizing the equation (17) through a genetic evolution, the weights tend to be
optimal. Then, the recognition criterion is set as follows:
A recognition result is accepted if one of the following three conditions is satisfied:

1) ANN classifier and KNN classifier vote for the same character at the same time, where the
sum of the confidence values is equal to or larger than 1.6;

2) The gating network votes for a character, where the confidence value of the gating
network is larger than 0.85;

3) The confidence value of any classifier is larger than 0.95 and the gating network votes for
the same character;

Otherwise, the character is rejected.

4.6 Genetic Algorithms for Training Gating Network

Genetic Algorithms have been developed based on Darwinian evolution and natural
selection for solving optimization problems. GA applies evolution-based optimization
techniques of selection, mutation, and crossover to a population for computing an optimal
solution (Siedlecki & Sklansky, 1989). The problem of the weight selection in the gating
network is well suited to the evolution by GAs.

In the ANN training procedure, the most difficult problem is to find a reasonable fitness
function for a large set of training samples. Ideally, the recognition rate can be used as a
fitness criterion for training a classifier. However, using the recognition rate this way is
unfeasible for some pattern recognition problems because it requires huge computations for
each generation of learning.

In this paper, we use GAs to train the gating network. When equation (17) is used as the
fitness function, the GAs pursue the smallest difference between the gating network’s
outputs and the target label vector O The following is a description of the steps used for
our genetic algorithms.

Chromosome Representation

There are an ANN classifier, a KNN classifier in the system. Each classifier’s outputs have
fourteen nodes. A chromosome is a vector consisting of 28 weights. A chromosome is
presented as:

[Wio win ... Wiz Wi Wigs ... Wiy Wis]

| --14 weights for ANN-- | | --14 weights for KNN-- |

Population Initialization

The initial chromosomes P (48 populations), are randomly created (0.0~1.0).

Selection

The best 24 chromosomes with minimum fitness values, taken from 48 populations in each
generation, are chosen to go into the mating pool.

Fitness Computation

Equations (17) are used to calculate the fitness function.

Crossover

Crossover occurs when information is exchanged between two parent chromosomes and the
new information is introduced to child chromosomes. A single offspring parameter value,
Wyew, coOmes from a combination of the two corresponding parent parameter values. The

72 Machine Learning

crossover begins by randomly selecting a parameter a in a pair of parents, which is a
crossover point. The crossover is calculated as follows:

a = roundup {random (M —1)}

parent 1(mother) = [W, 0, Wo1s W W seees Wong 1] (18)

parent 2(father) = [W 0, Wyis Wys s Wy s Wy 1]
where M is the length of the weight vector. The subscripts m and d in the weight parameters
(wmi,wa;) represent the mother and the father in the mating pool. Then, the selected
parameters are combined to form new parameters. Two new weights are calculated as
follows:

Wt = Woy = BIW,e = Wy,] (19)
Wiew2 = Wag + BIWo = Wa]
where [is a random value between 0.0 and 1.0. The next step is to exchange the right parts
of two parents, consisting of the crossover point to the end for each parent.

offsprings 1 =W, Wy Woa Wi, Warri] (20)

Mutation

In our experiments, the mutation rate is set at 0.01. According to the mutation rate, we
randomly replace wy; (wa;) with a new weight element, which is produced by multiplying
the old weight value with a new uniform random number (0.0-1.0).

Termination Criteria

Termination occurs when either the number of iterations reaches its defined number or the
fitness value converges so that the weights in the chromosome pool are stable.

5. Experiments

In order to see how the proposed system can improve system’s reliability, we conducted the
following three experiments. In all of the experiments, the E13B characters extracted from
250 personal checks (6250 characters and symbols) are used as training samples; another set
of 6250 characters and symbols is used as testing samples. The training samples and testing
samples are separated.

Experiment One

In this experiment, two classifiers: ANN classifier and KNN classifier are individually used
to test the recognition performance on E13B image-based characters. Two hybrid feature sets
are used to train the two classifiers, respectively. Table I lists the rejection rate, recognition
rates, and reliability results conducted on ANN classifier.

Feature Set Rejection Rate (%) Recognition Rate (%) Reliability (%)
Hybrid Feature Set I 0.00 98.50 98.50
Hybrid Feature Set II 0.00 98.69 98.69

Table 1. Recognition performance of ANN classifier trained by two hybrid feature sets

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 73

Note: Hybrid Feature Set I: Directional-based Wavelet Feature+20 Geometrical Features
Hybrid Feature Set II: MAT-based Gradient Feature + 20 Geometrical Features

We use the same training samples and testing samples for KNN classifier. The test result is

shown in Table II.

Feature Set Rejection rate (%) Recognition Rate (%) Reliability (%)
Hybrid Feature Set I 0.00 98.40 98.40
Hybrid Feature Set II 0.00 98.59 98.59

Table 2. Recognition performance of KNN classifier trained by two hybrid feature sets

From above tests, it can be concluded as follows:

1) There is no rejection rate since an individul classifier sets a threshold to either correctly
recognize a testing character or mistakenly recognize it;

2) Two classifiers have a similiar recogntion rate trained by two feature sets;

3) Reliability is relatively low.

Experiment Two

In Experiment Two, a classifier fusion scheme, which consists of an ANN classifier, a KNN
classifier, and a gating network to congregate the two classifiers, is tested without SVM
verification module. Different feature sets are applied to train two classifiers. There are four
options:

Combo I: ANN trained by Hybrid Feature Set I+KNN trained by Hybrid Feature Set
I+gating network

Combo II: ANN trained by Hybrid Feature Set I+KNN trained by Hybrid Feature Set
II+gating network

Combo III: ANN trained by Hybrid Feature Set II+KNN trained by Hybrid Feature Set
I+gating network

Combo IV: ANN trained by Hybrid Feature Set II+KNN trained by Hybrid Feature Set
II+gating network

The recognition rate, rejection rate, and reliability are conducted on the four fusion schemes.
The test results are listed in Table III. Since the classifier fusion system introduces a rejection
option, some characters with a relative low confidence value are rejected. The rule to reject
characters in the classifier fusion system was described in the last part of Section 4.5.

Classifier Fusion Scheme Rejection Rate (%) Recognition Rate (%) Reliability (%)
Combo I 0.69 98.60 99.29
Combo II 0.72 98.70 99.42
Combo III 0.80 98.67 99.47
Combo IV 0.72 98.64 99.36

Table 3. Recognition performance of classifier fusion system, consisting of ANN, KNN and
gating network, traned by different hybrid feature sets

It is observed that some checks have been severely folded. As a result, character images are
deteriorated and noises are added on the check images, which affected recognition rate.

74 Machine Learning

Although a rejection strategy is introducted in the tests and the reliability is increased;
however, some recognition errors still remain.

For example, in the Combo III experiment, the recognition rate is 98.67%. The rejection rate
is 0.80% and the reliability is as high as 99.47%. As such, there are still 33 misrecognized
characters, which is unacceptable in an automatic bank check processing system.
Experiment Three

In order to pursue an execellent reliability in the system, we propose a verification module.
Firstly, SVM classifers are used to recognize the segmented one dimensional MICR
waveforms. Then, the recognition results are used to verify the recognition results of the
classifier fusion system. The recognition rate of waveform-based MICR is 99.52%, which
means that 30 characters out of 6,250 testing samples were misrecognized. The reliability of
the SVMs is also 99.52%.

The verification rule is explained as follows: if the classifier fusion system votes a character
and SVMs also vote the same character, the recognition is confirmed; otherwise, the testing
sample is rejected.

Since two classifications use entirely different input sginals (the classifier fusion system
uses image-based OCR method, whereas the SVM classifier uses one dimensional MICR
waveform), the overall reliability is significately incresed. Table VI shows the overall
recognition rate, rejection rate and reliability of the classifier fusion system with SVM
verification module.

Classifier Fusion Scheme + | Rejection Rate (%) | Recognition Rate (%) | Reliability (%)
SVM Verification Module

Combo I+ SVM Module 1.80 98.19 99.99
Combo II+ SVM Module 1.66 98.34 100
Combo III+ SVM Module 1.70 98.30 100
Combo IV+ SVM Module 1.80 98.15 99.95

Table 4. Recognition performance of classifier fusion system with SVMs verification module

Comparing Table IV with Table III, it can be concluded that the system’s reliability has been
improved significantly. Both Combo II+SVM Module and Combo III +SVM Module achieve
100% reliability and have recognition rates over 98.30%. The remaining characters will be
rejected and will be processed manually.

There are a few reasons behind the better recognition performance:

1) ANN classifier and KNN clasifier are trained using different feature sets, which makes
the two classifiers in the fusion system complementary;

2) Gating network can enhance recognition rate and reliability;

3) SVM verification module is trained by different signal input, which ensures that the
overall system reliability will increase.

Fig. 9 shows the reliability comparsion between the classifier fusion system and the classifier
fusion system with SVM verification module.

Fig. 10 shows the reliability improvement from individul classifier to classifier fusion system
(including an ANN, a KNN, and a gating network), and to the fusion classifier system with

A Classifier Fusion System with Verification Module for Improving Recognition Reliability 75

a SVM verification module. Experiments demonstrated that the reliability increases from
98.5% to nearly 100%.

100

99,8

99,6 OClasifier Fusion

99,4
BEClassifier Fusion with

99,2 SVMs Verification

99
98,8

ComboI CombolIl Combo III Combo IV

Fig. 9. Reliability comparsion of classifier fusion system and the system with SVM
verification module

100
99,5
DOindivid ul assifier
99
HClassifier Fusion

98,5

OClassifier Fusion with
Verification

98

97,5

Reliability

Fig. 10. Reliability improvement from individul classifier to classifier fusion system with
SVM verification module

6. Conclusions

In this paper, we proposed a novel classifier fusion system to congregate the recognition
results of an ANN classifier and a modified KNN classifier. The recognition results are
verified by the recognition results of SVM. As two entirely different classification techniques
(image-based OCR and 1-D digital signal SVM classification) are applied to the system,
experiments have demonstrated that the proposed classifier fusion system with SVM
verification module can significantly increase the system’s recognition reliability and can
suppress misrecognition rate at the same time.

In the future, the theory foundation of classifier fusion with rejection strategies will be
further investigated. It is expected that the theory will be employed to solve more complex
pattern recognition problems.

Acknowledgements: Part of gating network and genetic algorithm research was conducted
at Centre for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia
University, Canada. Author wishes to thank Professors and colleagues of CENPARMI for
their help.

76 Machine Learning

7. References

Chow, C. K. (1970), On Optimum Recognition Error and Reject Tradeoff. IEEE Transactions
on Information Theory, Vol-16, No. 1, pp. 40-46.

Decoste, D. & Scholkopf, B. (2002), Training Invariant Support Vector Machines. Machine
Learning, Vol. 46, No. 1-3, pp.160-190.

Duda, R. O,; Hart, P. E. & Stork, D. G. (2000). Pattern Classification, John Wiley & Sons, Inc.,
Wiley-Interscience, Second Edition.

Frelicot, C. & Mascarilla, L. (2002). Reject Strategies Driven Combination of Pattern
Classifiers, Pattern Analysis and Applications, Vol. 5, No. 2, pp. 234-243.

Friedman, J. H. (1997). On Bias, Variance, 0/1-loss and the Curse-of-dimensionality, Data
Mining and Knowledge Discovery, Vol. 1, No. 1, pp.55-77.

Giusti, N.; Masuli, F. & Sperduti, A. (2002). Theoretical and Experimental Analysis of A
Two-stage System for Classification, IEEE Transactions on PAMI, Vol-24, No. 7,
pp. 893-904.

Heisele, B.; Serre, T.; Prentice, S. & Poggio, T. (2003). Hierarchical Classification and Feature
Reduction for Fast Detection with Support Vector Machines, Pattern Recognition,
Vol. 36, No. 9, pp.2007-2017.

http:/ /en.wikipedia.org/wiki/Magnetic_ink_character_recognition

Keller, J. M., Gray, M. R. & Givens Jr.; J. A. (1985). A fuzzy K-Nearest Neighbor Algorithm,
IEEE Trans. on SMC, Vol.SMC-15, No.4, pp. 580-585.

Kittler, J; Hatef, J; Duin, R. P. & Matas, J. (1998). On Combining Classifier, IEEE
Transactions on PAMI, Vol. 20, No. 3, pp. 226-239.

Kuncheva, L. I. (2002). A Theoretical Study on Six Classifier Fusion Strategies, IEEE
Transactions on PAMI, Vol. 24, No. 2, pp. 281-286.

Liu, C. L.; Nakashima, K.; Sako, H. & Fujisawa, H. (2004). Handwritten Digit Recognition:
Investigation of Normalization and Feature Extraction Techniques, Pattern
Recognition, Vol. 37, No. 2, pp.265-279.

Siedlecki, W. & Sklansky, J. (1989). A Note on Genetic Algorithm for Large-scale Feature
Selection, Pattern Recognition Letters, Vol. 10, No. 5, pp.335-34.

Suen, C. Y. & Tan, J. (2005). Analysis of Errors of Handwritten Digits Made by A Multitude
of Classifiers, Pattern Recognition Letters, Vol. 26, No. 1, pp. 369-379.

Zhang, P. ; Bui, T. D. & Suen, C.Y. (2007). A Novel Cascade Ensemble Classifier System with
A High Recognition Performance on Handwritten Digits, Pattern Recognition,
Vol. 27, No. 12, pp. 3415-3429.

Zhang, P. ; Bui, T. D. & Suen, C.Y. (2005). Hybrid Feature Extraction and Forest Feature
Selection for Increasing Recognition Accuracy of Handwritten Numerals, in the
Proceedings of 8th International Conference on Document Analysis and Recognition
(ICDAR),

Zimmermann, M.; Bertolami, R. & Bunke, H. (2002). Rejection Strategies for Offline
Handwritten Sentence Recognition, in the Proceedings of the 17th International
Conference on Pattern Recognition (ICPR2002), Vol. 2, Quebec, Canada, pp. 550-553.

Watermarking Representation for
Adaptive Image Classification
with Radial Basis Function Network

Chi-Man Pun
University of Macau
Macau SAR

China

1. Introduction

Rapid continual advances in computer and network technologies coupled with the
availability of relatively cheap high-volume data storage devices have effected the
production of thousands of digital images everyday. Therefore, many content-based image
retrieval (CBIR) systems have been proposed to cope with such huge image archives. To
facilitate image retrieval from the huge volume image repositories, there is a great need to
search for effective content-based image features. Traditionally, the most straightforward
way to implement image database management systems is to make use of the conventional
database-management systems (DBMS) such as relational databases or object-oriented
databases. Such systems are usually keyword-based, in which the image attributes, usually
in the form of text annotations, are extracted manually or partially computed and managed
within the framework of a conventional DBMS, such as Chabot (Ogle and Stonebraker 1995)
Piction(Srihari 1995), Photobook(Pentland, Picard et al. 1996), WebSeer(Swain, Freankel et
al. 1997),etc.. However, the keyword-based approach provides limited capacity for
retrieving visual information. In most cases, the associated image attributes cannot fully
describe the contents of the imagery by themselves. Since the image attributes are annotated
manually or semi-automatically, the process of feature extraction is extremely time-
consuming and labor-intensive. Current researches on CBIR systems (Belongie, Carson et
al. 1998; Gupta 1995; Smith and Chang 1996; Tao, Tang et al. 2006) mostly focus on the
capability of visual search, i.e., images are retrieved based on a certain similarity criterion
for a user provided sample images or sketch. These systems employ visual information
indexing scheme and approximate matching instead of the exact matching used in
conventional DBMS. However, most of these methods involve a high computational
complexity for its feature extraction. On the other hand, with the rapid development of
digital multimedia technology, different digital watermarking schemes have been proposed
to address the issue of multimedia copyright protection. Many of robust watermarking
schemes are using the frequency domain approach. Most of these approaches are based on
discrete Fourier transform (DFT) (Pereira, Ruanaidh et al. 1999), cosine transform (DCT)

78 Machine Learning

(Cox, Kilian et al. 1997; Hernandez, Amado et al. 2000; Piva, Barni et al. 1997) or wavelet
transform (DWT) (Hsieh, Tseng et al. 2001 ; Pun and Kong 2007; Wang and Kuo 1998; Wang
and Lin 2004), and usually have fast watermarking detection.

In this chapter, a novel approach using watermarking representation for adaptive image
classification with Radial Basis Function (RBF) network is proposed. The original image is
decomposed into wavelet coefficients using discrete wavelet packet transform. The energy
signatures of most dominant sub-bands are extracted adaptively to form a reduced feature
vector which is to be encoded as a binary watermark. The watermark is embedded by
quantization into the wavelet coefficients with highest magnitudes except for those in the
lowest frequency channel. Then the image features can be extracted from the watermarked
image by a fast discrete wavelet packet transform and de-quantization. The extracted image
features are fed to the trained RBF network for image classification. The outline of this
chapter is organized as follows. In next section, we briefly introduce and review the
standard 2-D discrete wavelet packets transform techniques. In section III, we present our
proposed algorithm for embedding image features by watermarking and the algorithm for
extracting the image features from the watermarked image. In section IV, the algorithm for
adaptive image classification with RBF network is proposed. The experiment results for
robustness and classification accuracy of our proposed method to various attacks, and the
efficiency comparison results with other image classification method are presented in
Section V. Finally, conclusions are drawn in Section VI.

2. Discrete Wavelet Packet Transform

The 2-D discrete wavelet packet transform (DWPT) is a generalization of 2D discrete
wavelet transform (DWT) that offers a richer range of possibilities for image analysis. In 2D-
DWT analysis, an image is split into an approximation and three detail images. The
approximation image is then itself split into a second-level approximation and detail
images, and the process is recursively repeated. So there are n+1 possible ways to
decompose or encode the image for an n-level decomposition. In 2D-DWPT analysis, the
three details images as well as the approximation image can also be split. So there are 4n
different ways to encode the image, which provide a better tool for image analysis. The
standard 2D-DWPT can be described by a pair of quadrature mirror filters (QMF) H and G
(Mallat 1989). The filter H is a low-pass filter with a finite impulse response denoted by

h(n) . And the high-pass G with a finite impulse response is defined by:

g(n)=(=1)"h(1—n), foralln 1)

The low-pass filter is assumed to satisfy the following conditions for orthonormal
representation:

D h(n)h(n+2j)=0,forall j#0 @)

> h(n)* =1 3)

Watermarking Representation for Adaptive
Image Classification with Radial Basis Function Network 79

D h(n)g(n+2/)=0, forallj @)

The 2D discrete wavelet packet decomposition of an M x N discrete image x up to level p+1
(0< p<min(log,(N),log,(M))) is recursively defined in terms of the coefficients of

level p as follows:

ka-'—ll J) Z Z h(m)h(n)ck ,(m+2i,n+2j) (5)
1

kail,(i,_j) = Z Z h(m)g(n)ck,(n1+2i,n+2_/) (6)
1

kaiz,(i,j) = Z Z g(m)h(n)cli(erZi,nJij) 7)
1

ka:&(z,_/) = Z z g(m)g(”)clﬁ(mzz,mz_/) ®)

m n
where Co (i.j) = X(i.j) 1s given by the intensity levels of the image x.

Since the image x has only a finite number of pixels, different methods such as symmetric,
periodic or zero padding should be used for the boundary handling. At each step, we

. . o 1 1 1 1
decompose the image C ,f into four quarter-size images C, ,: ,C f k++1 ,C f ,;2 and C f k++3 .
The inverse wavelet packet transform of a discrete image x from wavelet coefficients at level
. . . . a0 .
p*1 can be achieved by applying recursively the following formulae until Co,(i) 18

obtained:

Clup = Zzh(m)h(")c’?imw ni2j) +
Z Z h(m)g(M)CY, aineny +
z Z gm(M)CYL ainn)
Z Z gmg(MCYs rizimia))

+

80 Machine Learning

T JER) [e
Original Image S wlsl)@ t
A
47 sub-bands —

Discrete Wavelet
Packet Transform

Energy Signature
Extraction

f:(S('pS;a”'aS}-[,])

Feature Encoding
by Quantization

Watermarked
Coefficients

Inverse Wavelet
Packet Transform
e aaEe g

Wat cod)6 WE) B

atermarke 4

Image _L_J__L__'zi
_J___J_._J_.J

Fig.1. Procedure of embedding image features as digital watermark into the original image
for image analysis.

3. Watermarking Representation of Image Features

3.1 Embedding Image Features as Digital Watermark

The procedure of embedding image features as digital watermark into the original image for
image analysis or retrieval is depicted in Fig. 1. The MxN original image is decomposed into
wavelet coefficients by a 2D discrete wavelet packet transform up to level p. An energy
signature is computed for each sub-band of wavelet coefficients. However, the number of
energy signatures for texture classification can be still very large. As suggested by Chang
and Kou (Chang and Kuo 1993) the most dominant frequency sub-band provide very useful
information for discriminating images. Therefore, we sort all energy signatures and choose
only H most dominant energy signatures (with highest energy values) as feature vector.
This feature vector is then encoded in binary feature vector, which are embedded back to
the wavelet sub-bands. In order to have better perceptual invisibility, the feature vector is

Watermarking Representation for Adaptive
Image Classification with Radial Basis Function Network 81

embedded into the largest wavelet coefficients in each sub-band except the lowest frequency
sub-band. To improve the robustness to various attacks, the same feature vector is
embedded several times in remaining unused sub-bands. Finally, the inverse discrete
wavelet packet transform is applied to obtain the watermarked image. The details of the
algorithm are as follows:

Algorithm I: Embedding image features

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

For a given M x N image, apply the p-level discrete wavelet packet
transform (as described in section 2) to generate 4p sub-bands of wavelet

coefficients C,f’(i’j) , where p <log,(N), ke{0,- <, 47 —1} and i, j
=0,1,...,2°"7 1.

Compute an energy signature

N

M
NZZ‘ kG, 1)‘ (10)

i=l j=1

for each sub-band of wavelet coefficients C? where

k(i) 7
ke 0,47 —1}.
Arrange all energy signatures in descending order according to their

values SO,Sl,"' S

471’
signatures (with highest energy values) as feature vector,

F=(S),8h, 8.,), where H = [4/J

Encode the feature vector a binary feature

and choose first H most dominant energy

vector g =(E,E,--+,E, |) by quantization, where each energy
signature S, is represented by En with p bits, where 71=0,+++, H —1 .

For first H sub-bands of wavelet coefficients C ,f excluding Cé” , embed
the encoded feature En of binary feature vector g = (Eo JE - E,)to

the largest b coefficients C ,f) ;in the sub-band by:

P
Cr.» if Zq mod2 = (E,),
C,, = e | (11)
Cy, =Cr +A, if Z"’ mod2 # (E,),

82

Machine Learning

Step 6.

Step 7.

where n:(),...’[—]_],q:lﬂ...’ﬂ_

Repeat Step 5 for the next H sub-band of wavelet coefficients for |_(Z _|

times.

Apply the Inverse discrete wavelet packet transform (as described in
section 2) to obtain the watermarked image.

3.2 Extracting the Image Features

The procedure of of extracting the image features in a watermarked image is depicted in Fig.
2. The watermarked MxN image is first decomposed into wavelet coefficients by the 2D
discrete wavelet packet transform up to level p. The binary feature vector is then extracted
from the sub-bands of wavelet coefficients. In order to improve the reliability, several
feature vectors are extracted and combined. Finally, the image feature vector can be

obtained by de-quantization for content-based image classification. The details of the
algorithm are as follows:

Algorithm II: Extracting image features

Step 1.

Step 2.

Step 3.

For a given M X N watermarked image, apply the p-level discrete
wavelet packet transform (as described in section 2) to generate 4p sub-

bands of wavelet coefficients C[; , , where p<log,(N) ,
ke{0,---,4” =1} andi,j=0,1,...,2"¢"7 1.
Extract the binary feature vector g = (Eo ,E -+, E, |) from the largest

b coefficients C : ;0 the sub-band n at level p by:

a1 C? .
(E,), =round((% mod2)/| &) (12)
i=0

where 7 =O,-~-,H—1,q =1,---,ﬂ.
Obtain the feature vector [= (S('), S;, e, S1'171) from a binary feature
vector g = (Eo JE - B) by de-quantization, where

§ - F « max(S,)

y=E)= n= 0 H -

Watermarking Representation for Adaptive
Image Classification with Radial Basis Function Network 83

Watermarked
Image

NS

Discrete Wavelet
Packet Transform

4”7 sub-bands

Binary Watermark
Extraction

g = (anElo"'aEHfl)

Feature
Extraction by De-
quantization

S = (80580745 Sy)

Fig.2. Procedure of extracting the image features in a watermarked image.

84 Machine Learning

Reduced Feature Vector
Distance Measure for Each Class

Input Layer Hidden Layer Output Layer

Fig. 3. Radial Basis Function (RBF) architecture.

4. Adaptive Image Classification with Radial Basis Function Network

The extracted image feature vector is used as inputs for the Radial Basis Functions (RBF)
network used in the proposed adaptive classification algorithm. The RBF network involves
three different layers, namely, input layer, hidden layer, and output layer, as shown in Fig.
3. The input layer is made up of a number of source / input nodes, one node for one energy
signature from the reduced feature vector of a given query image. The goal of the hidden
layer is to cluster the data and to further reduce its dimensionality. The output layer
supplies the responses of the network to the reduced feature vector applied to the input
layer during classification. The responses correspond to the distances between the input
image and the different database image classes.

The proposed adaptive image classification algorithm can be divided into two stages. The
first stage is for training, which is done only once. Its main objective is to construct an RBF
network based on the number of features in the feature vectors and the number of classes
involved, and to compute the corresponding weights of the hidden layer in the RBF network
using a number of training images. The inputs to the RBF network include the feature
vectors of the training image samples and their corresponding image classes. The output of
the training would be the weights of the hidden layer of the network. The network starts
with some initial weights which would be adjusted incrementally by the network as each
feature vector and its class data are input. Therefore, the objective of the training is to
produce the weights to represent the image classes of the training samples for achieving
good classification results. Such weights would be used to classify query images during the
classification stage. For efficiency sake, the training can be performed offline and the trained
network information, including the weights, be saved for future use. The second stage is for
online classification. Its main objective is to find the best match of any given query image to

Watermarking Representation for Adaptive
Image Classification with Radial Basis Function Network 85

one of the predefined classes captured in the trained RBF network. The details of the
algorithm are as follows:

Algorithm III: Adaptive Image Classification Algorithm

Offline Training (for k training samples):

Step 1.

Step 2.

Step 3.

Step 4.

For each training image i, compute a feature vector Ti by applying the
Algorithm II: Extracting image features; where { =1,--- k.

Construct a Radial Basis Function (RBF) network, with m input nodes, m-1
hidden nodes, and the number of output nodes being equal to the number
of image classes.

For each training image i, input the feature values of Ti and the class Cj of
image i to the RBF network; use the singular value decomposition (SVD)
techniques (Bishop 1995) to compute the corresponding weights of the
hidden layer of the RBF network by mapping the reduced feature vector Ti

to the class Cj, where = 1,' N k,and i=1,..,n.
Store the trained RBF network information to secondary storage.

Online Classification:

Step 1.
Step 2.

Step 3.
Step 4.

Step 5.

Load the trained RBF network information from secondary storage and
reconstruct the RBF network.

Compute a feature vector S for a query image using the Algorithm II:
Extracting image features.

Feed the input layer of the RBF network with the reduced feature vector S.
Compute the outputs of the hidden uniti in the hidden layer by:

radbas, = CD,.(”S - ,ui”) = exp {—ZN: M} (13)

— 2c I.O'lio
where Oi is a radial basis function; ci is a proportionality constant for the

. 2 . .
variance O, ; sk is the kth component of the input vector

2
s = [SI,S2 . ..,SN], and [, and O are the kth components of the mean

and variance vectors defining the Basis Functions (BF) respectively, and o is
the overlap factor between BFs.

Compute and output the feature distance Dj between the query texture
image and class texture image j via output node j as follows:

D‘f = Z wi/.radbas,. + Wy, (14)

where W, is the weight connecting the ith BF node to the jth output node,

and W,); is the threshold of the jth output node.

86 Machine Learning

Step 6. Assign the query texture image to class i if D, <D ;. forall J#I.

Fig. 3. Twenty class textures from Brodatz album. Row 1: D1, D4, D6, D20, D21. Row 2: D22,
D28, D34, D52, D53. Row 3: D57, D74, D76, D78, D82. Row 4: D84, D102, D103, D105, D110

5. Experimental Results

In order to demonstrate the robustness and effectiveness of our proposed method, several
experiments have been carried out based on a set of twenty classes of natural texture images
as shown in Fig. 5, from the Brodatz’s texture album (Brodatz 1996). Each texture is scanned
with 150 dpi resolution, and each image, having the size 640x640 pixels and 256 gray levels,
is divided into twenty-five 128x128 non-overlapping regions. So, a database of 500 (20x25)
images was created for our testing. 200 of the texture images, with 10 images from each
class, were used for training the RBF network, and the remaining 300 texture images form
another dataset used for different watermarking and classification experiments. For
embedding the image features by Algorithm I, a 20-tap Daubechies wavelet (Daubechies
1992) was used for discrete wavelet packet transform up to levels 3. The coefficients of the
low-pass filter h of the 20-tap Daubechies wavelet transforms are listed in Table 1. For
classification testing, a simple Euclidean classifier was used.

h(0) 0.01885858 h(10) -0.02082962
h(1) 0.13306109 h(11) 0.02348491
h(2) 037278754 h(12) 0.00255022
h(3) 0.48681406 h(13) -0.00758950

Watermarking Representation for Adaptive

Image Classification with Radial Basis Function Network 87
h(4) 0.19881887 h(14) 0.00098666
h(5) -0.17666810 h(15) 0.00140884
h(6) -0.13855494 h(16) -0.00048497
h(7) 0.09006372 h(17) -0.00008235
h(8) 0.06580149 h(18) 0.00006618
h(9) -0.05048329 h(19) -0.00000938

Table 1. 20-tap Daubechies wavelet transform filter coefficients.

First, we evaluate the perceptual quality of the watermarked images using the images in our
database. Fig. 5 shows the original and the watermarked D1 image, which was embedded
with 15 image features (o =4.27) encoded in 5 bits (# =5). The two images are visually

indistinguishable with PSNR is 41.5 dB.

Second, the experiments for verifying the robustness and classification accuracy of our
method are carried out. Fig. 5 shows the watermarked D1 image attacked by Gaussian noise,
JPEG compression and median filter. Table 2 shows the classification accuracy and
robustness of our method for different attacks and number of dominant energy features.
From the table, it was shown that the common attacks such as Gaussian noise, JPEG, and
median filtering has only little effect on the classification performance. Our method has
strong resistance to noise and JPEG compression with very low quality factor. The best
performance was obtained using 47 features with 96.8% accuracy. The results also indicate
that a higher number of dominant energy features does not imply a higher accuracy rate.
Third, the algorithm efficiency of our method was compared with other image classification
method. Table 3 shows that our proposed method achieved the same classification
accuracy, while having much lower complexity than other texture classification method
such as wavelet packet signature method (Laine and Fan 1993).

Fig. 4. (a) The original D1 image; (b) Watermarked D1 image with A=33, a = 4.27,
£ =5,PSNR=41.5 dB.

88 Machine Learning

T ETETRECTY
NENAERN

(b) ()
Fig. 5. Watermarked D1 image in Fig 4(b) attacked by (a) Gaussian noise 0.01; (b) JPEG
quality factor 50; (c) 3x3 median filter.

Number of image features

15 23 31 47 | 55 63

Attacks

Gaussian Noise (0,0.01) | 86.5 | 90.5 | 92.6 | 94.5 [93.2 | 92.8

JPEG (QF = 50) 85.5 [89.6 | 925 | 943 | 93.3 [93.3
JPEG (QF = 30) 82.6 | 86.4 | 90.2 | 92.1 | 91.8 [90.2
3x3 median filter 715 [756 | 763 | 76.3 | 76.1 | 75.8
No attack 89.2 | 938 | 953 | 96.8 | 95.6 | 95.4

Table 2. Classification accuracy (%) with different attacks and number of image features.

Proposed WPS
Accuracy (%) 96.8 95.6
Complexity 0] (l’l) 0] (I’lz)

Table 3. Performance comparison with the wavelet packet signature method.

6. Conclusion

In this chapter, a novel approach using watermarking representation for adaptive image
classification with Radial Basis Function (RBF) network has been proposed. Experimental
results show that the proposed method has strong resistance to noise and JPEG compression
with very low quality factor, and has much better efficiency than the other image
classification method. However, the performance for median filtering attacks still needs to
be improved further. For image classification experiments, the best performance was
obtained using only 47 features with 96.8% accuracy. Future work may focus on embedding
more useful image features such as invariant features for image analysis.

Acknowledgments

This work was supported in part by the Research Committee of the University of Macau.

Watermarking Representation for Adaptive
Image Classification with Radial Basis Function Network 89

7. References

Belongie, S., C. Carson, et al. (1998). Color- and Texture-Based Image Segmentation using
EM and Its Application to Content-Based Image Retrieval. Proceedings of the Sixth
International Conference on Computer Vision, pp. 675

Bishop, C. (1995). Neural Networks for Pattern Recognition Clarendon Press. Oxford

Brodatz, P. (1996). Texture: A Photographic Album for Artists and Designers. Dover

Chang, T. and C. C. J. Kuo (1993). Texture analysis and classification with tree-structured
wavelet transform. IEEE Trans. Image Processing, vol. 2, no. 4, pp. 429-441.

Cox, 1.]., J. Kilian, et al. (1997). Secure spread spectrum watermarking for multimedia. IEEE
Trans. Image Processing, vol. 6, pp. 1673-1687.

Daubechies, 1. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in
Applied Mathematics, SIAM Press, Philadelphia, Pennsylvania.

Gupta, G. (1995). Visual information retrieval technology - a Virage perspective. White paper,
Virage Inc

Hernandez, J. R, M. Amado, et al. (2000). DCT-domain watermarking techniques for still
image: Detector performance analysis and a new structure. IEEE Trans. Image
Processing, vol. 9, pp. 55-68.

Hsieh, M.-S., D.-C. Tseng, et al. (2001). Hiding digital watermarks using multiresolution
wavelet transform. IEEE Trans. Industrial Electronics, vol. 48 no. 5, pp. 875 - 882.

Laine, A. and J. Fan (1993). Texture classification by wavelet packet signatures. IEEE Trans
PAMI, vol. 15, no. 11, pp. 1186-1191.

Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet
decomposition. IEEE Trans. PAMI, vol. 11, no. 7, pp. 674-693.

Ogle, V. and M. Stonebraker (1995). Chabot: Retrieval from a Relational Database of Images
Computer, vol. 28, no. 9, pp. 40-48.

Pentland, A., R. W. Picard, et al. (1996). Photobook: Content-Based Manipulation of Image
Databases. International Journal of Computer Vision, vol. 18, no. 3, pp. 233-254.

Pereira, S., J. J. K. O. Ruanaidh, et al. (1999). Template based recovery of Fourier-based
watermarks using log-polar and log-log maps. IEEE Int. Conf. Multimedia
Computing and Systems, pp. 870-874.

Piva, A., M. Barni, et al. (1997). DCT-based watermark recovering without resorting to the
uncorrupted original image. IEEE Int. Conf. Image Processing, pp. 520-527.

Pun, C.-M. and L.-K. Kong (2007). Adaptive Quantization of Wavelet Packet Coefficients for
Embedding and Extraction of Digital Watermarks. Infernational Journal of
Communications vol. 1, no. 3, pp. 114-119.

Smith, J. and S. F. Chang (1996). VisualSEEk: a fully automated content-based image query
system. Proceeding of ACM Multimedia 96, pp. 87-98.

Srihari, R. K. (1995). Automatic indexing and content-based retrieval of captioned images.
Computer, vol. 28, no. 9, pp. 49-56.

Swain, M.], C. Freankel , et al. (1997). WebSeer: An Image Search Engine for the World
Wide Web. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition pp.

Tao, D., X. Tang, et al. (2006). Direct Kernel Biased Discriminant Analysis: A New Content-
Based Image Retrieval Relevance Feedback Algorithm. IEEE TRANS.
MULTIMEDIA, vol. 8, no. 4, pp. 716-727.

90 Machine Learning

Wang, H.-J. and C.-C. J. Kuo (1998). Image protection via watermarking on perceptually
significant wavelet coefficient. IEEE 2nd Workshop Multimedia Signal Processing, pp.
279-284.

Wang, S-H. and Y.-P. Lin (2004). Wavelet tree quantization for copyright protection
watermarking. IEEE Trans. Image Processing, vol. 13 pp. 154 -165.

Recent advances in Neural Networks
Structural Risk Minimization based on
multiobjective complexity control algorithms

D.A.G. Vieira, J.A. Vasconcelos and R.R. Saldanha
Department of Electrical Engineering

Federal University of Minas Gerais

Brazil

Nowadays, neural networks (NNs) are widely applied in the solution of several real world
problems. They have been successfully used in many fields such as chemistry, physics, en-
gineering, and bio-informatics among others. However, their use often relies on some hand-
crafted settings, such as the number of layers and neurons. This chapter will discuss the
Structural Risk Minimization (SRM) problem using some multiobjective optimization con-
cepts. Both are closely related to the classical Tikhonov’s regularization scheme, and, it is also
exploited in this work.

A neural network is a learning machine capable to describe, to the input x, the set of functions
F={f(x,w):x€X, we W}, where W is the space of possible weights. Given a supervisor
which defines an output vector y € Y (desired output), for a given input x, according to the
conditional distribution F(y|x), the ultimate goal in the learning problem is to find w € W that
best approximates the supervisor answer given some measure. To some loss function L(.), the
expected risk (error) can be defined as, Vapnik (1998):

w) = [L(y,f (x,w))dF(x,y). @

Therefore, the learning problem can be understood as finding f(x,wp) : wy € W, such that
R(w) is minimal. Nevertheless, the function F(x,y) is unknown, thus, it is impossible to direct
evaluate R(w). The only available information about the supervisor is contained in the train-
ing set T = {(x1,%1),...,(x¢,¥) }. Where § is y plus some uncertainty, as noise. For instance,
for regression and prediction problems y € Rf, and for binary classification y € {—1,1}!.

In the early years of NN research, it was believed that decreasing the training error (empirical
risk) was a sufficient condition to approximate the supervisor answer. This problem was
stated as

= (T, L(7;, , 2
w, = arg min J(T,w) Z (@i, f (xi,w @)
This approach was considered self-evident for many years and the main milestone was to

find better algorithms to solve (2). However, the non self-evident overfitting phenomenon
has appeared. This would imply that w. # wy. One way to characterize it is by the bias and

92 Machine Learning

variance dilemma, S. Geman & Doursat (1992). The expected mean-squared error between
f(+) and the expected value of y given x, E[y|x], can be written as:

Ex[(f(x;T) — Ely|x])?] = (Er[f(x;T)] — E[y|x])? 3)
+Er[(f(x;T) — Ex[f(x;T)))?],

where Et[.] is the expected value given a set T. The first term in the right hand side of (3) is
known as bias, and the second one as variance. The variance term measures the sensibility
of the approximating function given a data set T. To control the variance, models with less
complexity should be generated, i.e., they cannot change too much to a given data T. On the
other hand, some bias is inserted in the problem when the complexity is limited, thus, this
should be controlled.

This chapter is organized as follows. First, the regularization theory from Tikhonov (1963), a
well-known technique to solve linear ill-posed problems, will be introduced together with the
residual method from Phillips (1962) and the quasi-solutions from Ivanov (1962; 1976). It is
shown, using Singular Value Decomposition (SVD), the relationship between these methods
and the Wiener's filter. After that, the Structural Risk Minimization (SRM), and the multiob-
jective learning will be discussed. These methods are closely related, and, some of their main
aspects will be discussed. Inspired on the Tikhonov’s regularization it will be discussed the
well-known weight decay (WD) method for NNs, Hinton (1989). However, it will be clarified
that this method is not consistent if the functions are not convex, which is usually the case. To
overcome that, it is introduced the generalized Tikhonov’s regularization based on a Q-norm
for Parallel Layers Perceptrons (PLPs). Finally, some results are presented.

1. Linear ill-posed problems

Given the linear mapping A : W — Y, the equation
Aw=vy, AcR™", wecR" andy € R, 4)

is well-posed provided that: (i) for each y € Y, Jw € W such that Aw = y (existence); (ii)
Awy = Awy & wy = wy (uniqueness); (iii) A~1 is continuous (stability). Thus, a problem is
called well-posed if its solution exists, is unique and stable. Unfortunately, inverse problems,
such as the ones to select a model based on the data, are usually ill-posed, i.e., it violates at
least one of the aforementioned conditions. In applied sciences and engineering the right-
hand side vector y can be contaminated by noise, ¢ € R, thus, instead of y only ¥ is available
and
ly = 7ll2 <&)
The problem is said to be stable if small variations in the right-hand side implies small changes
in the solution
[— @2 <5(8). (6)

The existence can be imposed by considering the minimal Euclidian norm

w. = arg min J(w) = || 4w — [} = (Aw -)" (Aw - 7).)

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 93

Making 9] /0w = ol

w, = (ATA) 1 AT .= ATy, ®)
where At is the pseudo inverse. Considering wy the desired solution of (4) and w, the solution
of (7), due to the error in y and the ill-conditioning in A, the following relation is usually true

[[ws || > [Jwol, ©)

which is not a meaningful approximation of wy. In the early 60’s, Tikhonov proposed the reg-
ularization method to solve this problem, Tikhonov (1963). The Tikhonov’s method considers
the solution of the following auxiliary problem:

wy =arg min J = || Aw — 7|3 + AQ(w), (10)

where A > 0 is a pre-defined constant known as regularization parameter. The regularization
function Q(w) is defined as semi-continuous, positive and compact in the space of functions
defined by w, i.e., Q(w) < ¢, ¢ > 0. To guarantee the uniqueness of the solution the following
properties are required: (i) Q(w) is a non-negative convex function; (ii) 2(0) = 0 holds true;
and (iii) the r(p) = Q(pw) is strictly growing function. This method is usually written as

wy=argmin [y = 4w — gl + Allw]3

= (Aw — §)T(Aw —) + AxTIx (a

For each positive parameter A, considering the complexity Q = w” Iw = ||w||3, where I is the
identity matrix, (10) has a unique solution of the following form:

wy = (ATA+AD)tATy. (12)

This result was fundamental to the popularization of the Tikhonov’s technique, since it has a
simple closed-form solution. In statistics it is also known as ridge regression. In fact, Tikhonov
& Arsenin (1977) proved that w) converges to wy as ¢ — 0 if

lm (@) =0, (13)
2

Consider the set Wy = {w: Q(w) < ¢}, ¢, > 0. Since Q) defines a compact subset the following
holds true

Wl - Wz c..C Wir"- =0 < <..<Cj. (15)
Define wy, as
Wy, = arg min ||Aw — 7||. 16
ke = arg min | 7l (16)
1 Using:
o w) _ o(wTATAw) | ¢ T
w o =(A"A+A A)w

94 Machine Learning

For some general conditions, Ivanov (1962; 1976) proved that the sequence w,, ..., Wy, con-
verges to wy, the desired solution. This is called quasi-solutions method and can be written,
for some € > 0, as

we = arg min || 4w — 713

17)
subject to: |[wl|3 < e
In the same period Phillips (1962) proposed the residual method
W = arg min [|wl|3
weW (18)

subject to: || Aw — §||3 < e

In Vasin (1970) it is shown that the Regularization, Residual and Quasi-solutions methods are
equivalent, i.e., they can generate the same set of solutions, given the linear problem stated
in (4), and the distance measured using the Euclidian norm. Consider the problem stated in
Alavetti & Eichel (2004)

. 112

wp = arg min ||Aw — 7|3
weW . (19)

subject to: ||wl|3 = A

Assuming that ||wp| > A, this constrained minimization problem has a unique solution w, 5
of the form (12). The value of A is positive such that ||w,| = A Alavetti & Eichel (2004).
Assume that A'§ # 0, the function

p(A) = |w|*>, A>0, (20)

can be expressed as
p(A) :=FAATA+AD2ATy, A >0, (1)

which shows that ¢(A) is strictly decreasing and convex for any A > 0, and that, ¢(A) = A has
a unique solution A, such that 0 < A < oo, for any A that satisfies 0 < A < || A§||?, Alavetti &
Eichel (2004).

Even though all the results considered so far used the Euclidian norm ||. ||, to define the com-
plexity (), the more general p-norm

n
[wllp =Y [wil”, (22)
i=1

can also be applied. This is the case of the shrinkage method called Lasso, Hastie et al. (2001)

Wiasso :argz%i“l/lvHAw_yH% (23)
subject to: ||w||; <e

This chapter will concentrate in the Euclidian norm based formulation due to their simplicity,
and the existence of closed form solutions. According to Hastie et al. (2001) it could be used
any p besides 1, or 2, and that, indeed, we could try to estimate it from the data, but there is
no results in this direction so far.

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 95

1.1 Wiener’s filter interpretation
Consider the singular value decomposition (SVD) of A as

A=usvT (24)

where U and V are unitary matrices, i.e, U~ 1=-uT,and S = diag(s1,s2,...,5t) is a diagonal
matrix with s; > sy > ... > 5; > 0, called the singular values of A. Thus, w,, given in (12), can
be written as:

wy, =(VvstuTusv? + avivh)-lvsTuTy
=V(STs+ADN~1sTuTy

t T

s ug]
Lo

=24+ A s

i, (25)

where A > 0: 5,2:12’)\
to the principal component analysis. Therefore, it implies that it shrinks more the directions
with smaller variance. Next section will introduce the Weight Decay, the realization of the
ideas presented in this section to Neural Networks.

2. Structural Risk Minimization principle

The structural risk minimization (SRM) was introduced by Vapnik and Chervonenkis and a
description of it can be found Vapnik (1992), Vapnik (1998). One of the main achivements of
the SRM is the introduction of the idea of capacity of a set of functions. It is based on some
theoretical results that shows that the upper bound of the learning machine expected risk de-
pends on: (i) the training error and, (ii) the machine capacity, defined as the VC dimension and
its variations, Vapnik (2001). This inductive principle is directly applied in learning machines
as the Support Vector Machines (SVMs). Following these considerations the SRM principle
considers the minimization of two factors: the training error and the VC dimension.
Consider the function J(+,-) : Z x W — R, in which Z and W are arbitrary spaces. Taking
its second argument w € W as a parameter constrained to a set W, C W, a set J of functions
J(-,w) : Z — R becomes defined for w € W. This set can be structured as a sequence of nested
subsets J; = {J(-,w), w € Wy}, such that

Wi CWrC...CW;.. = J1CJ, C...CJ;... (26)

The sequence (26) should fulfill the following conditions: (i) the VC dimension, hy, of each set
J is finite, and (ii)
i <hy <..<h... (27)

For any positive integer k, there is a finite positive scalar By such that J(z,w) < By, V w € Wy
and z € Z. The principle of SRM is oriented to find the values of w and k such that w €
Wy, making the function J(-,w) minimize the empirical risk, while the set W minimizes the
structural risk.

96 Machine Learning

2.1 Multiobjective Learning

The SRM can be interpreted as a bi-objective optimization problem, which considers the min-
imization of the empirical risk and the machine capacity. Instead of the integer index k, a
straightforward generalization is to consider that the set W is parameterized by a continuous
parameter { . Given a training set T, the SRM problem for this set can be written as:

. min 4 J(Gw)
(SRM): ngl;)n { @,w) - (28)
in which | represents some empirical risk function, and) the complexity of the learning
machine, for instance the fat-shattering dimension, Shawe-Taylor & Bartlett (1998).

Usually, it is not possible to minimize | and () simultaneously, because the optimum to one
function hardly ever is the optimum to the other one. Thus, there is not a single optimum, but
a set of them, when a multiobjective formulation is considered. In order to state the solutions
of the SRM, the following definitions are required:

(i) Dominance: A pair ({,,w,) dominates another pair (}, w;), which is denoted by (,,w,) <

(Co wp), if J((Ca,wa)) < J((Cp,wp)) and Q((Ca,wa)) < Q((Gp,wp)), with the strict in-
equality valid for at least one of the functions.

(ii) Pareto optimality: A pair ({«, wy) is called Pareto-Optimal (PO) if there is no other feasible
pair which dominates it.

By using these definitions, it is possible to generate the set of solutions called PO front, which
have the best trade-off between the error and the machine complexity. All such solutions are
candidate solutions for the SRM problem.

Examining (26) and (27) from the viewpoint of the Pareto Optimality of (44), it can be seen that
in the nested sequence J; C J, C ... C J;..., the minimal empirical error in the set is ordered as
J1x 2 J2x 2 . 2 Jis, where Ji, =](wk*) and

Wiy = arg n}én](w)

. (29)
subject to: w € Wy

The solutions wy, are Pareto-Optimal ones, each one associated to the corresponding sequence
set J. These are the solutions of the SRM problem. Any other function J(-,w) that is not
a solution of any minimization problem of this form must be dominated, and cannot be a
solution of the SRM problem. This will be the base of some novel results presented in this
chapter. Defining the complexity as Q2({), it can be associated to some W ({) defined by

W(Q) ={w: [lw| <} (30)
and
Q) =¢. (31)
Given {1 < (y, this choice of W({) and () preserves the necessary relations:
e W(Z1) CW(%);
o J(-01) = T(-02);
e O(C1) <Q(%2)-

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 97

As the minimization of the structural risk)({) = { is equivalent to the minimization of the
norm of w, the structural risk minimization principle becomes, in this case, stated in terms of
w only:

J(w)

Ow) = vl - (32)

(SRM): rr%;n {

3. The Weight Decay for MLPs

The Multi-Layer Perceptron (MLPs) is a popular neural network which considers the neurons
(or perceptrons) in cascade. Consider the input vector x, which includes the bias term, i.e., it
is added an extra element equal to 1, the vectorial function ®, and the weight matrix W

®; =p1(Wx)
1 , (33)
P, = ‘Pq(WqTq%—l)

then

Fla,w)ME = g (@41 (P41 (1)) (34)
where g is the number of layers, and ¢ is an activation function as hyperbolic tangent. For a
weight matrix W and the vector w;

n
T
w;x = ijixi~ (35)
i=0
Therefore, the MLPs implement a nonlinear function of the sum of nonlinear functions. With
one hidden layer, and m neurons, it can be written as:

£ w)MEP = 3 Wi (W), (36)
i=1

i=

where x € R"1, xy = 1 is the bias, W, is a vector with m elements and Wj is a matrix
((n+1) x m). The vector w is defined as a vector which contains all the elements of W;.
Using the ideas from the regularization framework, the Weight Decay (WD) is a direct imple-
mentation of the Tikhonov’s model to MLPs. The WD consists in writing a weighted sum of
the Empirical risk, J(-), and the norm of the weight vector

wy = argmin JYF = J(w,x) + w3, 7

where J(-)
t

Jwx) = 5 Y (i 0) - i) 38)
i=1

In Bartlett (1998) it was shown that the fat-shattering dimension, which is a generalization of
the VC dimension, can be limited by limiting the weights of a given network. Limiting the
fat-shattering dimension leads to a limit in the generalization error, Vapnik (1998; 2001). This
gives support to the use of the norm of the weight vector as the complexity constraint. The
main difference between the problem stated in (10) and (37) is that in the first one the risk is
guaranteed to be convex, while in the second one it can be non-convex and even multi-modal.
Next section will show that the weighted sum approach, which is the base of the WD method,
is not consistent given non-convex problems.

98 Machine Learning

3.1 The convexity issue
The WD approach is based on the general weighted sum function

Janw)=A +(1—=A), (39)

where A = [0,1] controls the importance of the objectives. Consider the following non-convex
unimodal one-variable functions:

J1(w) = ((w —1)% — tanh (40w — 4))?, (40)

J»(w) = 200w?, (41)

where the factor 200 was used only to simplify presentation. Given, A = 0.3 and A = 0.6, the
following weighted sum functions can be written

Ja(w) =03J1 +(1-03)]2, (42)
Jp(w) = 0.6]1 + (1 —0.6)>. (43)

The functions J; and], and two possible weighted solutions,], and], are shown in Fig. 1.
Note that the weighted functions have become multimodal, although the original functions
were unimodal. The PO front for this problem is presented in Fig. 2 and it is composed of
both convex and non-convex parts.

L L L L L L
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Fig. 1. The original functions are presented in continuous line(—). Two possible weighted
solutions for this problem, with A = 0.3 and A = 0.6 are shown in (—.) and (——), respectively.

The relevant conclusion here is: if J; and], are not convex functions (what is the case in most
of machine learning problems), the weighed sum approach should not be employed for trying
to find the trade-off front, as it may loose some potential solution.

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 99

Fig. 2. The minima of J; and], are marked with the o, being the PO front everything between
them. The convex part of the PO front is marked using continuous lines (-) and the non-convex
as (-). The WD method can only generate the networks which belong to the convex part.

4. The Parallel Layer Percetron

Instead of assembling the layers in cascade, in Caminhas et al. (2003) it was proposed to use
them in parallel, given birth to the Parallel Layer Percetron (PLP). Consider the input vector
x, which includes the bias term, the vector function ®, and the weight matrix W

D =1 (W] x)
{ , (44)
Dy = (W] x)

then
q
flx,w)PHP = ¢ (H@-) , (45)
i=1

where, [] represents a point wise product, and w is a vector with all the weights W;. Hence, the
PLP implements a nonlinear function of the product of nonlinear functions. This configuration
has some computational advantages as discussed in Caminhas et al. (2003). A particular case
of this topology can be written as the sum of the product of a linear layer, LT x, and a nonlinear
layer, ® = ¢(NTx), and it is given by

f(X,ZU)PLP = XTL(DT = i |: 3 L]-ixi(p(il\]ﬁxi)} . (4:6)
0 i=0

j=1

i=
Since f(x,w)Pt is a linear function of the parameters Lj;, the PLP output can be written in a
matrix form. Thus, consider the vector I = Lj;, where z = (n +1)(j — 1) +i. This vector is a
matrix transformation L to a vector with the same components, where j =1,...,m,i =0,...,n.
By calculating all the outputs of the nonlinear perceptrons, a matrix A, with components ay, =

100 Machine Learning

xzkcp(Niji), k=1,..,t can be constructed

xo19(b11) oo X1 @(b)
A= : : . (47)

xorp(b1y) oo Xntp(bmt)

Therefore, the output of the PLP network can be written as
Flx,w)PLP = A(x,N)L (48)
Thus, the empirical risk can be written as:
JPP (T, w) = (AL = 7)T (AL - 7). (49)

In this case the error is a quadratic function of the control variables - the vector I - while A
is a nonlinear function of N. The main idea that will follow is to find a formulation, which
resembles the Tikhonov’s least squares solution, for this topology. Even though it is clear how
to use the vector /, the nonlinear weights N brings an additional complication. To solve this
problem it is necessary to find a function Q)(I) which is capable to consider also the complexity
derived from N. For that, a generalized version of the Tikhonov’s regularization, based on a
Q-norm, can be used.

5. Generalized Tikhonov’s regularization using a Q-norm

For any norm and any bijective linear transformation D, a new norm of / can be defined to be
equal to || DI||. For instance, in 2D, with D a rotation by 45 and a suitable scaling, this changes
the 1-norm into an co-norm. Consider the Euclidean norm of the transformed vector

|D1||, = VITDTDI = /ITQl, (50)

for Q = DTD, w € R" a vector with finite dimension, and DD = Q € R"*" a symmetric
positive definite matrix, i.e., 1TQr >0, VI # 0.. The Q-norm of w is given by \/ITQw. The
regularization function () can be written as a Q-norm, where the matrix Q is a function of the
nonlinear parameters N:

Q(,N) =1TQ(N)L (51)

Therefore, the solution of the linear ill-posed problem can be generalized as
lg = argminJy = [|AL = 7llg, + MG, (52)
Thus, it is need to define a matrix Q, such that it considers the influence of the nonlinear

parameters of the PLP, while only adjusting the linear ones. This will be achieved using the
Minimum Gradient Method (MGM).

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 101

5.1 The Minimum Gradient Method
By calculating the derivative of (46) with respect to xx, one obtains, Vieira et al. (2008):

d 1 9
%;(w) = Z{ [(agj > (ZLM> +¢(bj)Lix (53)
j=
where bj = Yl s Nj;x;. For all jand z = (n +1)(j — 1) + i the following holds true
b .
%’:}) |:<§;P kak> + ¢(b]):| I, k=i, (54)
af(;;:;) |:<§Zj Nk%‘)] I, k#i. (55)

The derivatives in relation to the vector x; = [xg1, ..., X, .-, Xit] T, Where t is the number of
samples, can be written in a vector form as follows:

of (x,w)
"~ =Dyl. 56

oxg k (56)
To exemplify the construction of the matrix Dy, where Dy, € R (n+1)m consider the following
cases when the derivatives in relation to x; and xp are computed, for b]h, iis Xin, where j
represents the neuron, i the input and / the sample number.

a?j) 10 ab4> Nirx11 + ¢ (b1) %N’”nxnl
o | (57)
| aift Nig %;N“x“ o) %N’"nxm
aizqfl 10 aiqu Ni1x1y ab(P Nigxor + ¢ (b11) ... %N’””x”l
D, — : : 8)
2 %NN %“Nllxlt aab(P Nipxps + ¢ (b1r) %N’””X”t

In the matrices Dy, when i = k, the columns related to the weights Lj; = I, are composed by
two terms, as can be noticed in the second column of D; and in the third one of D,. In the other
columns just one term is used. Remembers that i = 0 represents the bias term. Therefore, the
complexity function () can be defined as the minimization of the norm of the output gradient

OPP = 3" (D) (DyD) = 17Q), 59
k=1

102 Machine Learning

where Q € R(#+1)mx (n+1)m =Yr, D Dy. Clearly, ITQI > 0 VI, noticing that the sum of sym-
metric positive-definite matrices are also symmetric positive-definite matrices. The construc-
tion of the matrix D;Dk is exemplified taking k = 2:

Zt: (NlONllxlh)
L

2
(N11x1h>

DID, = hl(
L[9 9¢ op ¢
L (ablh b NlON’””"”h) Z (ablh b N“N’””x”“x”h)

h=1

h=1

: o¢p Lo
Z(abm) %Nuxzfr(l’(bm)) h; (%leonnxnh)

t 2 (60)
) (Nipxop + ¢ (blh))

h=1

t a(P)2
Nunx
hz <abmh il

Since JPLP and OFLP are convex functions, the regularization based on the least-squares solu-
tion as presented in (52) does not loose any potential solution.
I) = argmin]ELP = AJPLP (1 — A)QPLP
=AMAI—))T(Al—9)+ (1= A)ITQL
where the optimum [, (i.e., /), can be calculated by making the derivative of (61) equal to
zero. The derivative of (61) in relation to [can be calculated as:

(61)

d]PLP
dl

In order to find I, the previous relation should be made equal to zero, as given below:

=A(—2ATG+2ATAl) + (1 - A)2Q! (62)

AM—2ATG +2AT Al + (1 - 1)2Q1 =0
—20ATG 4+ 20 ATAL+ (1 - 7)2Q1 =0

MATA+(1-1)QJl=AATH

Iy =ATA+ (1 -21)Q] hATy, (63)
if the matrix [A\AT A + (1 — A)Q] is non-singular. The Pareto-Optimum set can be found by
varying A between zero and one. This work applied the golden section algorithm in the val-
idation error criteria to define A,. The validation error for the given formulation is a convex
function of the linear parameters .

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 103

5.2 Generalized Singular Value Decomposition
Consider the following properties of the Generalized Singular Value Decomposition (GSVD)
Hansen (1998):

A=Uy S4VT

GSVD={ D=UpSpVT , (64)
S1Sa+ShSp=1

where U is a unitary matrix, ie., u-l=u7, and S4 = diag(sAl,...,sA(nH)m), Sp =

diﬂg(SDl,...,SD(n+1)m) such that SA1 Z L SA(nJrl)m > 0 and SD(nJrl)m > .2 Sp1 > 0. Ap-
plying (64) in (63) the following is obtained:

I = [AATA +(1- A)Q] ATy
= [AVSQVT +(1- A)vsgvT} “vsauly
=1 [V(Asi +(1- A)S%,)VT} “vsauly (65)
—A [(Asﬁ +(1- A)S%,)VT] “ytys,uly
= A(vT)1 [/\qu +(1- A)sg} “sauly

where [AS% + (1 — 1)S3] is a diagonal matrix with elements [As%; + (1 — A)s?.]. The unfil-
tered solution, disregarding the complexity control, i.e., A = 1, is equal to

L(A=1)= V1) 1s tuly. (66)

The Wiener filter weights are evaluated comparing the unfiltered solution with the general
solution of (65). The following is obtained

2
A As%i ;
Asy + (1= A)sp;
1 , (67)

s3;
!/ 1

Ai
where ' = (1—A)/A, A # 0and sy, /sp; are the generalized singular values. Similarly to the
results using the simple SVD, the components with smaller singular values are filtered the
most. Differently from the traditional Wiener filter, which only considers sp; = 1, the MGM
approach computes a general sp;. It is possible to obtain sp; = 1 using a identity matrix in the
Q-norm. The Wiener filter weights define the relevance of each nonlinear neuron, filtering the
unnecessary ones.

6. Results for benchmark problems

This section presents some experimental results in benchmarking problems considering the
proposed ideas. Sigmoidal logistic functions have been used as PLP nonlinear activation
function. Data sets from Intelligent data Analysis (IDA) repository are considered here as

104 Machine Learning

presented in K. Muller & Scholkopf (2002). Table 1 summarizes the dimensionality of the in-
put space, the number of training and test samples and the number of realizations for each
data set. The results obtained by the PLP-MGM are compared with the results obtained by us-
ing the following machine learning techniques: (i) Support Vector Machine (SVM), (ii) kernel
Fisher Discriminant (KFD), and (iii) Regularized AdaBoost (ABR) extracted from Muller et al.
(2001); (iv)Leave-One-Out KFD (LKFD), and (v) Single objective Parallel Layer Perceptron
(PLP) from Caminhas et al. (2003). The results are presented in Table 2.

Name Dimension Train Test Realizations
Banana 2 400 4900 100
B.Cancer 9 200 77 100
Diabetes 8 468 300 100
German 20 700 300 100
Heart 13 170 100 100
Image 1300 1010 18 20
S. Flare 9 666 400 100
Thyroid 5 140 75 100
Titanic 3 150 2051 100
Twonorm 20 400 700 100

Table 1. Ida repository data set summary.

SVM KFD ABR LKFD PLP PLP-MGM
Banana 11.5+0.7 10.8+£0.5 109+04 104+04 10.7£.06 10.7+0.6
B. Cancer 2645 26+5 27 £5 26 £4 27 £5 25+4

Diabetes 23+2 23+2 24+2 23+£2 2342 2342
German 2442 2442 2442 2442 30+3 2442

Heart 16+3 16+4 17+4 16+4 19+3 16+3
Image 3.0+06 33+£06 27+06 4.0+06 5+4 3.3+0.7
S. Flare 32+2 33+2 34+£2 34+£2 37£2 33£2
Thyr. 5£2 4+2 5£2 5£2 4£2 4£2
Titanic 2241 23+2 2341 2241 2341 2241
Twon. 3.0+02 26+02 27+£02 27402 28+03 2.6+0.3

Table 2. Ida repository results.

The first noticeable result of Table 2 is that the PLP-MGM has outperformed the conventional
PLP in most of the tested examples, and that PLP has never outperformed PLP-MGM. It is
clear as well that the PLP-MGM has achieved similar results compared to those produced by
the other approaches used for comparison.

7. Denoising Ground Penetrating Radar data

This section considers denoising Ground Penetrating Radar (GPR) using the PLP-MGM tech-
nique. This noise can be due to environmental conditions, geometric variations, and sen-
sors characteristics. The numerical simulation follows the results described in Travassos et al.
(2008). A block diagram of a typical GPR system to detect underground targets, is given in
Fig. 3.

Recent advances in Neural Networks Structural

Risk Minimization based on multiobjective complexity control algorithms 105

Received

Transmitter Recei
€, =1 A A" Electric Field
Concrete = __y Clutter
Surface zg\-/é;
\/’—r—\ First echo
delay
y

S
Amplitude
€r =6*(1 + sd*(random))
Duration of
z scattered field

Fig. 3. The GPR problem.

The proposed configuration is tested to filter the noise of the scattered wave from a cylindrical
air inclusion buried in a non-homogenous host medium, Vieira et al. (2009). Tables 3 and 4
considers white and colored Gaussian noise respectively. As the noise is stochastic by nature
a statistical evaluation of the results is necessary. The simulations were done considering 20
different noises for each SNR, and a Neural Network trained for each of them. The results
are presented in 3 and 4 they show a considerable improvement in the SNR, showing the
effectiveness of the proposed approach.

SNR in the Filtered Wave (dB)
Noise (dB) | Mean Max Min
3 14.16 14.65 13.47
6 14.69 15.07 14.14
9 16.55 17.67 15.65
10 20.47 21.35 18.67

Table 3. SNR considering the GPR processed wave (filtered) by the proposed approach cor-

rupted by White Gaussian Noise.

SNR in the Filtered Wave (dB)
Noise (dB) | Mean Max Min
3 12.76 1322 11.96
6 15.30 1621 14.17
9 20.36 20.73 19.96
10 20.58 2093 20.09

Table 4. SNR considering the GPR wave processed (filtered) by the proposed approach cor-

rupted by Colored Gaussian Noise.

8. Final Comments

This chapter described the use of the multiobjective optimization framework to train the Par-
allel Layer Perceptron network. This is based on the general concept that learning depends
on two functions: the empirical risk and the network complexity. A formulation based on

106 Machine Learning

the Tikhonov’s regularization was proposed using a Q-norm as a complexity measure. This
has a least-squares like closed form solution; therefore, it relies on simple computational al-
gorithms. Moreover, it bores the good aspects of the Tikhonov’s method. It opens discussions
about other possible definitions of the matrix Q, different configurations of the PLP layers
among others.

The results presented proved the effectiveness of the proposed approach. A wide comparison
considering several benchmarking problems and algorithms were presented. Also a complex
engineering problem was successfully solved using the proposed approach.

The relationships between the classical regularization, the structural risk minimization and
the multiobjective formulation were also explored. These help the understanding concerning
the nature of learning and their possibilities. It shows that the convexity is an important issue
to the use of the WD method to MLPs. This is indeed a wide subject, and, due to space
constraints, this chapter discussed a rather biased point-of-view on those subjects.

9. Acknowledgment
This work was supported by CNPq and FAPEMIG, Brazil.

10. References

Alavetti, D. C. & Eichel, L. R. (2004). Tikhonov regularization with a solution constraint, SIAM
J. Sci. Comput. (26).

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural networks:
The size of the weights is more important than the size of the network., IEEE Trans.
on Information Theory 2(44): 525-536.

Caminhas, W. M., Vieira, D. A. G. & Vasconcelos,]. A. (2003). Parallel layer perceptron, Neu-
rocomputing 3-4(55): 771-778.

Hansen, P. C. (1998). Rank-deficient and discrete ill-posed problems: numerical aspects of linear
inversion, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
ISBN 0-89871-403-6.

Hastie, T., Tibshirani, R. & Friedman, J. H. (2001). The Elements of Statistical Learning, first edn,
Springer.

Hinton, G. E. (1989). Connections learning procedures, Artificial inteligence 40: 185-234.

Ivanov, V. V. (1962). On linear problems which are not well-posed, Soviet Math. Docl. 3(4): 981-
983.

Ivanov, V. V. (1976). The theory of approximate methods and their application to the numerical solution
of singular integral equations, Leyden : Noordhoff International. ISBN: 9028600361.

K. Muller, S. Mika, G. R. K. T. & Scholkopf, B. (2002). Ida bechmark repository used in several
boosting, kfd and svm papers, Technical report. ida.first.gmd.de/~-raetsch/
data/benchmarks.htm.

Muller, K., Mika, S., Ratsh, G., Tsuda, K. & Scholkopf, B. (2001). An introduction to kernel-
based learning algorithms, IEEE Trans. on Neural Networks 12(2): 181-201.

Phillips, D. Z. (1962). A technique for numerical solution of certain integral equation of the
first kind, J. Assoc. Comput. Mach 9: 84-96.

S. Geman, E. B. & Doursat, R. (1992). Neural networks and the bias-variance dilemma, Neural
Computation 1(4): 1-58.

Shawe-Taylor,]. & Bartlett, P. L. (1998). Structural risk minimization over data-dependent
hierarchies, IEEE Trans. on Information Theory 44(5): 1926-1940.

Recent advances in Neural Networks Structural
Risk Minimization based on multiobjective complexity control algorithms 107

Tikhonov, A. N. (1963). On solving ill-posed problem and the method of regularization, Dok-
lady Akademii Nauk USSR 153: 501-504.

Tikhonov, A. N. & Arsenin, V. Y. (1977). Solution of ill-posed problems, W. H. Winston, Washing-
ton, DC.

Travassos, X., Vieira, D., Ida, N., Vollaire, C. & Nicolas, A. (2008). Characterization of in-
clusions in a nonhomogeneous gpr problem by artificial neural networks, Magnetics,
IEEE Transactions on 44(6): 1630-1633.

Vapnik, V. N. (1992). Principles of structural risk minimization for learning theroy, Advances
in Neural Information Processing Systems 4: 831-838.

Vapnik, V. N. (1998). Statistical Learning Theory, New York: Wiley.

Vapnik, V. N. (2001). The Nature of Statistical Learning Theory (Statistics for Engineering and
Information Science), second edn, Springer.

Vasin, V. V. (1970). Relationship of several varitional methods for approximate solutions of
ill-posed problems, Math Notes 7: 161-166.

Vieira, D. A. G., Takahashi, R. H. C., Palade, V., Vasconcelos, J. A. & Caminhas, W. M. (2008).
The Q-norm complexity measure and the minimum gradient method: A novel ap-
proach to the machine learning structural risk minimization problem, Neural Net-
works, IEEE Transactions on 19(8): 1415-1430.

Vieira, D., Travassos, L., Saldanha, R. & Palade, V. (2009). Signal denoising in engineering
problems through the minimum gradient method, Neurocomputing 72(10-12): 2270 —
2275.

108 Machine Learning

Statistics Character and Complexity
in Nonlinear Systems

Yagang Zhang and Zengping Wang

Key Laboratory of Power System Protection and Dynamic Security Monitoring and
Control under Ministry of Education (North China Electric Power University),
China

1. Introduction

Learning is the process of constructing a model from complex world. And machine learning
is concerned with constructing computer programs that automatically improve with
experience. Machine learning draws on concepts and results from many fields, including
artificial intelligence, statistics, control theory, cognitive science, information theory, etc.
Many successful machine learning applications have also been developed in recent years.
Obviously, no matter what we adopt new analytical method or technical means, we must
have a distinct recognition of system itself and its complexity, and increase continuously
analysis, operation and control level.

In mathematics, nonlinear system represents a system whose behavior is not expressible as a
linear function of its descriptors. Our world is inherently nonlinear in nature. Generally
speaking, there have difficulties in solving nonlinear equations. Especially the nonlinear
system may give rise to some interesting phenomena such as chaos, where simple changes
in one part of the system will produce complex effects throughout.

It has been half century since the discovery of inherent randomicity in nonlinear systems
(Ulam & Von Neumann, 1947). The study of chaotic symbolic sequences is gradually
developing in theory. However, applied research of stochastic chaotic sequences has not
been fully carried out, for most of studies focus on controlling or avoiding chaos. Chaos,
nevertheless, affords inherent randomicity that can be calculated, which is an important
applied domain. The stochastic symbolic sequences bear the following three features. First,
computer can generate them iteratively. Second, like false stochastic numbers, they can set
up a stochastic sequence simulation (in contradiction, they are based on corresponding
symbolic spaces). Third, they can produce numerous symbolic spaces, which is not
characteristic of common stochastic numbers. Therefore, the symbolic dynamics (Hao, 1989;
Hao, 1991; Hao & Zheng, 1998; Collet & Eckmann, 1980; Alekseev & Yakobson, 1981; Xie,
1993; Xie, 1996; Peng & Luo, 1991; Zhou & Peng, 2000) developed by this means is supposed
to be very useful.

Our researches are based on this kind of symbolic sequences, the generic iterative map in #
symbolic map (Zhou & Cao, 2003) is:

110 Machine Learning

n"m?>

n
_ i 0 1 n
X, = E ax, =a,x, +ax, +-+ax (n=1,m=0)
i=0

For random 7 symbolic sequences, their corresponding symbolic spaces, symbolic
expression and kneading sequences are listed in Table 1,

Symbolic Spaces Symbolic Expression Kneading Sequences
>, LR (L”,RL")
Z 3 LM.R (Rw,LDO) --Kneading plane
Z 4 LM.N.R (LOO , RLDO) --Kneading space

Table 1. The corresponding symbolic character in symbolic spaces

In this chapter, we will clarify the different kinds of statistic character and complexity in
nonlinear systems. This chapter includes two parts, the fist part is about unimodal surjective
map and Lorenz type maps nonlinear systems, which are two kinds of typical nonlinear
systems. The distributions of frequency, inter-occurrence times, first passage time and
visitation density in unimodal surjective map and Lorenz type maps are discussed carefully.
These two kinds of nonlinear systems have same distributions, which will also be explained
in theory, and the catholicity of the statistic character will be elicited. The second part is
about the inherent randomicity in 4-symbolic dynamics. The distribution of frequency, inter-
occurrence times and the alignment of two random sequences are amplified in detail. By
using transfer probability of Markov chain (MC), we will obtain analytic expressions of
generating functions in four probabilities stochastic wander model, which can be applied to
all 4-symbolic systems. So, a perfect symbolic platform will be set up for our utilizing
statistic character. The 4-symbolic sequences have natural relations with bioinformatics
sequences, in the field of application, we hope to afford this kind of symbolic platform
which satisfies these stochastic properties and study some properties of DNA sequences, 20
amino acids symbolic sequences of protein structure, and the time series that can be
symbolic in finance market et al.

2. The statistic character in Unimodal surjective map

2.1 Symbolic dynamics of Unimodal surjective map
The generic iterative form in Unimodal surjective map is:

X, =F(A,xn):1—2xf,

X, is defined on interval [-L1].

Let us define an alphabet of 2 numbers, which is corresponding to the likely states of a
random discrete nonlinear system, or all the likely outcomes of a random experiment:

Statistics Character and Complexity in Nonlinear Systems 111

Q= {O, 1} ={" faillure"," success"
The forward sequence constitutes a space (or a set) composed of the generated outcomes:

QY ={(§.4.8,+): £ eQVie{0,1,2,.. }]

These sequences themselves are iteratively generated (Collet & Eckmann, 1980; Peng & Luo,
1991), in fact it's a shift map O QY 5> QY , which acting on the sequences by
O'(ggo,ggl,ggz,...) = (981,52,...). Another definition is £, which is the product measure

(Coelho & Collet, 1994; Coelho, 2000; Peng & Cao, 1996; Billingsley, 1986) on QN generated
by the measure (1— p, p) on {0,1}, and will be denoted by (1 — p, p)N .

2.2 The distribution of frequency
Defining f QY > {0,1} by f{fo, §1> é:z’ = é:oa it is coarse graining in theory, one
can get:

X.(&)= f(o'E), (for i =0,1,2,...),

which are sequences of independent and identically distributed(i.i.d.) random variables

defined on the probability space (QN, M) (all the following discussions are based on the

random variables), that is, the random variables represented by cfo, cfl , 52 ,...areiid. and

é:l.(i = 0,1,2,...) is based on 2,
K1 :XO +Xl +'“+Xn—1
n-1)
=2 f(o'x)
i=0
=& TG T+ G,
The stochastic symbolic sequences in Unimodal surjective map satisfy Binomial distribution:

pEeQ Y, (0 =k =Cptl-p)™ M

2.3 The inter-occurrence times in Unimodal surjective map

Now let us make a further study a given word's occurrence times in an independent
repeated experiment, such as Success in the alphabet of 2 numbers. Given outcomes of a
random sequence

112 Machine Learning

g :(§OJ§U§2"")€QN,

we are mainly interested in 72 such that & w = 1, let

7(g)=7(5)=infin>0:g =1},

and accordingly, for j = 2,

7,(&)=inf{n>7, ,(5):¢, =1},

then for all k£ > 0, the result is, for fixed k > 0, and all k1 <0 < kj—l ,

P(Tj T =k| T :kj—lﬂ"'az-l =k)
=P(z, -7, , =k} @)
= p(1-p)*"

the inter-occurrence times 1 + 7,7, —7,,T3 —T,, ** areii.d. with parameters p .

2.4 The first passage time in Unimodal surjective map

Using this method similar to study the distribution of first passage time Ty of one-
dimensional simple random wander in stochastic processes, one gets 7 satisfies Negative

Binomial distribution BN(J, p):

Pz, =k)=Cp'q""
(k=r,r+1Lr+2,---, 0<p<l, g=1-p)

3. The statistic character in Lorenz maps

3.1 Symbolic dynamics of Lorenz maps
Lorenz equation:

x=o0(y—x),
y=(r-z)x-y
z=xy—bz

Statistics Character and Complexity in Nonlinear Systems 113

On the Poincaré section, some geometrical structure of Lorenz flow may be reduced to a
one-dimensional Lorenz mapf -, v]—>[-w,v], (u,v >0, A> 1)

fix)=v—alx +hot, x<0
f(x)=)
fo(x)=—p+pBx" +hot, x>0

Where A is a constant greater than 1, “h.o.t” represents high-level term. Both of the
branches fL and f, g are monotone increasing. In order to get iterative sequences in the

part of chaos, the Lorenz map used in this research is:

2

fi=1-2]x", x<0
fo=—1+2x", x>0

fx)= 4)

The symbolic dynamics of Lorenz maps is also simple (Peng & Du, 1999). Following the
kneading theory, the address A(X) of any point X on the interval [—1,1] reads

R, xe[-1,0)
A(x) = .
. x€[0,1]

X = 0 is the turning (discontinuous) point, and one can define C and D as

C=lim f,(x),
x—0"

D = lim £, (x).
x—0"

Two infinite or finite symbolic sequences starting from C and D are kneading sequences
which can be ordered lexicographically by L < C, D < R . For two kneading sequences,

VooV iViprwwr and 70, ... 1,1, - .., with maximal common leading part:

NWVoooVi =Ty - 1,

one has ,

Voo Viligieo s <My 10y -

ifand only if ,,; <17, ,.

114 Machine Learning

The shift operator @ is defined as ,

(0]((5) = §k+l§k+2 cn for &= 5152 "'§k§k+1 cees

For any two sequences ,

=886, - and 524/14/2-'-4/1‘5141“"

é:i,é/j e{R,L}, if (Dk(é:)-<§ and ¢ < ¢k(é/) , for all KGZJr jthen & is called
maximal, { minimal, and S = (&,) is an extremal pair. Let the integers k& ;. and k r bethe

order coordinates of a letter in the sequence such that (pk’f1 (&)=L..., and
(ka - (&)=R..., the set k 1 and k r describe successive sequences of L or R . Then, if

the pair S further satisfies the following condition:

P (&) <K', ¢ (&)~ K, k) Utk =tk e Z,,
PO <K', 9" () - K2,k Ulkp = (kY e Z,.

S is admissible with respect to the kneading sequences K "and K*. All the admissible

pairs form an admissible set K and fill up the whole kneading parameter plane of nonlinear
systems of two letters.

3.2 The distribution of frequency
See expression (1).

3.3 The inter-occurrence times in Lorenz map
See expression (2).

3.4 The first passage time in Lorenz map
See expression (3).

4. Visitation density function of Unimodal surjective maps and Lorenz map

The orbital points” distribution of the Unimodal surjective maps and Lorenz map is,

1

p(x)=—— ()
aN1=x*

Statistics Character and Complexity in Nonlinear Systems 115

The concrete resolvent is using Frobenius-Perron operator (Lasota & Mackey, 1985; Yorke &
Li, 1975; Ding & Li, 1991; Li, 1976). The general form of resolve visitation density problem

by F-P operator P is,
d
Pf(x)=—— o S),

here, S = S(x) is a given map, a is an interval, f(X) is a density function. In fact, it is an

iterative process, the initial state is
J Aadu=] ., fiadu.

fo(x) is an arbitrary initial density and fl(x) is a new density transformed by map
S(x), that s,

S =Ef.

until,

fi(x)=P"f(x) as n— .

Of course,

Pf.(x)= fu(x),

the unique limiting density is just the ultimate visitation density function.

It is mainly in numerical value meaning that getting visitation density functions of higher
order maps, if the invariable density does exist. Figure 1 is the U-shaped probability density
based on iterates, corresponding analytic form is just expression (5),

0.0164
0.014
0.012
0.010+
Y 0.008-
0.006
0.004

0.002+ L _J

0.000+

0 500 1000 1500 2000
X
Fig. 1. The visitation density of Unimodal surjective map and Lorenz map based on 1000000

iterates, the interval [—1,1] is divided into 2000 subintervals. X coordinate axis is

corresponding interval, ¥ coordinate axis is the output proportion of each interval.

116 Machine Learning

-1 0 1 -1 0 1
(a) (b)

Fig. 2. Unimodal surjective map (a) and Lorenz map (b)

(In

Fig. 3. The bifurcation diagrams of Unimodal surjective map () and Lorenz map (ll)

Statistics Character and Complexity in Nonlinear Systems 117

5. The comparability of statistic character in the Unimodal map and Lorenz
map

The former statistic character in Lorenz map is similar entirely to that in Unimodal
surjective map. This kind of comparability is determined by the relationship of Unimodal
surjective map and Lorenz map. (See Figure 2)

The iterative form of Lorenz map is (4), and Unimodal surjective map is y =1—2x 2
One can find this characteristic by Figure 2,

L. =1 x>0
f. =1 x<0

A n -periods orbit of fa corresponds to a couple of 7 -periods orbits of fb. Both of them
have the same topological entropy and marker behavior. The fixed point of fa exhibits

two-periods behavior of fb, which can be found clearly by contrasting their bifurcation

diagrams. (See Figure 3)

Compared the right branch of Lorenz map and Unimodal surjective map, the Lorenz map is
only overturned by X coordinate axis. As these results reveal that this kind of overturn
does not influence statistical properties of random sequences. Compared with Unimodal
map, Lorenz map belongs to a more complex category, which presents more abundant
dynamics actions. But as above study, these statistical results present regulation as a whole.
These are randomicity in deterministic systems.

6. The stochastic properties in 4-letters maps

6.1 The distribution of frequency
Let us define an alphabet of four numbers, which is corresponding to the likely states of a
random discrete dynamical system, or all the likely outcomes of a random experiment:

0={0,1,2,3} ={L,M,N,R} ={4,G,C,T}
={"Spring","Summer"," Autumn"," Winter"}

The forward sequence constitutes a space (or a set) composed of the generated outcomes:

Q¥ ={(&,8,8,):£ eQ,Vie{0,1,2,.. }]

These sequences themselves are iteratively generated, in fact it's a shift map
o: Q" > QY , which acting on the sequences by O'(é:o,é:l,é:z,...)2(51,52,...).

Another definition is £/ , which is the product measure[6] on (O} generated by the measure

118 Machine Learning

(pl,pz,p3,p4) on {0,1,2,3} (ptp,+pP3+py, =1), and will be denoted by
(pl,pz,p3,p4)N.Deﬁning (D:QN —10,1,2,3} by @{5,6,,6,,..-4 =&, itis

also coarse graining in theory, one can get:

X&) =p(0'%), (for i=0,1,2,...)

Which are sequences of independent and identically distributed (i.i.d.) random variables
defined on the probability space (QN , 1) (all the following discussions are based on the

random variables), that is, the random variables represented by ‘fo: ‘5:1 , é:z ,...areiid., and

é(i=0,1,2,...)isbasedon Q.

The numeric examinations reveal that the stochastic symbolic sequences in 4-letters maps
satisfy multinomial distribution:
n ! n n n n
— — — —_ —_ 1 2 3 4
T(N,=n,N,=n,Ny=ny,N, =n,) = 1 Py P2 Py Py
n!nyny!n,!

The theoretic foundation of these results is that the topological entropy (Shi et al., 1996;
Zhang et al., 1996; Cao et al., 1995; Chen et al. 1995; Peng et al., 1994; Chen & Zhou, 2003;

Chen & Zhou, 2003; Liang & Jiang, 2002) in 7 letters surjective maps is In(#), which is a
deduction from chaotic symbolic sequences” Bernoulli property.

6.2 The inter-occurrence times of 4-letters maps
Now let us make a further study a given word’s occurrence times in an independent

repeated experiment, such as" R","T" or "Winter" in the alphabet of four numbers.
Given outcomes of a random sequence

&= (509519523"') € QNa
we are mainly interested in 72 such that & =T, let
(&) =1/ (&)=inf(n=0:& =T}, AeQ

and accordingly, for j > 2, A correspondsto T,

ti(&)=inf{n>177(£):&, =T},

Statistics Character and Complexity in Nonlinear Systems 119
then for all k > 0, the result is, for fixed £ > 0 and all kl << k/._l ,
2 2 2 2
P(Tj —Tia= k| Tia = kj—lﬂ'narl =k)
A A
=P(z; -7, =k} (6)
a_b_c
=P PPy
4
Q. p =1,a,b,ce{0,1,2,---},a+b+c=k-1) %)
i=1
. . A 2 A2 2 .. .
the inter-occurrence times 147 | 5Ty =T, ,Ty =T, are iid. with parameters

D> Prs P3s Py -
Correspondingly, for j > 2,
If A corresponds to A, and

i (&) =inf{n>177 (£):&, = 4}
Then
P(c} -7/, =k} =p; pip;ip,
If A correspondsto G, and
) =infin > 7t ()£, = G)
Then
P(zi -7, =k} = ppipip,

If A corresponds to C,and

(&) =infln > 77, (&)1, = C}

then
P(z} -7}, =k} = p}p>p;p;

the conditions of expression (8)-(10) are also expression (7).

®)

(10)

120 Machine Learning

6.3 Exponential distribution of 4-letters maps
Suppose there are two random sequences of outcomes corresponding to the repetition of an

experiment with four likely results. Let & =(&;,4,,&,,) and ¢ =({(,4,6,,""")

denote the sequence of outcomes (& independent of §). There is an alignment at time 7 if
fn = ,» - The alignment at time 7 as a success and no alignment is failure. Then note that,

foralln>0, O<p<land g=1-p,
P, =¢,)=P(G=C)=p

Now consider having a successive sequence of alignments. Define ¢ : V=Y 5 N by

P&, 0) =k if é:o :goaé :é,la---’fk—l :é,k—l’é:k i/;k,namely,
#&, Q) =k, if fo =§0a§1 =é/l""9§k—1 :é/k—lﬁgk ;té/k’

introduced shift arithmetic operators o,

() =(5,6,,63"),
0(¢)=(61,6,,¢5),

then,

fori=1,2,3, ---,
P(o(8),0(0) =k, it §=01,...8 =G4, 61 # Gt
¢(02(§),62(§)) =k, if &, =Csses G = Cha1sSran # hins

¢(O'i(§)a OJ(?)) =k, if § =,y ng_.m' = Cr1sisGpsi F Cpai

in fact, alignment from I term is just keeping the former k terms success and the k +1
term failure.
Denote random variables

Z,=¢(c"¢,0"C), y, =inf{n>0:Z, >k},

So,

" () =680 80,
") =65 S Gt)

Statistics Character and Complexity in Nonlinear Systems 121

and

§n—l = é/n—l H gn = é,n AR s §n+k—2 = Cn+k—2 b §n+k—1 # n+k-17

therefore,

Z,,=¢(c"5 0")=k,

The same way,

o (5) = (én > §n+19 §n+2’ . ')'
Un (é,) = (é,n s §n+l H §n+2 5t)

and
ézn = é/n’fnJrl = é/n+1a ------ ’§n+k72 = §n+k72’§n+k71 G ikt
therefore,
Z,=¢(c"s,0"¢)=k-1
so,

P(Z =k-1|Z, =k)=1,itk>1
for every ¢ > 0, one gets the asymptotic exponential distribution of }, :
lim P(, > tE(y,) | Z, =0) =",

E(y k) represents mathematical expectation of }, , f is a time coordinate. Furthermore, if

Z,=H(c"E,0"¢) = k1
and é':n+k—l = A, then,

PB}CP(% >t,E(y,))=e"
accordingly, one also gets,

]lgg P(a, >t,E(a,))=e",

lim P(B, >t.E(S,)) = e’

122 Machine Learning

llfim P(o, >t,E(w,))=¢e"

ak,ﬂk,a)k correspond to », when §n+k_l = G,§n+k_l = C,gzn+k_1 =T
We also get,

lim P(y, > 1, E(r,), > 1E (@), f, > 1E(B). 0, > trE(@,)

— e—(tA +gHtoHy)

Fig. 4 represents the alignment of two random sequences.

6.4 Transfer probability of Markov chain (MC) in 4-letters maps
We choose one of these transfer models (Figure. 5), such as Figure. 6.

If n fixation, the transfer probability of (7, j) is defined p[;n) . The generating function is,

G'(2)=(qz ' +r+pz+vz’)', (11)
which is determined by Figure. 3.
G'(2)=).pz" = > py 2" (12)
keR Jj—ieR
Hereinto, p\' =P(X,=k|X,=1) , pi"=P(X,=jlX,=i) , k=j—-i ,
R= (—n,~~-, ,"',21’1), R represents all coordinates a particle could attain during n

steps transfer if 7 fixation. By using (11) and (12), one gets:

under restrictive condition of 5(2’12 I

n!
pl(lzl) — ' qnnrnlpnzv"s ,
ny!n!n,n;!

(0:k=2n,+n,—n,, n=ny+n,+n,+n,)

Fig. 4. The alignment of two random sequences

Statistics Character and Complexity in Nonlinear Systems 123

Fig. 5. Four probabilities stochastic wander model

r V

Fig. 6. One of these transfer models

Let,
n—n+n—k=2l, ng=1l,n=m, ny=1+k-24, n,=4,

then,
() _ Ql+m+k-21)! Lam (k=22 2

" , kel[-n2n].
I'm!(I+k—-22)11!

The generating function P}, (§) if k fixation. During different 7 steps transfer, all the

probabilities pl(,:l) are introduced into a generating function F, (s), which is defined as

B(s)=) py's"
n=0

S 2 - k-2t

- (ps)kZZCZHk—iCHk—l(qS)I (ps)(l M)(VS)/I(I_FS) e
7=0 1=0

(PS5 k 1 S / A qs i1, PS su-21), VS \a
(l—rs) 1- Z:Z:Cvz“"‘”lc'”k‘i(l—rs) (l—rs) (l—rs)

o0
V'S =0 1=0

124 Machine Learning

let,
__gs _.ps v
 l-rs’ l—rs’ 7 1=rs’
2 2.3
qps 2 qvs
X=X X, =—//, =X X, =——,
0*2 (I—I’S)z V=X X3 (1—rs)3
then,
qs - =y +
B (s) = (‘ Zﬂ_ (ZC21+1¢+/1 lk
S -0
So, for k=1,
})11() —Z /1| d A(ZCZH-A
for k=2,
S +1 l+1
Fy(s)= 52 Ojd_A(ZCyMH
for k=3,

l-rs & y' d? 2 g
E3(S): ;Td_(ZCZI+A+2 l 2

7. Conclusion and discussion

The statistic character and complexity in nonlinear systems have been clarified in this
chapter. These stochastic symbolic sequences bear three characters. In two kinds of typical
nonlinear systems-unimodal surjective map and Lorenz type maps nonlinear systems, the
distributions of frequency, inter-occurrence times, first passage time and visitation density
in unimodal surjective map and Lorenz type maps are discussed carefully. These two kinds
of nonlinear systems have same distributions, which have also been explained in theory,
and the catholicity of the statistic character has been elicited. In the 4-symbolic dynamics,
the distribution of frequency, inter-occurrence times and the alignment of two random
sequences have been amplified in detail. By using transfer probability of Markov chain (MC),
we have obtained analytic expressions of generating functions in four probabilities
stochastic wander model, which can be applied to all 4-symbolic systems. So, a perfect
symbolic platform has been set up for our utilizing statistic character, in fact, it is a
stochastic signal platform of symbolic simulation. The 4-symbolic sequences have natural
relations with bioinformatics sequences, in the field of application, we hope to afford a
symbolic platform which satisfies these statistic character and study some properties of
DNA sequences (Hao, 2000; Hao et al., 2000; Bershadskii, 2001; Grimm & Rupprecht, 1997;
Allegrini et al., 1996; Natalia & Avy, 2005; Elena et al., 2005), 20 amino acids symbolic
sequences of protein structure, and the time series that can be symbolic in finance market et
al, which are part of our future work. The symbolic platform provides a set of effective

Statistics Character and Complexity in Nonlinear Systems 125

methods to approach problems of this kind. The establishment of this symbolic platform
will open up a vast vista.

8. Acknowledgements

The first author would like to thank Prof. Shou-Li Peng for numerous discussions and
valuable comments. This research was supported partly by National Natural Science
Foundation of China (50837002) and the Science Foundation for the Youth Scholars of
NCEPU.

9. References

Alekseev, V.M. & Yakobson, M.V. (1981). Symbolic dynamics and hyperbolic dynamics
systems. Physics Reports, Vol. 75, 287-325, ISSN: 0370-1573

Allegrini, P., Grigolini, P. & West B.J. (1996). A dynamical approach to DNA sequences.
Physics Letters A, Vol. 211, 217-222, ISSN: 0375-9601

Bershadskii, A. (2001). Multifractal and probabilistic properties of DNA sequences. Physics
Letters A, Vol. 284, 136-140, ISSN: 0375-9601

Billingsley, P. (1986). Probability and Measure, John Wiley & Sons, ISBN: 0-471-80478-9, New
York

Cao, K.F., Chen, Z.X. & Peng, S.L. (1995). Global metric regularity of the devil's staircase of
topological entropy. Physical Review E, Vol. 51, 1989-1995, ISSN: 1539-3755

Chen, Z.-X., Cao, K.-F. & Peng, S.-L. (1995). Symbolic dynamics analysis of topological
entropy and its multifractal structure. Physical Review E, Vol. 51, 1983-1988, ISSN:
1539-3755

Chen, Z.X. & Zhou, Z. (2003). Entropy invariants: I . The universal order relation of order-
preserving star products. Chaos, Solitons & Fractals, Vol. 15, 713-727, ISSN: 0960-0779

Chen, Z.X. & Zhou, Z. (2003). Entropy invariants: I . The block structure of Stefan matrices.
Chaos, Solitons & Fractals, Vol. 15, 729-742, ISSN: 0960-0779

Coelho, Z. (2000). On discrete stochastic processes generated by deterministic sequences and
multiplication machines. Indagationes Mathematicae, Vol. 11, 359 —378, ISSN: 0019-
3577

Coelho, Z. & Collet, P. (1994). Asymptotic limit law for the close approach of two trajectories
in expanding maps of the circle. Journal of Probability Theory and related fields, Vol. 99,
237-250, ISSN: 0178-8051

Collet, P. & Eckmann, J.P. (1980). Iterated Maps on the Interval as Dynamical Systems,
Birkhauser, ISBN-13: 978-0817-63-026-3, Boston

Ding, J. & Li, T.Y. (1991). Markov finite approximation of Frobenius-Perron operator.
Nonlinear Analysis: Theory, Methods & Applications, Vol. 17, 759-772, ISSN: 0362-546X

Elena, I, Andrei, P.,, Sergey V. & Yegor S. (2005). Mapping long-range chromatin
organization within the chicken-globin gene domain using oligonucleotide DNA
arrays. Genomics, Vol. 85, 143-151, ISSN: 0888-7543

Grimm, H. & Rupprecht, A. (1997). Low frequency dynamics of DNA. Physica B, Vol. 234-
236, 183-187, ISSN: 0921-4526

Hao, B.L. (1989). Elementary Symbolic Dynamics and Chaos in Dissipative Systems, World
Scientific, ISBN: 978-9971-50-682-7, Singapore

126 Machine Learning

Hao, B.L. (1991). Symbolic Dynamics and characterization of complexity. Physica D, Vol. 51,
161-176, ISSN: 0167-2789

Hao, B.L. (2000). Fractals from genomes-exact solutions of a biology-inspired problem.
Physica A, Vol. 282, 225-246, ISSN: 0378-4371

Hao, B.L., Lee, H.C. & Zhang, S.Y. (2000). Fractals related to long DNA sequences and
complete genomes. Chaos, Solitons & Fractals, Vol. 11, 825-836, ISSN: 0960-0779

Hao, B.L. & Zheng, W.M. (1998). Symbolic Dynamics and Chaos. Directions in Chaos Vol. 7,
World Scientific, ISBN: 978-9971-50-698-8, Singapore

Lasota, A. & Mackey, M.C. (1985). Probabilistic properties of deterministic systems, Cambridge
University Press, ISBN: 0-521-30248-X, Cambridge

Li, T.Y. (1976). Finite approximation for the Frobenius-Perron operator, a solution to Ulam’s
conjecture. Journal of Approximation Theory, Vol. 17, 177-186, ISSN: 0021-9045

Liang, X. & Jiang, J.F. (2002). On the topological entropy, nonwandering set and chaos of
monotone and competitive dynamical systems. Chaos, Solitons & Fractals, Vol. 14,
689-696, ISSN: 0960-0779

Natalia, L. & Avy, S. (2005). Nonlinear waves in double-stranded DNA. Bulletin of
Mathematical Biology, Vol. 67, 701-718, ISSN: 0092-8240

Peng, S.L. & Cao, K.F. (1996). Global scaling behaviors and chaotic measure characterized by
the convergent rates of period-p-tupling bifurcations. Physical Review E, Vol. 54,
3211-3220, ISSN: 1539-3755

Peng, S.L., Cao, K.F. & Chen, Z.X. (1994). Devil's staircase of topological entropy and global
metric regularity. Physics Letters A, Vol. 193, 437-443, ISSN: 0375-9601

Peng, S.L. & Du, L.M. (1999). Dual star products and symbolic dynamics of Lorenz maps
with the same entropy. Physics Letters A, Vol.261, 63-73, ISSN: 0375-9601

Peng, S.L. & Luo, L.S. (1991). The ordering of critical periodic points in coordinate space by
symbolic dynamics. Physics Letters A, Vol. 153, 345-352, ISSN: 0375-9601

Shi,].X., Cao, K.F., Guo, T.L. & Peng, S.L. (1996). Metric universality for the devil's staircase
of topological entropy. Physics Letters A, Vol. 211, 25-28, ISSN: 0375-9601

Ulam, SM. & Von Neumann, J. (1947) . On combination of stochastic and deterministic
processes. Bulletin of the American Mathematical Society, Vol. 53, 1120, ISSN: 0273-
0979

Xie, HM. (1993). On formal languages of one-dimensional dynamics systems. Nonlinearity,
Vol. 6, 997-1007, ISSN: 0951-7715

Xie, HM. (1996). Grammatical Complexity and one-dimensional dynamics systems.
Directions in Chaos Vol. 6, World Scientific, ISBN 978-9810-22-398-4, Singapore

Yorke, J. & Li, T.Y. (1975). Period three implies chaos. The American Mathematical Monthly,
Vol. 82, 985-992, ISSN: 0002-9890

Zhou, Z. & Cao, K.F. (2003). An effective numerical method of the word-lifting technique in
one-dimensional multimodal maps. Physics Letters A, Vol. 310, 52-59, ISSN: 0375-
9601

Zhou, Z. & Peng, S.L. (2000). Cyclic star products and universalities in symbolic dynamics of
trimodal maps. Physica D, Vol. 140, 213-226, ISSN: 0167-2789

Zhang, X.S., Liu, X.D., Kwek, K.H. & Peng, S.L. (1996). Disorder versus order: Global
multifractal relationship between topological entropies and universal convergence
rates. Physics Letters A, Vol. 211, 148-154, ISSN: 0375-9601

Adaptive Basis Function Construction:
An Approach for Adaptive Building of Sparse
Polynomial Regression Models

Gints Jekabsons
Riga Technical University
Latvia

1. Introduction

The task of learning useful models from available data is common in virtually all fields of
science, engineering, and finance. The goal of the learning task is to estimate unknown
(input, output) dependency (or model) from training data (consisting of a finite number of
samples) with good prediction (generalization) capabilities for future (test) data
(Cherkassky & Mulier, 2007; Hastie et al., 2003). One of the specific learning tasks is
regression - estimating an unknown real-valued function. The process of regression model
learning is also called regression modelling or regression model building.

Many practical regression modelling methods use basis function representation - these are
also called dictionary methods (Friedman, 1994; Cherkassky & Mulier, 2007; Hastie et al.,
2003), where a particular type of chosen basis functions constitutes a “dictionary”. Further
distinction is then made between non-adaptive methods and adaptive (also called flexible)
methods.

The most widely used form of basis function expansions is polynomial of a fixed degree. If a
model always includes a fixed (predetermined) set of basis functions (i.e. they are not
adapted to training data), the modelling method is considered non-adaptive (Cherkassky &
Mulier, 2007; Hastie et al., 2003). Using adaptive modelling methods however the basis
functions themselves are adapted to data (by employing some kind of search mechanism).
This includes methods where the restriction of fixed polynomial degree is removed and the
model’s degree now becomes another parameter to fit. Adaptive methods use a very wide
dictionary of candidate basis functions and can, in principle, approximate any continuous
function with a pre-specified accuracy. This is also known as the universal approximation
property (Kolmogorov & Fomin, 1975, Cherkassky & Mulier, 2007).

However, in polynomial regression the increase in the model’s degree leads to exponential
growth of the number of basis functions in the model (Cherkassky & Mulier, 2007; Hastie et
al., 2003). With finite training data, the number of basis functions along with the number of
model’s parameters (coefficients) quickly exceeds the number of data samples, making
model’s parameter estimation impossible. Additionally the model should not be overly

128 Machine Learning

complex even if the number of its basis functions is lower than the number of data samples,
as too complex models will overfit the data and produce large prediction errors.

To obtain a polynomial regression model that does not overfit (nor underfit) and describes
the relations in data sufficiently well, typically the subset selection approach (Hastie et al.,
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with
the best predictive performance. This is done via combinatorial optimization. However, for
the subset selection approach still the two issues remain - deficiency of adaptation as well as
computational inefficiency.

Searching through all the possible combinations of basis functions takes double-exponential
runtime as the number of combinations grows exponentially in the number of basis
functions of the predetermined dictionary while the number of the basis functions in the
dictionary grows exponentially in the number of input variables and “full” model’s degree
(Hastie et al., 2003). This makes the exhaustive search through all the combinations
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al.,
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large
number of input variables and not too high degree. Nevertheless, the search time actually is
still exponential, hindering their use in problems of larger dimensionality and hindering the
removal of the restriction of a fixed degree.

The approach of subset selection assumes that the chosen fixed finite dictionary of the
predefined basis functions contains a subset that is sufficient to describe the target relation
sufficiently well. However, in most practical situations the required dictionary (and “full”
model’s degree) is not known beforehand and needs to be either guessed or found by an
additional search loop over the whole model building process, since it will differ from one
regression task to another. In many cases, especially when the studied data dependencies
are complex and not well studied, this means either a non-trivial and long trial-and-error
process or acceptance of a possibly inadequate model.

This chapter presents a sparse polynomial regression model building approach which
enables adaptive model building without restrictions on model’s degree and does it in
polynomial time instead of exponential time (in the number of input variables, required
degree, and target model’s complexity) as well as without the requirement to repeat the
model building process. The required basis functions are automatically iteratively
constructed using heuristic search specifically for the particular data at hand instead of
choosing a subset from a very restricted finite user-defined dictionary (hence the approach
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now
becomes infinite and polynomials of arbitrary complexity can be generated bringing the
desired flexibility to the model building process.

The remainder of this chapter is organized as follows. The next two sections give brief
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC
approach is described. Section 5 outlines the related work. The results of the empirical
evaluations of the proposed methods and their comparison to other well-known regression
modelling methods are presented in Section 6. Section 7 concludes this chapter.

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 129

2. Polynomial regression

In standard regression formulation (Vapnik, 1995; Cherkassky & Mulier, 2007; Hastie et al.,
2003) the goal is to estimate unknown real-valued function in the relationship

y=G6x)+s, @

where & is independent and identically distributed random noise with zero mean,
x =(x,X,...,%;) is d-dimensional input, and y is scalar output. The estimation is made based

on a finite number of samples (training data) provided in form of matrix x of input values
for each sample and vector y of output values for each corresponding sample. Using the
finite number # of training samples (x;,y;), j=12,..,n one wants to build a model F that

allows predicting the output values for yet unseen input values as closely as possible.
Generally, a linear regression model may be defined as a linear expansion of basis functions:

k
F(x)=Y a,/i(x),)

i=1

where a=(a,,d,,...,a;)" are model’s parameters, k is the number of basis functions included
in the model (equal to the number of model’s parameters), and fj(x), i=12,..,k are the

included basis functions of the input x. As the model is linear in the parameters, the
estimation of its parameters is typically done using the Ordinary Least-Squares (OLS)
method (Hastie et al., 2003) minimizing the squared-error:

a:argmaini:(yj—F(xj))2 . 3)

J=1

The basis function representation enables moving beyond pure linearity, by defining
nonlinear transformations of x while still working with linear models (and employing OLS).
For example, for d = 1 a polynomial model of fixed degree p can be defined as follows:

F(x)= Z,,: ax'. @)

i=0

Generally for a given d and p the total number of basis functions in a “full” polynomial, i.e.
the total number of basis functions in the dictionary, is

m:ﬁ(1+d/i). ®)

i=1

130 Machine Learning

3. Subset selection

Models which are too complex (i.e. that fit the training data too well causing overfitting) or
too simple (i.e. that fit the data poorly causing underfitting) provide poor predictive
performance for the future data. The most popular approach of controlling model’s
complexity is subset selection. The goal of subset selection is from a fixed full predetermined
dictionary of basis functions to find a subset that provides the best predictive performance
of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of
model’s parameters, the structure of the model itself needs to be found.

The total number of possible subsets from a dictionary of size m is 2" . This means that
searching through all the possible subsets is in most cases impractical. Hence in subset
selection heuristic search algorithms are used. They efficiently traverse the space of subsets,
by adding and deleting basis functions of the model, and use model evaluation measure to
direct the search into areas of increased performance. The typical examples of heuristic
search algorithms are the greedy hill-climbing algorithms - Forward Selection (also known
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also
more recently developed search strategies, such as Beam Search, Floating Search, Simulated
Annealing, Genetic Algorithms etc. (Reunanen, 2006; Pudil et al., 1994; Russel & Norvig,
2002).

Summarizing (Russel & Norvig, 2002; Molina et al., 2002; Kohavi & John, 1997), in order to
characterize a heuristic search problem one must define the following: 1) initial state of the
search; 2) available state-transition operators; 3)search strategy; 4)evaluation measure;
5) termination condition. Note that in the context of model building the “initial state” is also
called “initial model” and the “state-transition operators” are also called “model refinement
operators”.

In the subset selection approach for polynomial regression, typically the initial state is the
model that corresponds to the empty subset, the subset with only the intercept term in it,
full set of all the defined basis functions, or a randomly chosen subset. The typical basic
state-transition operators are addition and deletion of a basis function. The typical search
strategy is the hill-climbing (Russel & Norvig, 2002) which, in combination with the empty
(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in
combination with the full subset as initial state and the deletion operator, becomes SBS. As
the evaluation measures classically the statistical significance tests are used (Hastie et al., 2003;
Dreyfus & Guyon, 2006). However, in model building currently two other strategies
predominate (Cherkassky & Mulier, 2007; Dreyfus & Guyon, 2006): employment of
complexity penalization criteria (also known as analytical criteria), e.g., the well-known
Akaike’s Information Criterion, AIC (Akaike, 1974; Burnham & Anderson, 2002), and the
resampling techniques, e.g., Hold-Out, Cross-Validation (CV), and Bootstrap (Kohavi, 1995;
Hastie et al., 2003; Dreyfus & Guyon, 2006). The termination condition typically corresponds
to finding of a state in that none of the state-transition operators can lead to a better state
(i.e. alocal minimum).

In polynomial regression, increase in the model’s degree leads to exponential growth of the

number of basis functions in the dictionary, i.e. O(m)=0(d”) (Cherkassky & Mulier, 2007;
Hastie et al., 2003) and to double-exponential growth of the number of all possible subsets
(or the number of states in the state space): 0(2")=0(2"") . When using one or both of the

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 131

two basic state-transition operators, the order of the branching factor of a state in the state
space in the very first iteration of the search is already equal to the number of basis
functions in the dictionary, i.e. it also increases exponentially.

Assuming that the “best” model found in the search process includes a total of k, basis

functions and that in each iteration the number of basis functions of the current model is
increased by 1, the total number of evaluated models (subsets) is of order

k.
O[de] =0(d"k,). (6)

Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is
rendered impractical. Additionally, because of the branching factor’s direct dependence on
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e.
dictionary of infinite size) is hardly applicable.

The computational problem could be somewhat reduced by choosing a sufficiently small
but useful value of p before the actual model building is performed. However, generally the
required maximal degree is not known beforehand and needs to be either guessed or found
by additional search loop over the whole model building process, since it will differ from
one regression task to another, which means either a non-trivial and long trial-and-error
process or acceptance of a possibly inadequate model.

4. Adaptive Basis Function Construction

This section introduces Adaptive Basis Function Construction - a possible alternative to the
classical subset selection approach. The goal of the ABFC approach is to overcome some of
the limitations associated with the subset selection, outlined in the previous section. The
ABFC approach is developed for sparse polynomial regression model building without
restrictions on model’s degree, enables model building in polynomial time, and does not
require repetition of the building process (in contrast to the subset selection approach). The
required basis functions are automatically adaptively constructed specifically for data at
hand, without using a restricted fixed finite user-defined dictionary. The dictionary in the
ABEFC is infinite and polynomials of arbitrary complexity can be constructed.

4.1 The models and the basis functions
Generally, a basis function in a polynomial regression model can be defined as a product of
original input variables each with an individual exponent:

d
L@=[]x7. @)
Jj=1

where r is a kxd matrix of nonnegative integer exponents such that r; is the exponent of
the jth variable in the ith basis function. Note that, when for a particular ith basis function
ry = 0 for all j, the basis function is the intercept term.

132 Machine Learning

Given a number of input variables d, matrix r, with a specified number of rows k and with
specified values for each of its elements, completely defines the structure of a polynomial
model with all its basis functions. The set of basis functions, included in a model, is then

,k}) ®)

4 -
s ={Hx;ff

For example, if d =3 and & = 4, then the matrix

0 00
1 00
o1 3 ®
111
corresponds to the set
Sf= {"'O)‘gxga xlx2x3) xloxéxss, x}xé)@} {1 X1 x2x§’ x1x2x3} (10)
which in turn corresponds to the model
F(X) = a, + ayX, + azx,x3 + ax,x,%; . (11)

Formally, the problem of finding the best set of basis functions can be defined as finding the
best matrix r with the best combination of nonnegative integer values of its elements:

d
r* =argmin.J| {Hx.',f”|i=l,2,...,k} , (12)

J=1

where J(.) is an evaluation criterion that evaluates the predictive performance of the
regression model which corresponds to the set of basis functions.

As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of
basis functions each with an arbitrary exponent for each input variable. This also means that
the searchable state space is infinite.

4.2 The search process

Finding the “best” structure of matrix r requires search. In this section the five components
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC
approach.

Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is
the state that corresponds to the simplest model located in the space. In the current study it
is assumed that the simplest model is the one with a single basis function corresponding to

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 133

the intercept term. However, also other models could be used as initial states, e.g., an empty
model (without any basis functions), a first degree “full” polynomial, or a small randomly
generated model. Note that in the current study the basis function corresponding to the
intercept term stays in the model at all times and is not allowed to be modified or deleted.
State-transition operators. Using efficient state-transition operators is vital for the search
process to be efficient. The employed state-transition operators are the main methodological
difference between the subset selection approach and the ABFC approach. Generally, there
are two different basic types of modifications to an existing polynomial model: complication
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these
are the addition and deletion operators. The addition operator makes the model more
complex (by adding a new basis function) but the deletion operator makes it simpler (by
deleting an existing basis function).

In the ABFC, the two standard operators from subset selection are replaced with other
operators that not only add or delete basis functions but also work on the level of individual
exponents, modifying the existing basis functions and creating modified copies of them. The
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which
serve as a basic material for further construction of more complex functions using other
operators. In this manner there is no need for an operator that explicitly tries to add basis
functions of each possible combination of exponent values (as the addition operator in the
subset selection). Hence the branching factor of the state space stays not only finite but also
relatively small while the state space itself is infinite.

In this study, a set of the following four state-transition operators for the polynomial
regression model building are proposed. Operatorl: Addition of a new linear basis function
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an
exact copy of an already existing (in the current model) basis function with one of its
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions.
Figure 1 gives examples of the operators operating on a simple matrix.

0.0.0 (@ 0. (b) 0,00 (c)

Fig. 1. Example of the four state-transition operators operating on a simple matrix:
(a) Operatorl; (b) Operator2; (c) Operator3; (d) Operator4

The set of the four state-transition operators is sufficient to generate any polynomial model
definable by the matrix r. Their use can also be viewed as a piece of application-domain
knowledge. While starting the search from the simplest model, the complication operators
(the first two) do the main job - they “grow” the model. The simplification operators (the
last two), on the other hand, work as “purifiers” - they decrease the unnecessarily high
exponents and delete the unnecessary basis functions. Without the use of simplification
operators, a regression model may contain unnecessarily high exponents and include too

134 Machine Learning

many unnecessary basis functions, at the same time preventing truly necessary
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing
overfitting. Additionally, for all the state-transition operators a special care is taken to
prevent basis function duplicates in the resulting model as well as to preserve the intercept
term.

The initial state and the state-transition operators together form a state space. Figure 2
shows a small example of a state space in ABFC when the number of input variables is three
and all the four state-transition operators are used. Each state represents a set of basis
functions included in the regression model. The ordering of the states in the space is such
that the simplest models and the simplest basis functions are reached first and, as the search
goes on, increasingly complex models and basis functions can be reached.

0.0.0
0.0.0 0.0.0 0.0.0
1.0.0 0.1.0 0.0.1
0.0.0 0.0,0 0.0,0 0.0.0 0,00
1.0.0 1.0.0 0.1.0 0.1.0 0.0.1
0.0.1 2.0.0 0.0.1 0.2.0 0.0.2

Fig. 2. A small example of the first three layers: of a state space in ABFC when d =3 (the
space is infinite in the direction of more complex models)

In the Section 3, it is stated that in the subset selection approach the branching factor of a
state in the state space increases exponentially with respect to the number of input variables
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in
the state space depends on d and on the number of basis functions %, already included in the
current model. The upper bound of the number of possible modifications to a model using
Operator]l is equal to d; using Operator2 and Operator3 it is equal to dk; and using
Operator4 it is equal to k. So the upper bound of the branching factor is of order
O(d +2dk + k) = O(dk) that is linear in respect to both d and &.

Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be
divided in two categories: those that assume the model state-transition operators to be of
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are
naturally divided in forward (complication) and backward (simplification) operators;
therefore in ABFC both categories of the search algorithms can be applied.

On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the
like, employ completely different kind of operators (i.e. Crossover and Mutation). While
they could be adapted to work with the infinite dictionary of basis functions, their major
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not
generally biased towards simpler models. In large state spaces they often spend most of the
time exploring too complex models while the “best” ones are in fact mostly the relatively
simple ones.

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 135

Evaluation measure. The proposed state-transition operators allow using the same methods
for model evaluation and comparison as those used in subset selection. However, note that
the model complexity penalization criteria, in contrast to the resampling techniques, usually
require substantially lower computational resources as well as are less noisy creating less
local minima in the state space.

Termination condition. Many different termination conditions can be used to terminate the
search process. Some of most widely used ones are the following: a) a user pre-specified
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using
the available state-transition operators the model could not be improved any further
(evaluated by the chosen evaluation measure). The first two termination conditions require
the user to set a hyperparameter value. This is a non-trivial task as usually the required
information is not available. Adjusting such a hyperparameter may also require too large
amounts of computational resources. In this study, the termination condition listed here as
the last (c) is employed.

4.3 A concrete practical model building method

This section proposes Floating Adaptive Basis Function Construction (F-ABFC) - a concrete
practical polynomial regression model building method, which is a special case of the ABFC
approach.

The search procedure of the F-ABFC starts with the simplest model (with only the intercept
term included) and uses the Floating Search strategy (hence the name of the method), in
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994),
together with the set of the four state-transition operators proposed in the previous section.
In SFFS, the search process consists of two phases - the forward phase and the backward
phase. In each iteration of the search, the forward phase is done only once but the number of
times the backward phase is performed is determined dynamically. In the forward phase, all
the models, which can be generated using the complication operators on the current best
model, are evaluated and, if there is improvement over the current best model, the best of
the new models is chosen as the new current best model and the search proceeds to the
second phase. If there is no improvement, the whole search procedure is stopped. In the
backward phase, on the other hand, all the models, which can be generated using the
simplification operators on the current best model, are evaluated. In this phase ever simpler
models are repeatedly generated and the phase is ended only when, using the available
simplification operators, it is impossible to generate a model which is better than the current
best one. After the second phase, the search process always proceeds to the next iteration
(starting again with the first phase).

According to the studies of many researchers, the Floating Search algorithms, including
SFFS, are some of the most efficient heuristic search algorithms for deterministic
combinatorial optimization in terms of both required computational resources and quality
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996;
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any
adjustable hyperparameters, has a tendency to generate simpler models than many other
algorithms, and is very simple to implement.

As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive
performance of a newly generated model, to perform model comparisons, and to steer the

136 Machine Learning

search in direction of the most promising models, in F-ABFC the Corrected Akaike’s
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows:

AICC = nIn(MSE) + 2k + %k”l) , (13)
——

where MSE is the Mean Squared Error of the model of interest in the training data. AICC
evaluates model’s predictive performance as a trade-off between its accuracy in the training
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the
AICC for a single model requires a single estimation of model’s parameters using OLS and
calculation of MSE in training data. The “best” model is that whose AICC value is the
lowest.

The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in
(13) added as a correction term intended for working with small-sized data sets. For
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the
relationship between the Kullback-Leibner information and the maximum likelihood
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that
the “true model” (which was presumably used to generate the data) is one of the candidates
(Burnham & Anderson, 2002).

In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the
branching factor of the ABFC’s state space increases very slowly together with d and £, in
special cases when the data is of low dimensionality (e.g., d <4) and/or the existing
structure in the data is very complex (i.e. a very complex model is required) the search
algorithm may get stuck in a local minimum too early in the search returning a too simple
and underfitted model.

As a remedy for this, here an additional recursion of the state-transition operators is
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create
additional regression models from models already created from the current best model
using the same state-transition operators with which they were initially created. This
essentially means that if, for example, the recursion depth is set to 2, Operatorl will create
not only linear basis functions but also basis functions of the second degree, Operator2 will
create not only copies of basis functions with degree increased by 1 but also by 2, and
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of
the operators add more than one basis function to the model at a time, for the Operator4 the
recursion is not used.

The recursion of the operators reduces the number of local minima in the state space which
is especially important near the starting-point of the search (the initial model) and enables
the search algorithm to find a much better model.

Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user
intervention might be required. However, for larger dimensionalities of the input space
(when also the increased computational resources are required) it is reasonable to
completely disable the recursion (by setting the hyperparameter equal to 1) as with large
dimensionalities the branching factor increases sufficiently fast and the problem of too early
local minima diminishes.

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 137

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical
implementations of F-ABFC maintaining the set of the newly generated models
("MODELS”) is not required as a single model can be created, evaluated, and, if it turns out
not to be an improvement, immediately discarded.

BestModel « the simplest model
BestModel.PerformOLSandCalculateAICC
loop
//forward phase
MODELS <« {all models created from BestModel using Operatorl and Operator2,
with no basis function redundancy}
if RecursionDepth > 1 then
for i « 2 to RecursionDepth do
MODELS <« MODELS U {all models created from MODELS using the same
operator (with which they were initially created}, with no basis function
redundancy}
foreach Model in MODELS do
Model.PerformOLSandCalculateAICC
TestModel <« best of MODELS according to AICC
if TestModel.AICC < BestModel.AICC then
BestModel <« TestModel
else
break //break the main loop (exit the procedure)
//backward phase
loop
MODELS <« {all models created from BestModel using Operator3 and Operatord,
with no basis function redundancy}
if RecursionDepth > 1 then
for i <« 2 to RecursionDepth do
MODELS <« MODELS U {all models created from MODELS using Operator3
(with which they were initially created}, with no basis function redundancy}
foreach Model in MODELS do
Model.PerformOLSandCalculateAICC
TestModel <« best of MODELS according to AICC
if TestModel.AICC < BestModel.AICC then
BestModel <« TestModel
else
break //break the sub-loop
end loop
end loop
return BestModel

Fig. 3. Pseudo-code of F-ABFC’s search procedure

In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs
from the one proposed here in that the method used one additional state-transition operator
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons &
Lavendels, 2008a) empirically demonstrated the computational and predictive performance
advantages of F-ABFC comparing to subset selection and a number of other popular
regression modelling methods. F-ABFC advantages in real-world practical applications are
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for
modelling bending and buckling behaviour of different composite material structures.

138 Machine Learning

4.4 Computational considerations
Assuming that the “best” model found by the F-ABFC search procedure includes a total of
k, basis functions and in each iteration the number of basis functions in the current model is

increased by 1, the total number of evaluated models is of order

k, k,
O[Z di] = O(dk* Zi] = O(dk* @] = olak: + k2)= olax?). (14)
i=1 i=1

Consequently, relatively to the typical subset selection methods, the efficiency of the
F-ABFC increases together with the increase in the number of input variables and in the
required nonlinearity of the model (the value of p) but decreases together with the increase
in the complexity k, of the “best” found model. Moreover, the relative efficiency of the

subset selection additionally substantially decreases in the common case when the required
value of p is unknown and needs to be found by trying different values.
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a

single model to be evaluated, demand computations of order O(nk2 +i3), where nk?

operations are required for filling a kxk matrix and k4’ operations are required for solving
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition
operators operate on more than one basis function of a model at a time meaning that, each
time the parameters of a newly created model are calculated, only one row and one column
of the kxk matrix will change. Recalculating only the elements of the corresponding row
and column, reduces the order of the computations to O(nk + k*). Moreover, as the
Operator4 does not modify any basis function (only deletes one), the order of the
computations for this particular operator reduces further to O(k*) .

Yet it must be noted that the F-ABFC can still become computationally rather demanding,
especially when the number of input variables and/or the number of samples in the training
data gets very large. This is the price to pay for the high flexibility of the method.

4.5 Convergence of the search process

The F-ABFC’s search algorithm is cycle-free because a new model is allocated to
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will
seek for the best trade-off between too simple and too complex models and will stop
somewhere in-between them. Additionally there is also a hard bound - the number of basis
functions in a model will never exceed the number of samples in the training data as
otherwise the OLS cannot estimate model’s parameters.

It should also be noted that, although the state space of F-ABFC is infinite, in practice the
models of the best predictive performance are normally located in the part of the space that
is relatively near to the initial state where all the models (and their basis functions) are
relatively simple and do not yet neither overfit the data nor have basis functions more than
samples in the training data. This also means that really only a small finite fraction of the
whole infinite state space must be explored.

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 139

4.6 Selection bias, selection instability, and model averaging

There are two issues that to some extent plague all the methods of model building
(including subset selection and ABFC), especially when working with relatively little data -
selection bias and selection instability (also called selection variance). While the issues are
attributable to virtually any model building method, they are commonly ignored frequently
resulting in models of lower predictive performance.

Selection bias occurs when in the search procedure one uses the same data to compute
model’s parameters, to perform model building (i.e. evaluation of candidate models,
selection of the best one, and steering the search in direction of the most promising models),
and to select the final “best” model which will be returned as the result of the model
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004;
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the
greater the likelihood of finding a model that has high accuracy in the training set while
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003;
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random
fluctuations in the data will improve the evaluations of some models more than others.

The problem is relevant regardless of the model evaluation measure used - statistical
significance tests, complexity penalization criteria, or resampling techniques. In addition,
the selection bias occurs even when performing model evaluation using completely
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the
more intensive (relative to the number of samples) is the search process, the larger is the
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in
terms of overfitting) done by the selection bias.

While the deterministic search algorithms of the hill-climbing type (including the SFFS
algorithm of the F-ABFC) are usually less intensive and consequently more robust against
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey &
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant.
The second issue, selection instability, is related to the fact that small perturbations of the
data (deleting or adding samples, adding noise, rescaling the values) can lead the model
building process to vastly different models. This is because the large variability of estimates
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis &
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is
undesirable because variance is often the symptom of a “bad” model that does not
generalize well and because the model may be failing to capture the “whole picture”
(Guyon & Elisseeff, 2003).

One of the ways to reduce both the selection bias and the selection instability, is to employ
model combining (also called model ensembling or averaging) techniques (Breiman, 1996;
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model
building process usually consists in choosing only one best description for the data
discarding the remainder, combining a number of models in some reasonable manner
appears more reliably accurate as this can have the effect of smoothing out erratic models
that overfit the data and gain more stability in the modelling process.

A typical model combination procedure consists of a two-stage process (Cherkassky &
Mulier, 2007). In the first stage, a number of different models are constructed. The
parameters of these models are then held fixed. In the second stage, these individual models
are linearly combined to produce the final model.

140 Machine Learning

Both stages can be done in different ways. In this study, to increase the predictive
performance of models built by the F-ABFC, a CV-type resampling of the training data
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed.
As this resampling and model averaging works on top of the F-ABFC, the method is called
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling,
the whole training data is randomly divided into v disjoint subsets (v typically being equal
to 10). Then v overlapping training data sets are constructed by dropping out a different one
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV,
so model ensembles constructed in this way are also called cross-validated committees
(Parmanto et al., 1996).

Combining models via simple unweighted averaging requires them to be not too
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV
iteration the unused 10th data subset is used as a validation data set for “re-evaluation”
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final
best” model from any iteration. Note that this validation set is never used for model
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and
“re-selection” after the F-ABFC search process has already ended. Also note that as an
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation”
using the validation data set can detect whether the search process at some iteration may
have started to generate overfitted models and select a model of some earlier iteration that is
(hopefully) not (or at least less) overfitted (see Figure 4).

—— AT
——"alidation MSE

Final best model

Evaluation

1}] 10 15 20 25 30 35
Iteratian
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in
validation set. Note that here starting from the 35th iteration the AICC values also start to
increase (in contrast to the training error which always decreases) however this might be too
late due to selection bias

The so far described process produces v models built by v independent F-ABFC runs each
using a different combination of CV-partitioned data subsets. Next, the v models from the v
CV iterations are combined using the unweighted model averaging. Note that prior to
combining, all the models are re-fitted to the whole training data set (without the CV
partitioning). This is done to compensate for the smaller training sets used during the
individual model building.

Model combining by unweighted model averaging consists in taking an unweighted
average of predictions of all the models:

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 141

1<
Fcomh =;ZF; ’ (15)
i=1

where F; is ith individual model fro the ith CV iteration and F,,,,; is the combined model. For
polynomial regression this simply means summation of all the polynomials and then a
division of all the parameters of F,,,, (that is also a polynomial) by v. Note that the
parameter values of F.,,, will not necessarily be optimal in the sense of the least-squares loss
(in fact they will be optimal only in special cases, e.g., when all F/'s are identical).

The employed model combining method is similar to Bagging (bootstrap aggregating
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision
trees), and the unweighted average of the resulting models is taken.

Figure 5 gives an outline of the EF-ABFC model building process when the number of CV
folds v is three. Note however that for all the practical applications of this study v=10 is
used. This is because too small number of models in ensemble will yield too little diversity
hindering the models to correct each others errors, but, on the other hand, using too many
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield
unreliable validation MSE estimates for the selection of the individual final best models, as
then the individual validation sets may be too small.

Traini (a) (b) (c)
raining .
data F-ABFC — Select — Re-fit
N final best Vodels 1
odels for
] — +T combining
1 — [
\2/ (@) (b) (©) (d)C .
F-ABFC Select Re-fit ombine Ensemble
\;/ —|final best [~ —— p,-lsp [model
L A X v
N | T
(a) (b) (©)
F-ABFC Select Re-fit
—lfinal best [)
L A [
| |

Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best
model according to AICC using F-ABFC; (b) select the one final best model according to
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole
training data; (d) combine the models

In recent literature, there is ever growing confidence that model ensembles often perform
better than individual models and consistently reduce prediction error (Breiman, 1996;
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little

142 Machine Learning

data, the gains achieved via an ensemble may not compensate for the decrease in accuracy
of individual models, each of which now sees an even smaller training set. On the other end,
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using
large data sets also substantially decreases potential selection bias, so superiority of
EF-ABFC over F-ABFC in such situations is expected to diminish.

The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires
larger computational resources. However, the fact, that before the model combining the v
models are built completely separately, allows for an easy parallelization of the process
dividing the execution time by v. In this study however the parallelization is not done.

The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive
performance advantages of EF-ABFC comparing to subset selection and a number of other
popular regression modelling methods. EF-ABFC advantages in real-world practical
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is
applied for modelling bending and buckling behaviour of different composite material
structures.

4.7 Remarks
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed
in the previous sections.

4.7.1 Incorporating domain knowledge

The ABFC methods attempt to model arbitrary dependencies in data with little or no
knowledge of the system under study. In problems of moderate and large dimensionality
the user usually is not required to tune any hyperparameters. However, if there is sufficient
additional domain knowledge outside the specific data at hand, it may be appropriate to
place some constraints on the final model. If the knowledge is fairly accurate, such
constraints can improve the accuracy while saving computational resources.

For example, the constraints might be one or more of the following: 1) limiting the maximal

degree of all the basis functions (similarly as in the subset selection), i.e. 0< Zd 1y < p for
=1

all i; 2) limiting the maximal value of exponents for each particular input variable in all the
basis functions, i.e. 0<7; < p,for all i, where p; is maximal exponent of the jth variable;

3) restricting contributions of specific input variables that are not likely to interact with
others so that those variables can enter the model in basis functions only solely - with
exponents of all other variables fixed to zero. These constraints, as well as far more
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the
experiments described in this chapter no constraints are used.

4.7.2 Robustness

The ABFC methods described in this study estimate model parameters via minimization of
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most
commonly used, it is known that it looses its robustness against grossly outlying samples as
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002).

One solution of this problem is to use a more robust loss function. The squared-error loss in
ABEFC is not fundamental. Any other loss function can be used to estimate the parameters

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 143

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this
would make the methods more robust, the computational advantage of OLS would be lost.
In any case, gross outliers (in output variable as well as input variables) that can be detected
through a preliminary data analysis should be considered for removal before applying
ABFC.

4.7.3 Other types of basis functions

The ABFC methods described in this study can generate regression models with basis
functions of only nonnegative integer exponents. However, in principle the exponents can
also be allowed to take negative or even fractional values. Appropriate adaptation of the
state-transition operators can enable generating such models. Keeping the same initial
model as before, the search now could go in direction of both positive and negative
exponents.

4.7.4 Integrating ABFC into other modelling methods

The result of running an ABFC procedure is a simple polynomial regression model. Such
models are also utilized as “sub-models” in a number of other regression modelling
methods. For example, the ABFC methods can be used in Polynomial Neural Networks
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation
of each individual neuron’s functional form and degree. The methods also can serve for
generation of local regression models in Locally-Weighted Regression (also called Moving
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005)
adaptively generating a model each time a query is received. ABFC can also induce
piecewise polynomial models for appropriately partitioned data sets.

The polynomial basis functions can also be viewed as nonlinear transformations (or
features) of the original input variables. In this manner the ABFC methods can also be
viewed as methods for automatic adaptive feature construction. For example, the
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995;
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in
(Ritthoff et al., 2002).

All these applications of ABFC can make the original methods more flexible and therefore, if
treated appropriately, produce models of higher predictive performance.

4.7.5 Using ABFC for solving classification problems

The ABFC methods can also be used for solving binary classification problems where the
output variable y can take value of only either 0 or 1. This can be done, for example, by
constructing basis functions for logistic regression (also called maximum entropy classifier)
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of
v being equal to 1 as a linear model:

k
In(P/(1-P))=F(x)=Y_a,f,(x), (16)

i=1

144 Machine Learning

where P is the predicted probability of y being equal to 1. It is equivalent to the following
representation of P:

P =1/(1+exp(~F(x))). 17)

The parameters a of the model are usually estimated by minimizing the deviance:
=23 (v, InF(x,)+(1-y,)In(l- F(x,))) - min . (18)
=

Since there is no closed form solution to this minimization, the standard approach to solving
it is to use iterative algorithms such as Iteratively Re-weighted Least-Squares (Hastie et al.,
2003; Witten & Frank, 2005). Note that, in order to evaluate a model using AICC, the first
term of (13) is replaced by the deviance.

F-ABFC and EF-ABFC for classification problems are implemented in the VariClass software
tool freely available for non-commercial research and educational purposes at
http:/ /www.cs.rtu.lv/jekabsons/.

5. Related work

There exist also other polynomial regression modelling methods which use wide, potentially
infinite, dictionaries of basis functions. In (Sutton & Matheus, 1991) an algorithm is
proposed which starts model building with a first-degree model, with all the input variables
already included in the model, and iteratively creates a user-predefined number of products
of the already included basis functions thereby creating new basis functions. In (Orosz &
Anderson, 1994) a modification of the algorithm is proposed where the initial model has
none of the input variables included, however there was no empirical success and it was
concluded that in practical applications the algorithms have three major disadvantages:
inability to construct all the necessary basis functions, inability to discard unnecessary basis
functions, and high sensitivity to noise and to number of samples in data.

More recently a different method was developed which can be seen also as a special case of
the ABFC approach - Constrained Induction of Polynomial Equations for Regression, CIPER
(Todorovski et al.,, 2004). CIPER was initially developed in the context of differential
equation discovery, inductive databases, and constraint-based data mining. CIPER uses two
state-transition operators and a Beam Search strategy. The first state-transition operator
adds a new linear basis function while the second increases a single exponent of a single
basis function. In (Jekabsons & Lavendels, 2008a), CIPER was empirically compared to
F-ABFC and it was concluded that CIPER suffers form the nesting effect (Pudil et al., 1994)
and has a tendency of getting stuck in local minima too early in the search. This is because
CIPER is not able to preserve the structure of any of included basis functions (its second
operator increases an exponent in an existing basis function but does not take into
consideration the possibility that both versions of the basis function may be required) as
well as because it is not able to simplify a model - decrease unnecessarily high exponents or
discard unnecessary basis functions. In F-ABFC these issues are solved using Operator2 and
the simplification operators.

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 145

Some similar ideas of constructing new features as combinations of original input variables
are applied also in different other approaches. For example, in (Ritthoff et al., 2002) a feature
construction method is proposed in which a genetic algorithm constructs linear and
nonlinear combinations of original input variables further used as inputs for Support Vector
Machines. In (Bloedorn & Michalski, 1998), on the other hand, the feature construction idea
is used for data-driven expansion of the input space for induction of decision rules and
decision trees.

6. Experiments

This section presents the results of comparisons of the proposed ABFC methods to the
methods of subset selection and to a number of other well known state-of-the-art regression
modelling methods using a series of synthetic and real-world regression data sets. The goal
is to gain some understanding of the properties of F-ABFC and EF-ABFC and to evaluate
their performance in both accuracy and speed. All the experiments were performed on a
Pentium IV 2.4GHz machine with 1.5GB RAM.

In all the experiments, predictive performance of a model is measured either using a
completely independent test data set or using Cross-Validation. In any case the performance
of a model is measured in terms of Relative Root Mean Squared Error:

RRMSE:IOO%XRMSE/SD:IOO%X\/Ii(yj—F(xj))Q/\/li(yj—)_z)z . (19
n

tj=1 t =1

where 7, is the number of samples in the test data set, F(x;) is the predicted value
corresponding to the value of y;, and) is the mean of all the y values in the test set. While

RMSE (Root Mean Square Error) represents model’s deviation from the data, the SD
(Standard Deviation) captures how irregular the problem is. The lower the value of RRMSE,
the more accurate is the model. The final RRMSE values stated are the values averaged over
all evaluations.

All the employed regression modelling methods, except Regression Trees, Model Trees,
Support Vector Machines, and Multi-Layer Perceptrons, are implemented in VariReg
software tool version 0.9.21 freely available for non-commercial research and educational
purposes at http:/ /www.cs.rtu.lv/jekabsons/ .

6.1 Synthetic data sets

To compare the performance of the proposed ABFC methods against subset selection (as
well as against “full” polynomials with no subset selection) in different conditions of
signal-to-noise ratio (SNR) and training data size, here two test functions are used - Synthl
(4 input variables) and Synth2 (10 input variables):

Ysynm = €Xp(2x; sin(7x,)) + sin(x,x;) (20)
Ysyntha = (X13 +(0x +23)(x + xs))/(l + x6x7)+ 0xg +0xg + 0xyg . (21)

For Synthl the values of x are uniformly distributed in the interval [-0.25, 0.25]. For Synth2
they are uniformly distributed in the interval [0, 1]. For each test function three training set

146 Machine Learning

sizes (25 samples, 50 samples, and 100 samples) and three signal-to-noise ratios (no noise,
SNR = 4, and SNR = 2) are used - a total of nine cases for each function. For each case a series
of 20 training data sets are generated (randomly sampled in the domain of x) so that in each
case for each regression modelling method the model building task is performed 20 times.
For each test functions a single test data set is generated containing 5000 samples randomly
sampled in the domain of x. The test data sets do not contain noise.

The heuristic search algorithms used for the subset selection are the SFS and the SFFS (the
same algorithm adaptation of which is used in the ABFC methods). The algorithms are used
together with the AICC criterion (also the same which is used in the ABFC methods). Note
that the “recursion depth” hyperparameter of F-ABFC is set equal to 2 for Synthl and equal
to 1 (no recursion) for Synth2.

As for the full polynomials (FP) and the subset selection methods the desirable degree p is
not known beforehand, the modelling results of these methods are stated in two forms:
1) average performance of models of a fixed p; 2) average performance when a range of
values for p are tried and the model of the lowest RRMSE value is picked. However, note
that this second type of procedure for FP/SFS/SFFS is rather optimistic (in the sense of both
predictive performance and speed) as for correct and fair evaluations there would be an
additional validation data set or a Cross-Validation loop required.

No noise n=25 n=>50 n =100

Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s)
FP,p €[1,4] 9.29 (1.88) - 6.74 (0.55) - 0.78 (0.21) -
SFS,p=2 7.17 (1.03) <0.1 6.38 (0.58) <0.1 5.63 (0.28) <01
SFS,p=6 0.77 (2.24) 0.3 0.06 (0.02) 14 0.04 (1e-2) 8.0
SFS, p=10 3.19 (7.41) 1.8 0.03 (0.04) 16.1 2e-3 (7e-3) 104.3
SFS, p € [1,10] 0.77 (2.24) 4.4 0.03 (0.03) 34.1 2e-3 (7e-3) 226.1
SFFS, p € [1,10] 0.77 (2.24) 45 0.03 (0.03) 304 2e-4 (le-4) 236.9
F-ABFC 0.11 (0.15) 0.1 0.01 (0.02) 2.0 3e-7 (5e-7) 43.8
EF-ABFC 0.27 (0.31) 0.8 0.02 (0.02) 11.5 le-4 (4e-4) 250.6

SNR =4
FP,p e[1,4] 42.71 (16.31) - 18.36 (2.53) - 12.12 (1.59) -
SFS,p=2 24.24 (10.87) <0.1 15.62 (2.99) <0.1 10.64 (2.38) <0.1
SFS,p=6 59.37 (28.09) 01| 41.37(11.76) 0.3 25.60 (9.49) 0.8
SFS, p =10 112.02 (149.28) 0.7| 74.10 (40.38) 34| 39.23(10.92) 7.9
SFS, p € [1,10] 24.24 (10.87) 1.7 15.62 (2.99) 8.7 10.64 (2.38) 19.5
SFFS, p € [1,10] 24.24 (10.87) 1.8 15.62 (2.99) 7.6 10.64 (2.38) 21.0
F-ABFC 39.05 (17.97) <01| 33.13(15.64) 01| 22.64(10.73) 0.3
EF-ABFC 20.24 (6.76) 0.3 13.65 (3.82) 0.8 9.08 (3.16) 2.1

SNR =2
FP,p e [1,4] 79.40 (37.25) - 35.97 (8.35) - 21.79 (4.29) -
SFS,p=2 36.35 (12.40) <0.1 26.51 (9.87) <0.1 18.55 (4.35) <0.1
SFS,p=6 88.32 (32.57) 0.1| 70.34(24.81) 03| 47.11(16.95) 1.0
SFS,p=10 209.98 (213.00) 0.8 99.26 (40.07) 28| 78.04 (31.78) 8.1
SFS, p < [1,10] 36.35 (12.40) 17| 2651 (9.87) 59| 1855 (4.35) 18.7
SFFS, p € [1, 10] 36.35 (12.40) 1.7| 26.64 (10.08) 6.3 18.55 (4.35) 19.5
F-ABFC 5843 (19.72) <01| 7244 (6243) <0.1| 39.93(19.91) 02
EF-ABFC 35.23 (11.04) 0.3 24.94 (6.18) 0.7 17.67 (4.45) 1.8

Table 1. The results of the performed experiments for function Synthl

Adaptive Basis Function Construction: An Approach

for Adaptive Building of Sparse Polynomial Regression Models 147

The results of the performed experiments are summarized in Table 1 and Table 2 in terms of
mean RRMSE value, with its standard deviation reported in parenthesis, and elapsed time.
Note that, due to the space constraints, for fixed degrees only the results of p € {2, 6, 10} (for
Synthl), pe {2,5} (for Synth2) are given. Detailed results are available at
http:/ /www.cs.rtu.lv/jekabsons/ .

Figure 6 and Figure 7 visualizes the performance changes of the methods for different
training set sizes and SNRs.

1e+d 100 T
T (0) :
| —e— FP,pin[1,4]

Te+1 4

1e+0

1e-1 4

w 4
W 102
X 1es 4
1e-4 4
1e-5 4| —®— FP.pin[1.4]
—0— SFS. pin[1,10]
les || —¥— F-ABFC

—— EF-ABFC

80 4

60 4

RRMSE

40

20 4

| —o— sFs. pin[1, 10]

=y
=
| —-—
-~ | =o=

~o| =
| ==

i

F-ABFC
EF-ABFC
FP,pin[1, 4]
SFS, pin[1.10]
F-ABFC
EF-ABFC

1e-7 T
25

50
Training set size

100

Training set size

Fig. 6. Performance of the methods for function Synth1 for the different training set sizes
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines)

No noise n=25 n=50 n=100

Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s)
FP,p e [1,2] 45.40 (4.86) - 38.73 (2.06) - 13.07 (1.37) -
SES,p=2 38.17 (13.99) <0.1 19.13 (3.20) 0.2 11.27 (1.35) 1.0
SES,p=5 80.25 (23.80) 12.8 29.13 (12.73) 53.6 4.66 (2.79) 542.9
SES,p € [1, 5] 38.17 (13.99) 14.7 19.13 (3.20) 57.1 4.64 (0.88) 658.7
SFFS,p € [1, 5] 37.40 (12.36) 15.9 20.20 (4.03) 82.5 4.01 (2.87) 680.4
F-ABFC 52.86 (11.46) <0.1 13.14 (6.96) 0.7 1.59 (1.58) 16.5
EF-ABFC 56.39 (16.40) 0.3 12.92 (3.08) 4.2 0.95 (0.46) 98.7

SNR =4
FP,p € [1, 2] 51.78 (8.53) - 41.31 (3.25) - 37.38 (1.51) -
SES,p=2 58.85 (15.18) <0.1 35.44 (7.05) 0.1 23.63 (4.02) 0.3
SFS,p=35 180.68 (68.02) 10.7 82.78 (23.99) 66.0 62.00 (10.43) 258.7
SFS, p € [1, 5] 58.85 (15.18) 13.1 35.44 (7.05) 77.8 23.63 (4.02) 298.8
SFFS,p € [1, 5] 61.01 (17.19) 14.2 35.88 (8.69) 78.2 24.21 (3.57) 373.5
F-ABFC 79.07 (35.39) <0.1 45.59 (9.28) 0.1 28.89 (7.25) 0.5
EF-ABFC 62.79 (11.47) 0.3 35.57 (7.35) 1.3 20.37 (3.51) 6.3

SNR =2
FP,p € [1,2] 61.23 (9.17) - 46.61 (4.73) - 40.81 (3.12) -
SES,p=2 73.81 (17.63) <0.1 51.69 (8.15) 0.1 37.20 (6.57) 0.2
SES,p=5 180.68 (68.02) 11.0| 135.99 (37.13) 47.6| 115.01(31.12) 208.9
SES,p € [1, 5] 73.81 (17.63) 13.3 47.92 (6.96) 57.4 37.20 (6.57) 253.0
SFFS,p € [1, 5] 76.43 (11.56) 14.3 50.41 (9.44) 64.3 35.15(5.16) 369.3
F-ABFC 82.42 (18.79) <0.1 68.08 (15.40) 0.1 49.61 (13.73) 0.3
EF-ABFC 70.84 (9.52) 0.2 51.11 (8.79) 0.8 34.54 (5.93) 3.9

Table 2. The results of the performed experiments for function Synth2

148 Machine Learning

The results in Table 1 indicate that for noise-free data the F-ABFC outperforms its much
slower ensembled extension EF-ABFC while for noisy data it is vice versa. When the data
contains noise, the F-ABFC here can be outperformed even by full polynomials which
mostly give some of the worst performances. This suggests that for noisy data it is important
to curb the flexibility of F-ABFC - to use the EF-ABFC even when the data is sparse.

100 @ 01

w L -~
@ W =5
= = 50 e |
"4 o
x LS —e— FP.pin[i, 2]
40 4 —o— sFs,pin(1,5)
L 1 —v— F-ABFC
—g— EF-ABF
—e— FP,pin|1,2] Lo | S E;':Ein%.Z]
—0— SFS, pin[1, 5] —0O- SFS, pin(1,5]
—¥— F-ABFC 20 _ o F.ABFC
—— EF-ABFC —o— EF-ABFC
01 T T 10 = T v =
25 50 100 25 50 100
Training set size Training set size

Fig. 7. Performance of the methods for function Synth2 for the different training set sizes
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines)

The results in Table 2 partially confirm those in Table 1 except that this time the EF-ABFC is
always more accurate than F-ABFC which may be caused by the three irrelevant input
variables (pure noise) in the data on which the Synth2 does not depend. Additionally, as
now in the case of n =25 the data are very sparse, for this case the ABFC methods are just
too flexible - they largely overfit the data even when there is no additional noise.

Overall, the results for both Synth1 and Synth2 indicate the computational advantage of the
ABFC methods in situations when the required regression model is more complex (of higher
degree). And this advantage grows with the dimensionality of the problem.

For noisy data the best choice of p for SFS/SFFS almost always was 2. Then the speed of a
single SFS/SFFS search can be outperformed only by F-ABFC. However, as the best p value
is actually unknown and a number of values must be tried, F-ABFC as well as EF-ABFC is
still faster than the subset selection.

Finally, it must also be noted that the overall results show evidence that for subset selection
the choice of the search algorithm (either SFS or SFFS) was of no great importance. Therefore
further in this study only the SFS algorithm for subset selection is considered.

6.2 Real-world machine learning data sets

The real-world machine learning regression data sets used are: autoMPG (7 input variables,
392 samples), AutoPrice (15 input variables, 159 samples), Bodyfat (14 input variables, 252
samples), Fishcatch (7 input variables, 158 samples), Housing (13 input variables, 506
samples), HousingNOX (13 input variables, 506 samples), MachineCPU (6 input variables,
209 samples), Pyrimidines (27 input variables, 73 samples), Servo (4 input variables, 167
samples), and Stock (9 input variables, 950 samples). The data sets are from UCI Machine
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), Luis Torgo’s
data sets repository (http://www liaad.up.pt/~ltorgo/Regression/DataSets.html), and

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 149

Weka collection of data sets (http://www.cs.waikato.ac.nz/ml/weka/). They are chosen
because of the relatively low number of samples, which is common in real-world practical
applications, as well as because of mostly continuous input variables and no missing values.
Here the performances of the different regression modelling methods are evaluated using
10-fold Cross-Validation. Note that prior to dividing the data into Cross-Validation folds,
the order of the samples was randomized.

The goal of the performed experiments is to compare the proposed ABFC methods to the
methods of subset selection and to other well known state-of-the-art regression modelling
methods using a set of real-world regression data sets. The compared methods are the
following: FP, SFS, F-ABFC, EF-ABFC, Multivariate Adaptive Regression Splines (MARS)
(Friedman, 1993), M5' Regression Trees (RT) (Witten & Frank, 2005), M5' Model Trees (MT)
(Witten & Frank, 2005), Support Vector Machines (SVM) (Vapnik, 1995; Smola & Scholkopf,
2004), and Multi-Layer Perceptrons (Witten & Frank, 2005). Note that for none of the
methods any of the hyperparameters were manually tuned. MARS was that of
piecewise-cubic type essentially without special limitation of the number of basis functions
(i.e. the limit was 500) and with the smoothing parameter (the number of degrees of freedom
associated with one basis function) either fixed to the default value of 3 or found using an
additional 10-fold Cross-Validation from the range [1, 5] with step size 0.5. SVM used Radial
Basis Function kernel and improved Sequential Minimal Optimization algorithm (Shevade
et al., 1999) for which the complexity parameter and the gamma parameter were found
using grid search and Cross-Validation from the range {10'1, 10°% 10", 102} for the complexity
parameter and {102,107, 10° 10"} for the gamma parameter. MLP had one hidden layer
with the “best” number of neurons determined by 10-fold Cross-Validation from the range
{10, 20, 30, 40} and the weights were optimized using backpropagation. As implementations
of RT, MT, SVM, and MLP the Weka software (Witten & Frank, 2005) was employed with its
default parameters. Also note that for the ABFC methods the recursion of the state-transition
operators was never used.

The results of the performed experiments are summarized in Table 3 in terms of mean
RRMSE value, with the standard deviation reported in parenthesis, and elapsed time. Here
the modelling results of SFS are stated in the same two forms as in Section 6.1 except that for
the different data sets (different in size, in number of input variables, and in required model
complexity) the values of p are tried in different intervals (named “p =automatic”) - the
search for the best p is started with the first degree and p is increased as long as the RRMSE
value improves. The results of FP are not stated, as due to matrix singularity in OLS for
Pyrimidines data set the parameter values of FP models could not be calculated. Also note
that, due to the space constraints, only the results averaged over all the data sets are given.
Detailed results are available at http:/ /www.cs.rtu.lv/jekabsons/ .

From the results of the experiments it is concluded that in terms of predictive performance,
the EF-ABFC outperformed all the other regression modelling methods involving
polynomials as well as showed high competitiveness against the other “non-polynomial”
methods. In terms of computational cost, both ABFC methods outperformed subset selection
but were inferior to some of the “non-polynomial” methods, especially RT, MT, and MARS
without CV.

150

Machine Learning

Method RRMSE Time (s)
SFS,p=1 49.64 (12.05) <0.1
SFS,p=2 40.89 (15.11) 4.8
SFS,p=3 37.83 (15.70) 227.4
SFS,p=4 47.10 (29.17) 2486.8
SFS, p = automatic 34.83 (10.20) 2207.5
F-ABFC 39.61 (16.93) 108.7
EF-ABFC 31.24 (10.86) 607.8
RT 50.76 (9.85) 0.3
MT 34.79 (12.35) 0.4
MARS 40.81 (17.29) 32
MARS + CV 39.87 (15.57) 265.8
SVM 31.87 (10.73) 360.5
MLP 41.50 (18.04) 345.2

Table 3. The average results of the performed experiments for the ten machine learning data
sets

B SFS, p=3

[0 SFS, p = automatic
804 I EF-ABFC

I MT

EE MARS + CV

3 svm

20 A

1 2 3 4 5 -1 7 8 9 10
Data set number

Fig. 8. RRMSE values of the six best methods for the ten data sets

For the different data sets, the best found degree p for SFS with “p = automatic” varied in
range [1, 6] (with the average value of 3.0), meaning that the maximal checked value of p
was 7 (though for only one of the data sets). However, the average degree of models
constructed by F-ABFC and EF-ABFC was 6.4 and 7.2 correspondingly. If on average for SFS
such large values of p would be tried (instead of only 3.0), the SFS would take considerably
more time (orders of magnitude) to complete.

6.3 Real-world metamodelling data sets

In many different industrial applications, to cut down the computational cost of complex,
high fidelity scientific and engineering simulations, regression models (in the context also
referred to as metamodels or surrogate models) are constructed that mimic the behaviour of
the simulation models as closely as possible while being computationally much cheaper to
employ (Myers & Montgomery, 2002; Chen et al., 2006; Martin & Simpson, 2005; Kalnins et
al., 2008b; Kalnins et al., 2008a, Kalnins et al., 2009a; Kalnins et al., 2009b). The process of
design optimization involving metamodelling usually comprises three major steps which
may be interleaved iteratively: 1) selection of samples (known as design of experiments);
2) construction of metamodel and estimation of its predictive performance; 3) employment
of the metamodel in design optimization (i.e., finding the best values for input variables

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 151

with which the studied system achieves the optimum response), design space exploration,
what-if analysis, sensitivity analysis, and other routine tasks.

The metamodelling problem addressed here is modelling of the behaviour of “I-core”
all-metal laser-welded sandwich panels under bending load for further design optimization
and analysis in application as deck panels in a modularised watercraft concept (Kalnins et
al., 2008a). The problem has six input variables and four output variables. The data are
generated using finite element simulations and contains 500 samples distributed in the input
space using sequential experimental design (Auzins, 2004).

Originally, metamodelling was associated with low-degree (usually quadratic) polynomial
models. They have been well accepted in engineering practice, as they require only little
data and are computationally very efficient. However, it is understood that they are loosing
efficiency when highly nonlinear behaviour should be approximated.

In this section the compared regression modelling methods are the same as in the Section 6.2
with an addition of three methods which are rather popular in metamodelling literature:
Locally-Weighted Polynomials (LWP) (Cleveland & Devlin, 1988; Kalnins et al., 2008b;
Kalnins et al., 2005), Radial Basis Functions (RBF) (Gutmann, 2001), and Kriging (Martin &
Simpson, 2005, Lophaven et al., 2002). Note again that for none of the methods any of the
hyperparameters were manually tuned. LWP used the Gaussian weight function with the
value of the bandwidth parameter found by Leave-One-Out Cross-Validation. Note that the
LWP has a similar issue of degree p selection as FP and SFS, so here a number of different
degrees are tried in the interval [1, 4]. RBF used the multi-quadric basis functions with the
shape parameter fixed to 1. Kriging used first-degree polynomial as a trend function and
employed the Gaussian correlation function. Note that the used source code for the Kriging
technique was developed by (Lophaven et al., 2002). Also note that for the ABFC methods in
the performed experiments the recursion of the state-transition operators was never used.
The results of the performed experiments are summarized in Table 4 in terms of mean
RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. Here
the performances of the different regression modelling methods are evaluated using 5-fold
Cross-Validation. The modelling results of FP and SFS are stated in the same two forms as in
Section 6.1. Note that, due to the space constraints, only the results averaged over all the
data sets are given. Detailed results (as well as the utilized data sets) are available at
http:/ /www.cs.rtu.lv/jekabsons/ .

The results in Table 4 indicate that with the four metamodelling data sets (all of which are
essentially noise-free) the ensembling of F-ABFC models was not necessary - the accuracy
advantage of EF-ABFC is negligible while it is computationally about ten times slower than
simple F-ABFC. However, both F-ABFC and EF-ABFC outperformed subset selection in
terms of predictive performance as well as in terms of speed. In respect to the other methods
the ABFC approach once again is highly competitive, especially the faster F-ABFC method.
With the metamodelling data sets, on average the best degree p for SFS was 6.3 while the
average degree of models constructed by F-ABFC and EF-ABFC was 9.2 and 7.9
correspondingly. Similarly to the conclusions of the previous section, trying these larger
values of p for SFS would take orders of magnitude more time to complete.

152

Machine Learning

Method RRMSE Time (s)
FP,p=1 49.85 (4.82) -
FP,p=2 23.81 (3.10) -
FP,p=3 12.81 (1.77) -
FP,p=4 9.88 (1.46) -
FP,p € [1, 4] 9.17 (1.28) -
SES,p=1 49.75 (4.68) <0.1
SES,p=2 23.42 (3.15) 0.2
SFS,p=3 11.74 (1.84) 42
SES,p=4 7.31 (1.35) 41.1
SES,p=5 5.62(1.14) 220.3
SES,p=6 5.03 (0.78) 959.1
SES,p=17 5.05(1.12) 1828.4
SES,p e [1,7] 4.92 (0.75) 3053.4
F-ABFC 4.28 (0.55) 71.9
EF-ABFC 4.19 (0.55) 7154
RT 60.18 (7.87) 1.0
MT 22.27 (4.97) 4.7
MARS 5.87(0.96) 0.9
MARS + CV 5.31(0.84) 715
SVM 13.14 (2.57) 414.7
MLP 8.47 (1.03) 331.3
LWP,p=1 40.22 (4.12) 2.8
LWP,p=2 20.23 (2.79) 26.2
LWP,p=3 11.66 (1.68) 210.6
LWP,p=4 9.76 (1.42) 1576.7
RBF 14.48 (3.42) 1.9
Kriging 7.40 (1.21) 16.3

Table 4. The average results of the performed experiments for the four metamodelling data
sets

Note that in practice it turns out that the user all too often does model building in a
“one-shot” manner, without consideration of different settings for a modelling method.
With FP and SFS (as well as LWP) it could mean that almost any of the results stated in
Table 4 (as well as in the other tables from previous sections) may be accepted as the final.
Iterative and adaptive methods like those of ABFC, on the other hand, have the potential of
relatively rapidly producing accurate models without the configuration burden.

7. Conclusion

This chapter introduced Adaptive Basis Function Construction - an adaptive sparse
polynomial regression model building approach which can also be viewed as an alternative
to the classical subset selection approach. In contrast to subset selection, the ABFC approach
does not require putting restrictions on model’s degree, enables model building in
polynomial time, and does not require repetition of the model building process. The basis
functions required for the model are automatically adaptively constructed using heuristic
search specifically for data at hand without using a restricted fixed finite user-predefined
dictionary. The dictionary in the ABFC is infinite and polynomials of arbitrary complexity
can be constructed.

In most of the performed empirical experiments, the ABFC methods outperformed subset
selection in terms of predictive performance as well as in terms of the amount of required

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 153

computational resources. Moreover, in respect to the other well-known state-of-the-art
regression methods, the ABFC approach is also highly competitive. Additionally, the ABFC
methods have advantages also in their simple application - the underlying algorithms have
very small number of hyperparameters for the user to tune and result in simple explicit
equations employable without specialized software.

Comparing the two specific methods F-ABFC and EF-ABFC, it is concluded that EF-ABFC
has predictive performance advantage over F-ABFC when the data contains noise, be it in
terms of signal-to-noise ratio or in terms of irrelevant input variables. On the other hand,
F-ABFC is much faster than EF-ABFC and can produce more accurate models when the data
is noise-free. Nevertheless, both methods may require the “recursion depth”
hyperparameter to be set to a value higher than 1 when the data is of low dimensionality
(e.g., d <4) and/or the existing structure in the data requires a very complex model.

As future work, some of the ideas described in Section 4.7 could be pursued.

Software (including open source) implementing the ABFC methods, as well as most of the
other regression methods employed in this chapter, can be downloaded at the author’s
webpage: http:/ /www.cs.rtu.lv/jekabsons/.

8. References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control, AC-19, 716-723

Auzins,]. (2004). Direct optimization of experimental designs, Proceedings of 10th
AIAA/ISSMO Conference, AIAA 2004-4578, Albany, NY

Bloedorn, E. & Michalski, R.S. (1998). Data-driven constructive induction. Intelligent Systems,
13, 2, 30-37, IEEE

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Annals of
Statistics, 24, 2350-2383

Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: a practical
information-theoretic approach, Springer-Verlag, NY

Chen, V.C.P, Tsui, K-L., Barton, R.R. & Meckesheimer, M. (2006). A review on design,
modeling and applications of computer eksperiments. IIE Transactions, 38, 4, 273-
291

Cherkassky, V. & Ma, Y. (2002). Selecting of the loss function for robust linear regression,
Neural Computation

Cherkassky, V. & Mulier, F.M. (2007). Learning from Data: Concepts, Theory, and Methods, 2nd
ed., Wiley-IEEE Press

Cleveland, W. & Devlin S. (1988). Locally weighted regression: an approach to regression
analysis by local fitting. American Statistical Association, 83, 596-610

Dreyfus, G. & Guyon, L. (2006). Assessment methods, In: Feature Extraction: Foundations and
Applications, Guyon, 1., Gunn, S., Nikravesh, M., Zadeh, L.A. (Eds.), 65-88, Springer

Duin, RP.W. (2002). The combining classifier: to train or not to train?, Proceedings of 16th
International Conference on Pattern Recognition, pp. 765-770

Ferri, F., Pudil, P., Hatef, M. & Kittler, J. (1994). Comparative study of techniques for large-
scale feature selection, In: Pattern Recognition in Practice 1V, Multiple Paradigms,
Comparative Studies and Hybrid Systems, Gelsema, E.S., Kanal, L.S. (Eds.), 403-413,
Elsevier

154 Machine Learning

Friedman, J.H. (1993). Fast MARS, Tech. Report LCS110, Department of Statistics, Stanford
University

Friedman, J.H. (1994). An overview of predictive learning and function approximation, In:
From Statistics to Neural Networks, Cherkassky, V., Friedman, J., Wechsler, H. (Eds.),
Springer, NY

Gutmann, H.-M. (2001). A radial basis function method for global optimization. Journal of
Global Optimization, 19, 201-227

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of
Machine Learning Research, 3, 1157-1182

Hastie, T., Tibshirani, R. & Friedman J. (2003). The Elements of Statistical Learning, Springer

Hurvich, CM. & Tsai, C.-L. (1989). Regression and time series model selection in small
samples. Biometrika, 76, 297-307

Jain, A. & Zongker, D. (1997). Feature selection: evaluation, application, and small sample
performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 2,
153-158

Jain, AK., Duin, RP.W. & Mao]. (2000). Statistical pattern recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22,1

Jekabsons, G. (2008). Ensembling adaptively constructed polynomial regression models.
International Journal of Intelligent Systems and Technologies, 3, 2, 56-61

Jekabsons, G. & Lavendels,]J. (2008a). Polynomial regression modelling using adaptive
construction of basis functions, Proceedings of IADIS International Conference, Applied
Computing, pp. 269-276, Mondragon unibertsitatea, April 2008, Algarve

Jekabsons, G. & Lavendels,]J. (2008b). A heuristic approach for surrogate modelling,
Proceedings of Applied Information and Communication Technologies, pp. 11-20, April
2008, Jelgava

Kalnins, K., Skukis, E. & Auzins,]. (2005). Metamodels for I-core and V-core sandwich panel
optimization, In: Shell Structures: Theory and Applications, Pietraszkiewicz, W.,
Szymczak, C. (Eds.), 569-572, Taylor & Francis, London

Kalnins, K., Eglitis, E., Jekabsons, G. & Rikards, R. (2008a). Metamodels for optimum design
of laser welded sandwich structures, Proceedings of Welded Structures, Design,
Fabrication, and Economy, pp. 119-126, April 2008, Miskolc

Kalnins, K., Ozolins, O. & Jekabsons, G. (2008b). Metamodels in design of GFRP composite
stiffened deck structure, Proceedings of 7th ASMO-UK/ISSMO International
Conference on Engineering Design Optimization, July 2008, Bath

Kalnins, K., Jekabsons, G. & Rikards, R. (2009a). Metamodels for optimisation of post-
buckling responses in full-scale somposite structures, Proceedings of 8th World
Congress on Structural and Multidisciplinary Optimization, June 2009, Lisbon

Kalnins, K., Jekabsons, G., Zudrags, K. & Beitlers, R. (2009b). Metamodels in optimisation of
plywood sandwich panels, In: Shell Structures: Theory and Applications,
Pietraszkiewicz, W., Szymczak, C. (Eds.), Taylor & Francis, London (accepted)

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection, Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1137-1145, Morgan Kaufmann, San Mateo, CA

Kohavi, R. & John, G.H. (1997). Wrappers for feature subset selection. Artificial Intelligence,
97,273-324

Kolmogorov, A. & Fomin, S. (1975). Introductory Real Analysis, Dover Publications, NY

Adaptive Basis Function Construction: An Approach
for Adaptive Building of Sparse Polynomial Regression Models 155

Kotsiantis, S. & Pintelas, P. (2004). Combining Bagging and Boosting. International Journal of
Computational Intelligence, 1, 324-333

Kudo, M. & Sklansky, J. (2000). Comparison of algorithms that select features for pattern
classifiers. Pattern Recognition, 33, 1, 25-41

Lophaven, S.N., Nielsen, H.B. & Sondergaard, J. (2002). DACE - A Matlab Kriging Toolbox,
Tech. Report IMM-TR-2002-12, Informatics and Mathematical Modelling, Technical
University of Denmark

Loughrey,]J. & Cunningham, P. (2004). Overfitting in wrapper-based feature subset
selection: the harder you try the worse it gets, Proceedings of 24rth SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 33-43

Martin, J.D. & Simpson, T.W. (2005). Use of Kriging models to approximate deterministic
computer models. AIAA Journal, 43, 4, 853-863

Molina, L.C., Belanche, L. & Nebot, A. (2002). Feature selection algorithms: a survey and
experimental evaluation, Proceedings of the International Conference on Data Mining,
pp. 306-313, IEEE Computer Society, Maebashi

Myers, R.H. & Montgomery, D.C. (2002). Response Surface Methodology: Process and Product
Optimization Using Designed Experiments, 2nd ed., John Wiley & Sons, NY

Nikolaev, N.Y. & Iba H. (2006). Adaptive Learning of Polynomial Networks, Springer

Opitz, D. & Maclin, R. (1999). Popular ensemble methods: an empirical study. Journal of
Artificial Intelligence Research, 11, 169-198

Orosz, E.S. & Anderson C.W. (1994). Classification of EEG Signals Using a Sparse Polynomial
Builder, Tech. Report 94-111, Computer Science, Colorado State University

Parmanto, B.,, Munro, P.W. & Doyle, H.R. (1996). Improving committee diagnosis with
resampling techniques, In: Advances in Neural Information Processing Systems,
Touretzky, D.S., Mozer, M.C.,, Hesselmo, M.E. (Eds.), 882-888, MIT Press,
Cambridge, MA

Pudil, P., Ferri, F.J., Novovicova, J. & Kittler, J. (1994). Floating search methods for feature
selection with nonmonotonic criterion functions, Proceedings of the International
Conference on Pattern Recognition, pp. 279-283, IEEE, Los Alamitos, CA

Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods.
Journal of Machine Learning Research, 3, 371-382

Reunanen, J. (2006). Search strategies, In: Feature extraction: foundations and applications,
Guyon, L, Gunn, S., Nikravesh, M., Zadeh, L.A. (Eds.), 119-137, Springer

Ritthoff, O., Klinkenberg, R., Fischer, S. & Mierswa, I. (2002). A hybrid approach to feature
selection and generation using an evolutionary algorithm, Proceedings of the 2002
UK Workshop on Computational Intelligence, pp. 147-154

Russell, S.J. & Norvig, P. (2002). Artificial intelligence: a modern approach, 2nd ed., Prentice
Hall, Englewood Cliffs, NJ

Shevade, S.K., Keerthi, S.S., Bhattacharyya, C. & Murthy, K.R.K. (1999). Improvements to the
SMO algorithm for SVM regression. Transactions on Neural Networks, IEEE

Smola, A.J. & Scholkopf, B. (2004). A tutorial on support vector regression. Statistics and
Computing, 14, 199-222

Sutton, R.S. & Matheus, C.J. (1991). Learning polynomial functions by feature construction,
Proceedings of 8th International Workshop on Machine Learning, June 1991, Chicago, IL

156 Machine Learning

Todorovski, L., Ljubic, P. & Dzeroski, S. (2004). Inducing polynomial equations for
regression, Proceedings of Fifteenth International Conference on Machine Learning, pp.
441-452, Springer, Berlin

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer-Verlag, NY

Witten, LH. & Frank, E. (2005). Data mining: practical machine learning tools and techniques with
Java implementations, 2nd ed., Morgan Kaufmann, SF

Zongker, D., & Jain, A. (1996). Algorithms for feature selection: an evaluation. Pattern
Recognition, 2, 18-22

On The Combination of Feature
and Instance Selection

Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo

and Gustavo Augusto Campos de Lima
Universidade Estadual do Ceard
Brazil

1. Introduction

In the last decades, huge amounts of data became omnipresent in diverse areas of
knowledge, such as business, astronomy, biology, and so on. Machine Learning and
Knowledge Discovery in Databases (KDD) are fields in Computer Science that focus on the
task of transforming these data into useful knowledge. In (Fayyad et al., 1996), KDD is
defined as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data”. Feature and Instance Selection belong to the practice of data
preparation (or pre-processing), which is a preliminary process that transforms raw data
into a format that is convenient to the data mining (or machine learning) algorithm.

Usually, data is stored in a table-like format: the columns of these tables are the attributes or
features - they describe the data - and the rows, or lines, are the records or instances - they are
the examples of the concept stored in the data. Feature and Instance selection processes
allow applications, such as classification or clusterization, to focus only on the important (or
relevant) attributes and records to the specific concept that is in study.

As important machine learning problems, Feature and Instance Selection have been studied
systematically over the last decades, when several algorithms for solving them individually
have been proposed. Such selection problems play a fundamental role in the pre-processing
step of any learning task. By removing noise, irrelevant and redundant features and
instances, and reducing the overall dimensionality of a dataset, feature and instance
selection have been demonstrated to improve the performance of most machine learning
algorithms, speed up the output of models and allow algorithms to deal with datasets
whose sizes are gigantic. Even though the specialized literature have exhibited remarkable
results in solving both the feature and instance selection problems individually, little work
has been done to manage these solutions to work together in order to solve these related
problems simultaneously or even understand the relationship between features and
instances.

This chapter initially discusses the feature and instance selection problems and their
relevance to machine learning, giving an accurate definition of both problems. Next, it
surveys different approaches for dealing with feature selection and instance selection
separately and some works that tried to integrate the solutions for these two problems,

158 Machine Learning

demonstrating the unexplored potential of such combination. Following the single and
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the
interesting performance of the framework when compared to other standalone and
combinational approaches over several natural datasets collected in the literature. Some
conclusions and ideas for future works are given in the end of the chapter.

1.1 Problem’s Definition

In this chapter we are going to use the following formalization when referring to datasets,
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on
the set F1 x F2 x ... F,, where F; is the domain of the ith feature”. A dataset D is a set of tuples
<X, C> where C is the class value of this example.

Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error
rate of this classifier on this dataset D.

1.2 The Feature Selection Problem

The Feature Selection problem involves discovering a subset of features such that a classifier
built only with this subset would have better predictive accuracy than a classifier built from
the entire set of features. Other benefits of feature selection include a reduction in the
amount of training data needed to induce an accurate classifier, that is consequently simpler
and easier to understand, and a reduced execution time. In practice, feature selection
algorithms will discover and select features of the data that are relevant to the task to be
learned.

In addition to irrelevant features, feature selection researchers have identified other
examples of problematic features which may have a negative impact on the performance of
learning systems such as redundant features and randomly class-correlated features.
Irrelevant features are those that do not contribute to the predictive accuracy of a particular
target concept. Redundant features refer to those that, even when relevant to a target
concept, provide mostly information already present in another feature and, in fact, do not
contribute to getting better predictors. Randomly class-correlated features are correlated to
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and
randomly class-correlated features are worthless and removing them can improve the
learning process. In fact, the feature selection process can be seen alternatively as the process
of identifying and removing as many irrelevant, redundant and randomly class-correlated
features as possible.

Then we can formulate the problem of feature selection as:

Max G
Subject to (1)
[F'| =1
A multiobjective version of it can seen as
Max G, Min | F|
Subject to)

IF| >1

On The Combination of Feature and Instance Selection 159

Clearly a classifier built with a set of features F’ = F which is more accurate than one built
with the whole set F is more interesting to use. Additionally the smaller it is the less
computationally expensive it is. This characteristic is very important due to the datasets
with high number of features found nowadays.

1.3 The Instance Selection Problem

The Instance Selection problem is basically the orthogonal version of the Feature Selection
problem, as it involves discovering a subset of instances such that a classifier built only with
this subset would have better predictive accuracy than a classifier built from the entire set of
instances. In (Liu & Motoda, 2002), this problem is defined as “fo choose a subset of data to
achieve the original purpose of a data mining application as if the whole data is used”. Clearly,
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to
improve computational efficiency, since the learning algorithm will consider only a subset
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).
Let’s define a function Freq(D*, c) that calculates the frequency of the class ¢ in the given
dataset D*. A A is a value in the interval [0..1]. Given these two definitions, the initial dataset
D, a generic subset of it D* and I the set of instances in this dataset then we can formulate the
problem of instance selection as

Max G .

Subject to 3)
Vc € C,Freq(D',c)— A < Freq(D,c) < Freq(D',c) + A

[I' =1

A multiobjective version of it can seen as
Max G, Min |I|

Subject to 4)
Vc € C,Freq(D’,c) — A < Freq(D,c) < Freq(D',c) + A

' =1

Like in the feature selection problem, a classifier built with a set of instances I’ C I which is
more accurate than one built with the whole set I is more interesting to use. Additionally the
smaller it is the less computationally expensive it is.

2. Related Works

Up to this date, several solutions have been proposed to deal with the feature and instance
selection problems. In this section we briefly describe some important algorithms that work
on each problem separately and show some approaches that handle both problems in a
simultaneous way.

2.1 On Feature Selection
Well known feature selection algorithms perform very differently in identifying and
removing irrelevant, redundant and randomly class-correlated features. Feature weighting

160 Machine Learning

algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify
redundant features since they evaluate features individually, not in sets of features like
other feature selection algorithms. However, they are often very efficient in estimating
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash &
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other
hand, deals really well with irrelevant, redundant and class-correlated features since it looks
for subsets that generate no inconsistency. Unless the redundant or class-correlated features
perfectly duplicate their pairs (another feature or class label, respectively), they will be
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar
behavior, since it will search for more consistent subsets. For small datasets or given enough
time, LVF tends to get rid of undesirable features. Other results regarding the ability of
feature selection algorithms in dealing with these problematic features can be found in
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together
irrelevant, redundant and randomly class-correlated features.

As for the use of metaheuristics for the Feature Selection problem, authors have tried
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of
features. Other examples of applications of genetic algorithms for feature selection can be
found in (Beritelli et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report
the use of Tabu Search to select attributes to improve the classification of prostate needle
biopsies. The paper reports a reduction of 50% in the classification error rate due to the
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al.,
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good
experimental results were reported when using several datasets, including two
bioinformatics datasets.

In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several
algorithms according to their generation procedure and evaluation criterion. All these
algorithms can be classified into three broad categories: filters, wrappers and hybrid
approaches. Filters are those algorithms which perform the selection of features using an
evaluation measure that classify the “quality” of these elements to differentiate classes
without making use of any machine learning algorithm. Wrappers explicitly make use of
machine learning algorithms in order to perform this measurement. Usually, filters are much
less computationally expensive than wrappers but they produce subsets with less quality
than those produced by wrappers. Hybrid approaches combine the best characteristics of both
approaches, trying to produce very good subsets efficiently.

2.2 On Instance Selection

Most of the works on instance selection have been based on Nearest Neighbor classification.
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which
finds a subset such that every member of the original dataset is closer to a member of the
subset of the same class than to a member of the subset of a different class. This approach
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where
every member of the original dataset must be closer to a member of the dataset of the same

On The Combination of Feature and Instance Selection 161

class than to any member of the original dataset of a different class. The Reduced Nearest
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a
removal does not cause any other instances to be misclassified by the instances remaining.

In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches,
including genetic algorithms, for the instance selection problem and report better data
reduction percentages and higher classification accuracy in the experimental evaluation
when using these approaches. Another application of genetic algorithms can be found in
(Ramirez-Cruz et al.,, 2006). A description and comparison of several instance selection
algorithms can be found in (Jankowski & Grochowski, 2004).

Like feature selection algorithms, instance selection algorithms can be classified in those
three broad categories.

2.3 On the Combination of Feature and Instance Selection

The most natural and straight-forward way to combine feature and instance selection is to
perform one process after the other. In practice, that has been the way the two problems
have been integrated. Let's consider as FSIS, the application of a feature selection process
followed by an instance selection process, and ISFS the opposite. Since these approaches are
general, in the sense that they can be applied to any domain, we will use them as
comparison base in our experiments.

Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and
Instance Selection) algorithm, which targets both problems simultaneously in the context of
text classification. It considers a set of documents, classified in one of two classes C and C,
which contain a group of words each and operates in two steps. In the first step, it searches
for a subset of the original vocabulary that contains the words that are the best predictors of
the given class C. Next, only the documents which contain at least one word from this
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of
words that are the best predictors of class C'. The output of the algorithm FIS contain the
two subsets of features over the resulting documents from the first step. The authors
reported a great decrease in the number of feature and training instances. It terms of
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally
or more accurate them SVM.

Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve
each problem separately but use the actual solution of each process to calculate the quality
of both of them. There has been made a lot of work using genetic and evolutionary
algorithms. It is quite natural to design the solution to these two problems as a chromosome
which is the vector of all feature and all instances and then run a genetic algorithm to solve
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome
in two areas, the one of features which are coded as real values in [0..1] to weight the
features, and the area of instances which are coded as boolean values to select the instances
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select
feature and instances. The objective function used is the composition of the precision of 1-nn
plus a value that penalizes the cardinality of each set. In (Sierra et al., 2001) the authors
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm
(EDA), to select instances and features in the problem of estimating the likelihood of
cirrhotic patients to die in at most 6 months after the interventional treatment called

162 Machine Learning

Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a
study using an explicit multi-objective design to the problems of feature and instance
selection, in which the goal is to maximize the performance of the 1-nn classifier and
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm.
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to
decrease the number of features selected, by giving a bigger probability to the changing that
exclude features from the solutions.

3. A Framework for Simultaneous and Independent Feature and Instance
Selection

A deeper look into the related works on the combination of feature and instance selection
shows some points already addressed by these solutions and new questions. The first point
is that the majority of the approaches which try to solve these problems in a broad generic
formulation solve them by using specialized versions of genetic algorithms, trying to
separate the chromosome into two different areas, one for features and one for instances,
and applying separate operators to each area. These approaches arise from the natural
easiness of modeling the solutions to these problems as chromosomes and the need to cope
with these two different problems separately. The other point addressed is that either these
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a
specific classifier (e.g. kNN). The reader may question “How can we use other
metaheuristics beyond genetic algorithms to solve these two problems?” or “How could we
build a general framework to with them simultaneously?”. This section tries to give answers
to these questions.

Here we describe an extension of the work presented in (Souza et al., 2008) as a general
metaheuristics-based framework for simultaneous and independent feature and instance
selection. This framework is an effort to build an algorithm that can deal with both problems
simultaneously, since these problems are clearly related to one another and the work made
to select a subset of features can also be reused to select instances (and vice-versa) but they
are also independent, meaning that the algorithms that solve one of these problems do not
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation,
in which the quality of a subset of features depends on the quality of a subset of instances
(and vice-versa). This means that although the search processes are independent, they are
guided by this joint evaluation function, which gives what we call a “power of influence” of
each solution of the separate problems over the other.

3.1 The Framework for Feature and Instance Selection

In order to make definitions clear, we must explain that this framework works with two
different solutions for each problem: the best and the actual solution. The best solution is, as
the name itself explains, the solution which achieved the best evaluation value so far in the
search process. The actual solution is the solution generated at every iteration to be tested to
see whether it is better than the best solution so far. In some metaheuristics, like Simulated
Annealing, the process of search does not depend on the best solution, although this solution
is stored, but in others like VNS (Mladenovi¢ & Hansen, 1997) the best solution is the one
which guides the search.

On The Combination of Feature and Instance Selection 163

When applied to feature and instance selection, search metaheuristics can be seen as
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test
whether they are good solutions or not and guide the search process by this evaluation
value achieved by each solution. This version of the framework works basically controlling
this evaluation process of each subset generated by the search. The framework can be
described as follows in figure 1

Framework for Mono-Objective Simultaneous and Independent Feature and Instance
Selection

Input: Dataset dt, Feature Selection Algorithm 1s, Instance Selection Algorithm is, Evaluation
Function ef

Output: Dataset ndt

1. While(Has Iterations(fs) || Has Iterations(is))

Do

fsss = Next Solution(fs, dt)

is¢s = Next Solution(is, dt)

eval = Evaluation(ef, dt, fsq, iss)

Update(fs, eval, fsy)

Update(is, eval, isg)

Done

ndt = Create Subset(dt, Best Subset(fs), Best Subset(is))

0. Return ndt

i S BRI o

Fig. 1. The Framework

In this framework, the relationship between these entities, features and instances, is treated
as something related to their quality to a supervised learning task. This means that the
quality of features used in the supervised learning task is intrinsically related to the
examples that represent the concept to be learned, and vice-versa. Examples are only
considered “good” ones if they are described by attributes that represent the concept to be
learned clearly, and features are only important if they capture this concept present in these
examples. This is the justification to the presented approach.

A textual description of the framework can be seen as: Initially the complete sets of features
and instances are set as initial solutions. There are two separated processes for selecting
features and instances. The main loop started in the line number 1 controls the search
processes. Starting in line number 3 (4) the new solution is generated using the
metaheuristic for feature (instance) selection. New solutions are generated only when the
Has Iterations test has true value, otherwise the Next Solution function must return the best
solution found in the search process. In line 5 the new solutions are evaluated. This step is
the joint evaluation function that works by getting the actual solutions from the feature
selection and instance selection processes, then creating a subset from the initial dataset by
using these two subsets and then evaluate then using k-fold cross validation, for example.
Finally the search processes are updated. This update is basically the exchange of solutions
if the new one achieved a better evaluation than the old one and any other process needed
by the metaheuristic like for example in Simulated Annealing, when even if the actual
solution is worse than the best one, it can be the next which guides the following steps of the
search. In line 9 the whole procedure is ended, and the subset generated by the two
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a

164 Machine Learning

graphical representation of the framework. The blue boxes are the best solutions in a given
iteration of the processes. The red boxes are the actual solutions in them and as it can be seen,
they are evaluated together using the function G. In some iteration they replace the best
solution but in other ones they do not have better evaluation so the best solutions remain the
same.

Feature Selection Instance Selection

Fig. 2. A graphical view of the framework (Blue box - best solution; Red box - actual solution)

3.2 Extension to the Framework

The framework described in the last section is a basic view of it. An interesting extension
can be made for handling populational metaheuristics.

Populational metaheuristics create, at each iteration, a set of new actual solutions. Then the
evaluation of each new solution is calculated and operators of intensification and
diversification are applied. If we remember the fact that in this framework the evaluation of
a solution does not depend on itself solely, this fact adds the question of “Which solution
from the other process should I use in the joint evaluation function?” or “How can I calculate
the best actual solution in this given set of solutions?”.

Our answers to these questions are quite simple. The answer to the first question is “the best
actual solution from the last iteration”. In the first iteration the whole set of features or
instances is used to evaluate the new solutions and the search continues always reusing the
best actual solution of the last iteration. By doing this, the searches are still guided by both
solutions and only good solutions will guide this process. Nevertheless, the operators of
intensification and diversification will work normally, without any loss to the search process.

On The Combination of Feature and Instance Selection 165

The answer to the second question is “by using the best actual solution from the last
iteration” as showed in the previous explanation.

Figure 3 gives a graphical explanation to the idea presented here. The reader must pay
attention to the green arrows. They show that the best actual solution (the yellow one) is
being used to evaluate the subsets of features (or instances) of the next generation. Besides,
there are separate evaluation procedures to the searches. These are the biggest differences to
the initial framework. Although there are these two separated procedures, the evaluations of
the actual solutions still depend on the other search process. Once more as in the initial
framework, in some iterations one of the solutions present in the actual population might
replace the best solution found so far but in other ones they do not have better evaluation so
the best solutions remains the same.

Feature Selection Instance Selection

Fig. 3. A graphical view of the framework (Blue box - best solution; Red box - actual solution;
Yellow box - best actual solution. Green arrow - The best actual solution is being used to
evaluate the next generation of solutions)

4. Framework Evaluation

In this section we present and discuss the results obtained in several simulations executed in
order to test the effectiveness of the proposed framework. This section tries to make clear
the answer to the question “Is it worth using this framework?”.

166 Machine Learning

To make these simulations we have chosen some well-known datasets used for machine
learning tasks found at the UCI Machine Learning Repository (Asuncion and Newman,
2007). These datasets are the Audiology (70 attributes, 226 instances), Autos (26, 205), Colic
(23, 368), Credit (16, 690), Ionosphere (35, 351), Labor (17, 57), Lymph (19, 148), Primary-
Tumor (18, 339), Sonar (61, 208), Soybean (36, 683) and Vote (17, 435).

We implemented seven different strategies to tackle with the feature and instance selection
problems. The first one, here called ind, consists in making two separate selection processes
and then joining the subsets generated by these processes in the end. The solution generated
by the feature selection process and the other generated by the instance selection one are
joined to create the subset only when the search processes are ended. The fsis is a sequential
approach in which it is run a feature selection process followed by an instance selection
process. The dataset used in the feature selection is the whole initial dataset, but in the
dataset used by the instance selection process, only the best set of features found is used to
represent the examples. The isfs approach follows the same idea, but now the first process is
an instance selection and the second is a feature selection. Finally comb is the name given to
the approach presented in the framework.

Some pieces of different software were used to make these simulations. From the Weka Data
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets,
attributes and examples and to create and evaluate models. From jMetal Metaheuristics
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these
problems and also some classes of metaheuristics. The Evaluation method chosen to be used
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive
Bayes and kNN.

4.1 Simulation Using the Simulated Annealing Metaheuristic

The results presented in this section are the same presented in the former work of (Souza et
al., 2008). The architecture implemented in that work is the same of this general framework
but it was implemented using the Simulated Annealing metaheuristic.

For this simulation we implemented the Simulated Annealing metaheuristic to use it in both
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized
local search, which simulates the process of physical annealing. This physical process
consists in heating a material to a desired temperature, followed by a slow cooling process.
The first step gives energy to the atoms and they move randomly through states of high
energy, changing the material's structure fast. The second step, which is performed slowly,
gives them the chance to arrange themselves into a configuration of lower energy.

In analogy with the physical process, Simulated Annealing changes the actual solution to a
neighbor solution, depending on the quality of this neighbor solution or the value of a
function that is calculated in accordance with the temperature parameter, which decreases
during the process.

The coding of solutions to this problem is basically an array of boolean values which has
length equal to the number of features or instances. Using this coding, we defined that two
solutions are considered neighbors only and if only they have at most 10% of bits set to
different values, i.e., when applied a XOR operator to these to problems, the result contains
only 10% of bits set to frue.

On The Combination of Feature and Instance Selection 167

<0.001 <0.005 <0.01
Comb vs IND 8x0 1x0 1x0
Comb vs FSIS 0x0 0x0 0x0
Comb vs ISFS 0x0 0x0 2x0

Table 1. Pairwise comparison between comb and other approaches
We have run all seven approaches described earlier in two different scenarios. In the first
one, each approach was given an unlimited time to run and generate a solution. After two

executions of each approach in every dataset, there were twenty Error Rate values available.

Sum of execution times

3e+07 T T T T lk T T T T o =
H H H H FSIS ===
H H H ISFS
256407 bbb
w
@ 15e+07 [R e
e
50105 o SR W (| W —

Fig. 4. The sum of execution times - Unlimited Time Scenario

Table 1 summarizes the results of a pairwise comparison between comb and the other
approaches that solve both problems. The results represent the number of times each
strategy outperformed the other, in terms of the accuracy of the final classifier, using the
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01).

Clearly the performance of comb is much better than the ind and slightly better than the
other two approaches. So when talking about performance it is not clear why to use this
approach. But looking at figure 3 we see that the comb approach usually requires less time
to reach the best error rate in the datasets. This figure shows the sum of time of all tests
executed by each approach.

In the second scenario we defined a limit to the execution time of every run. Figure 4 shows
that when this constraint is added to the problem and this time is not enough to complete
the search, the comb approach converges to low values of error rate faster than the other
two approaches.

168 Machine Learning

Sum of error rates using all classifiers

5.5 T T T T T T T
° ‘ COMB —+—
y i i i i i ‘ FSIS
5 i S e s T |- o -JELIY TN

Sum of error rates
1

-

0 10 20 30 40 50 60 70 80 %0 100
Time (%)
Fig. 5. The sum of error rates - Limited Time Scenario

5. Conclusion

In this chapter we discussed two important problems in the pre-processing step of many
supervised learning tasks. A list of well-known algorithms were presented and discussed. A
new framework was proposed, extending the concept proposed by the authors in a previous
work. This framework was validated by some simulations using the metaheuristic
Simulated Annealing and NSGA-II. These simulations show that although the quality of
solutions generated by this framework is quite similar to those obtained by sequential
executions, this approach reaches the better solutions faster than the other approaches.

The frameworks is based on what we called “power of influence”, i.e. the quality of features in
a given supervised learning task is intrinsically related to the quality of instances used in
this task, and vice-versa. Based on this we created the framework that work with two
separated wrappers for these two problems, jointing them in a single evaluation procedure.

5.1 Future Work - The Framework for Multi-Objective Feature and Instance Selection
An important characteristic we want to add to this framework in the future is the possibility
to handle the multi-objective versions of the two selection problems. The usage of multi
objectives brings new power but also new problems to the search processes. In these
formulations, the characteristic of total ordering is replaced by partial ordering, using the
concept of Pareto optimality. The ideas of better and worse are replaced by dominance, non-
dominance. Given two solutions 4, b and a set of functions F to be minimized (or maximized,
but in this explanation we suppose they are to be minimized), we say that a weakly
dominates b if and only if

On The Combination of Feature and Instance Selection 169

Vfi €F.fi(a) < fi(b)and 3 f; €F, fi(a) < fi(b) ®)

The concept of strong dominance requires that

Vfi €F fi(@) < fi(b). ©)

When there is a set of solutions in which none of them dominate or are dominated by the
others, we say these solutions are in the Pareto front, i.e., they are solutions equally good, in a
way that one cannot say a priori which one of them is the best one without making any other
assumption.

This usage adds the same questions generated by populational metaheuristics, such as
“Which solution from the other process should I use in the joint evaluation function?” or
“How can I calculate the best actual solution in this given set of solutions if there will be
some ‘equally good” ones?”.

The answers related to the multi-objective approaches seem to be similar to the ones given
to populational metaheuristics but they weren't tested yet. Given that it is needed to
evaluate all the subsets of features (and vice-versa), the algorithm can use any of the subsets
of instances from the last iteration which are in the Pareto front since all of them are equally
good. A reasonable solution would be to pick a random solution from the Pareto front of the
instance selection process every time the algorithm has to evaluate a subset of features. This
approach increases diversification because several different solutions are used to guide the
search and there is no loss in intensification as only good solutions are used in this process.

In the end of the search processes there will be two Pareto fronts: one of features and one of
instances. At this moment the user have several alternatives like choosing one solution of
each search or generating all combinations of solutions and picking the one which is the
best. How to deal with these two Pareto fronts is an open question so far.

6. References

Almuallim, H. & Dietterich, T. (1991). Learning with many irrelevant features. Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI'91), pp. 547-552, AAAI
Press, Anaheim

Asuncion, A. & Newman, D. J. (2007). UCI Machine Learning Repository
[http:/ /www.ics.uci.edu/~mlearn/MLRepository.html], University of California,
School of Information and Computer Science, Irvine, CA

Beritelli, F.; Casale, S.; Russo, A. & Serrano, S. (2005). A genetic algorithm feature selection
approach to robust classification between '"positive" and 'negative" emotional
states in speakers. Thirty-Ninth Asilomar Conference on Signals, Systems and
Computers, pp. 550-553

Blum, A. & Langley, P. (1997). Selection of Relevant Features and Examples in Machine
Learning. Artificial Intelligence, 97, 1-2, December 1997, 245-271, 0004-3702

Cano, J.; Herrera, F. & Lozano, M. (2003). Using evolutionary algorithms as instance
selection for data reduction in kdd: an experimental study. IEEE Transactions on
Evolutionary Computation, 7, 6, December 2003, 561-575, 1089-778X

170 Machine Learning

Chen, J-H.; Chen, H-M. & Ho S-Y. (2005). Design of nearest neighbor classifiers: multi-
objective approach, International Journal of Approximate Reasoning, 40, 1, July 2005, 3-
22, 0888-613X

Dash, M. & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis - An
International Journal, 1, 131-156

Durillo, J. J.; Nebro, A. J.; Luna, F.; Dorronsoro, B. & Alba, E. (2006). TechRep jMetal: a Java
Framework for Developing Multi-Objective Optimization Metaheuristics., Departamento
de Lenguajes y Ciencias de la Computacién, University of Malaga, 2006

Fayyad, U.; Piatetsky-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge
discovery in databases. Ai Magazine, 17, 3, 37-54, 0738-4602

Filippone, M.; Masulli, F.; Rovetta, S. & Constantinescu, S. P. (2006). Input selection with
mixed data sets: A simulated annealing wrapper approach. Conferenza Italiana
Sistemi Intelligenti (CISI 06), Ancona

Fragoudis, D.; Meretakis, D. & Likothanassis, S. (2002). Integrating feature and instance
selection for text classification. Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 501-506, 1-58113-567-X,
ACM, New York

Gates, G. (1972). The reduced nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 18, 3, May 1972, 431-433, 0018-9448

Hart, P. (1968). The condensed nearest neighbor rule, IEEE Transactions on Information
Theory, 14, 3, May 1968, 515-516, 0018-9448

Ishibuchi, H. & Nakashima, T. (2000). Multi-objective pattern and feature selection by a
genetic algorithm, Proceedings of the Genetic and Evolutionary Computation Conference,
pp- 1069-1076, Morgan Kaufmann

Jankowski, N. & Grochowski, M. (2004). Comparison of instances selection algorithms I.
Algorithms Survey, In: Artificial Intelligence and Soft Computing - ICAISC 2004,
Springer, 978-3-540-22123-4

John, G.; Kohavi, R. & Pfleger, K. (1994). Irrelevant features and the subset selection
problem. Proceedings of the Eleventh International Conference on Machine Learning
(ICML'94), 121-129

Kira, K. & Rendell, L. (1992). The feature selection problem: Traditional methods and new
algorithm, Proceedings of the Tenth National Conference on Artificial Intelligence, pp.
129-134, MIT Press

Kirkpatrick, S.; Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 4598, May 1983, 671-680, 00368075

Kuncheva, L. I. & Jain, L. C. (1999). Nearest neighbor classifier: simultaneous editing and
feature selection, Pattern Recognition Letters, 20, 11, November 1999, 1149-1156,
0167-8655

Liu, H. & & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge
Discovery, 6, 2, 115-130, 1384-5810

Liu, H. & Setiono, R. (1996). A probabilistic approach to feature selection - A filter solution.
Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96),
pp. 319-327, MIT Press

Mladenovié, N. & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 11, November 1997, 1097-1100, 0305-0548

On The Combination of Feature and Instance Selection 171

Ramirez-Cruz,]J. F. ; Fuentes, O.; Alarcon-Aquino, V. & Garcia-Banuelos, L. (2006). Instance
selection and feature weighting using evolutionary algorithms. 15th International
Conference on Computing (CIC '06), 73-79, 0-7695-2708-6

Ritter, G.; Woodruff, H.; Lowry, S. & Isenhour, T. (1975). An algorithm for a selective
nearest neighbor decision rule (corresp.). IEEE Transactions on Information Theory, ,
21, 6, November 1975, 665-669, 0018-9448

Ros, F.; Guillaume, S.; Pintore, M. & Chrétien, J. R. (2007). Hybrid genetic algorithm for
dual selection, Pattern Analysis & Applications, 11, 2, June 2008, 179-198, 1433-755X

Sierra, B.; Lazkano, E.; Inza, I.; Merino, M. ; Larrafiaga, P. & Quiroga, J. (2001), Lecture
Notes in Computer Science, 2101/2001, 20-29, 978-3-540-42294-5

Souza, J. T. (2004). Feature selection with a general hybrid algorithm. Doctoral dissertation,
University of Ottawa, School of Information Technology and Engineering (SITE), Ottawa

Souza, J. T.; Carmo, R. A. F. & Campos, G. A. L. (2008). A novel approach for integrating
feature and instance selection. Proceedings of the International Conference on
Machine Learning and Cybernetics, pp. 374-379, 978-1-4244-2095-7, July 2008

Sun, Z.; Bebis, G.; Yuan, X. & Louis, S. J. (2002). Genetic feature subset selection for gender
classification: A comparison study. Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision (WACV'02), IEEE Computer Society, Washington

Tahir, M.; Bouridane, A.; Kurugollu, F. & Amira, A. (2004). Feature selection using tabu
search for improving the classification rate prostate needle biopsies. Pattern
recognition, 2, 335-338, 0031-3203

Vafaie, H. & De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine
learning. Proceedings of the Fourth International Conference on Tools with Artificial
Intelligence, pp. 200-204, Arlington

Witten, 1. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques,
Morgan Kaufmann, San Francisco, 2005

172 Machine Learning

10

Fuzzy System with Positive and Negative Rules

Thanh Minh Nguyen and Q. M. Jonathan Wu
Department of Electrical and Computer Engineering, University of Windsor
Canada

1. Introduction

A typical rule in the rule base of a traditional fuzzy system contains only positive rules
(weight is positive). In this case, mining algorithms only search for positive associations like
“IF A Then do B”, while negative associations such as “IF A Then do not do B” are ignored.
The concept of fuzzy sets was introduced by Zadeh in 1965 as a mathematical tool able to
model the partial memberships. Since then, fuzzy set theory (Zadeh, 1973) has found a
promising field of application in the domain of image processing, as fuzziness is an intrinsic
property of images and the natural outcome of many image processing techniques. The
interest in using fuzzy rule-based models arises from the fact that they provide a good
platform to deal with noisy, imprecise or incomplete information which is often handled
exquisitely by the human-cognition system.

In a fuzzy system, we can generate fuzzy rule-bases of one of the following three types:

(@) Fuzzy rules with a class in the consequent (Abe & Thawonmas, 1997; Gonzalez &
Perez, 1998). This kind of rule has the following structure:

Rule r: IF xq is A,1 and ... and xp; is A,y Then y is class Cy 1)

Where, x=(x1,...,xn) is an N-dimensional pattern. A,, n=(1,2,...,N), is an antecedent fuzzy set,
and y is the class C;, to which the pattern belongs.

(b) Fuzzy rules with a class and a rule weight in the consequent (Ishibuchi et al., 1992;
Ishibuchi & Nakashima, 2001):

Ruler: IFxj isA,q and .. and x); is A,\; Theny is class C,;; with W,)

Where, IV, is the rule weight which is a real number in the unit interval [0,1].
(c) Fuzzy rules with rule weight for all classes in the consequent (Pal & Mandai, 1992;
Mandai & Murthy, 1992; Ishibuchi & Yamamoto, 2005):

Ruler: IFx; isA 4 and .. and xp; is A)
Theny is class C; withW,; and ... and y is class Cj with W,

Where, Wy, m=(1,2,...,M), is a rule weight for class C,.
From Eq.(1), Eq.(2) and Eq.(3), we can see that a typical rule in the rule-base of a fuzzy
system contains only positive rules (weight is positive). This is one of the limitations of a

174 Machine Learning

traditional association mining algorithm (Han, 2006). In this case, mining algorithms only
search for positive associations like “IF A Then do B”, while negative associations such as
“IF A Then do not do B” are ignored. In addition to the positive rules, negative rules (weight
is negative) can provide valuable information. For example, the negative rule can guide the
system away from situations to be avoided, and after avoiding these areas, the positive rules
once again take over and direct the process. Interestingly, very few papers have focused on
negative association rules due to the difficulty in discovering these rules. Although some
researchers point out the importance of negative associations (Brin & Silverstein, 1997), only
few groups (Savasere et al., 1998; Wu et al., 2002; Teng et al., 2002) have proposed a system
to mine these types of associations. This not only indicates the novelty in the usage of
negative association rules, but also the challenges in discovering them.

In this chapter, we propose a new fuzzy rule-based system for application in image
classification problems. A significant advantage of the proposed system is that each fuzzy
rule can be represented by more than one class. Moreover, while traditional fuzzy systems
consider positive fuzzy rules only, in this chapter, we focus on combining negative fuzzy
rules with traditional positive ones, leading to fuzzy inference systems. This new approach
has been tested on image classification problems with promising results.

2. Positive and Negative Association Rules

Fuzzy systems can be broadly categorized into two families. The first includes linguistic
models based on a collection of fuzzy rules, whose antecedents and consequents utilize
fuzzy values. The Mamdani model (Mamdani et al., 1975) falls into this group. The second
category, based on Sugeno-type systems (Takagi & Sugeno, 1985), uses a rule structure that
has fuzzy antecedents and functional consequent parts. A typical rule in the rule-base of a
fuzzy system is of the “IF-Then” type, i.e., “IF A then do B”, where A is the premise of the
rule and B is the consequent of the rule. This type of rule is called positive rule (weight is
positive) because the consequent prescribes something that should be done, or an action to
be taken. Another type of reasoning that has not been exploited much, involves negative rules
(weight is negative), which prescribe actions to be avoided. Thus, in addition to the positive
rules, it is possible to augment the rule-base with rules of the form, “IF A, Then do not do
B”. Let us consider the following two fuzzy IF-Then rules:

Rule 1: IF customer is a child Then he buys Coke and he does not buy bottled water

)
Rule 2 : IF customer is an adult Then he buys Coke and he buys bottled water

In the example above, the negative rule (rule 1) guides the system away from situations to
be avoided, after which, the positive rules (rule 2) take over and direct the process.
Depending on the probability of such an association, marketing personnel can develop
better planning of the shelf space in the store, or can base their discount strategies on
correlations that can be found in the data itself. In some situations (Branson & Lilly, 1999;
Branson & Lilly, 2001; Lilly, 2007), a combination of positive and negative rules can form a
more efficient fuzzy system.

One of the limitations of fuzzy IF-Then rules in Eq.(4) is that the two classes (Coke, bottled
water) appearing in the consequent parts of the above rules have the same degree of
importance. Clearly, to help the marketing personnel develop better planning of different

Fuzzy System with Positive and Negative Rules 175

products (Coke, bottled water) for different customers (child, adult), we should assign
different assign different weights to different classes appearing in the consequent parts of
the rules.

Based on these considerations, we propose a new adaptive fuzzy system that applies to the
image classification problem (Thanh & Jonathan, 2008). The main advantage of this fuzzy
model is that every fuzzy rule in its rule-base can describe more than one class. Moreover, it
combines both positive and negative rules in its structure. This approach is expressed by:

Ruler: IFxq; isA 4 and..and xp; is A,
5
Then ;. is class Cq with W 4 and ...and y; 1 is class Cp ; with W, 1 ©)

Where, W, r=(1,2,...,R), m=(1,2,...,M) is the weight of each class belonging to the rule r. We
use the rule weight of the form below:

Wim = Wpp0 + W1 X1+ F W NYNK (6)

Where, parameters w:, [=(0,1,...,N) are determined by the least squares estimator, which is
discussed in detail, in the following section. R, M, K, and N denote the number of fuzzy
rules, number of classes, number of patterns and dimension of patterns, respectively.
Classes are denoted by Ci,(C»,...,Cy, and the N-dimensional pattern is denoted by
xk=(x1k,x2k,. . .,xNk), k=(1,2,. . .,K).

Consider a multiple-input, multiple-output (MIMO) fuzzy system in Eq.(5), similar to
Takagi-Sugeno fuzzy models (Takagi & Sugeno, 1985; Purwar et al., 2005). The m-th output
of the MIMO with product inference, centroid defuzzifier and Bell membership functions is
given by:

R N R
rzl nl;ll Am (xnk Wem rzl Pr (xk W R —
Yon =" R N "R =5 PO im =1 M)
rgl nl;ll Amn (xnk) rzl Fr (xk)

Where the normalization degree of activation of the r-th rule ;r (x))is expressed by:

N
i Br(xy) = nl;ll Ap (X8) 8)

The fuzzy set A.(xux) and the corresponding rule weight W, is discussed in detail in the
following section. The output of the classifier is determined by the winner-take-all strategy
shown in Eq.(9), whereby “x; will belong to the class with the highest activation”.

*

Vi = Cm*; mo=, SrggM(ykm) ©)

176 Machine Learning

3. Structure of the proposed fuzzy system

So far, our discussion has focused on class estimation in Eq.(9) to which class the pattern xi
should be assigned. In this section, we suggest a new adaptive fuzzy system that can
automatically adjust the values of fuzzy set A.(xux) and rule weight W,,,,. After training the
fuzzy system, we can determine which class the pattern x; should be assigned to.

The proposed structure consists of two visible layers (input and output layer) and three
hidden layers as shown in Fig. 1. This fuzzy system can be expressed as a directed graph
corresponding to Eq.(7).

Xi=(X1k:X2k)

Layer 1 Layer 5
Input layer Layer 2 Layer 3 Layer 4 Output Layer

Fig. 1. Proposed fuzzy system with 2 inputs (N=2), 2 classes (M=2) and 4 rules (R=4).

Layer 1 (Input layer): each node in this layer only transmits input x, n=(1,2,...,N),
k=(1,2,...,K) directly to the next layer. No computation is performed in this layer. There are a
total of N nodes in this layer, where the output of each node is O1, = xx.

Layer 2: The number of nodes in this layer is equal to the number of fuzzy rules. Each node
in this layer has N inputs from N nodes of the input layer, and feeds its output to the
corresponding node of layer 3.

One of the major disadvantages of Anfis (Jang et al., 1997) model is, that an explosion in the
number of inference rules limits the number of possible inputs. Thus, grid partitioning is not
advised when the input dimension is more than six (Nayak et al., 2004). To overcome this
problem, a fuzzy scatter partition is used in this layer. Therefore, our system can work well,
even when the dimension of pattern (N') is high.

Fuzzy System with Positive and Negative Rules 177

We use the bell type distribution defined over an N-dimensional pattern x; for each node in
this layer. The degree of activation of the r-th rule f.(x;) with the antecedent part
A,=(Ap,...,An) is expressed as follows:

N N 1
Br(xge) = T A (xp) = T1 I (10)
Ynk ~Crn

1+

Apy

Where, parameters am, by, ¢, 1=(1,2,...,R), n=(1,2,...,N) are constants that characterize the
value of f,(xi). The optimal values of these parameters are determined by training, which is
discussed in the next section. There are R distribution nodes in this layer, where each node
has 3xN parameters. The output of each node in this layer is Oz, = Br(xx).
Layer 3: This layer performs the normalization operation. The output of each node in this
layer is represented by:
. Br (i)

037' :ﬂr(xk):Rik (11)
3 Brlxy)
Layer 4: Each node of this layer represents the rule weight in Eq.(6), Wp=wmot Wpmxut...+
WmnXNk. Where, parameters wy, =(1,2,...,R) , m=(1,2,...,M), I=(0,1,...,N) are determined by
least squares estimator, which is discussed in the next section.
In the proposed model, for pattern x;, the output of the classifier is determined by the
winner-take-all strategy. Therefore, when the rule weight W,,, has a negative value, it will
narrow the choices for class C,, (the higher the negative value of W,,, the smaller the value
of Y in Eq.(13)). In other words, negative rule weight prescribes actions to be avoided
rather than performed. The output of each node in this layer is:

ﬂr (xk)
Ogrm =WirmO3p =Wom g — (12)
3 A

There are MxR nodes in this layer, where each node has (1+N) parameters.
Layer 5 (Output layer): Each node in the output layer determines the value of y, in Eq.(7).

R R WyB,(x;) R —
O5im = Yim = rél Ogrm = 21 R = ,Z‘l Br X)Wim (13)
i’gl ,Br (xk)

There are M nodes in the output layer.

4. Parameter Learning

The goal of the work presented here is perform the parameterized learning to minimize the
sum-squared error with respect to the parameters ® = [a,, b, Cri, Wrn]. The objective
function E(®) for all the training data-sets is defined as:

178 Machine Learning

E(©) L ¢y (14)

2
- Y Y (-
orp ket iz Wem ™Y)

Where, y is the output of class m obtained from Eq.(7).
For a training data pair, {xy,ya}, the input is xi=(x1,x2%...,4n%), k = (1,2,...,K), and the desired
output yu is of the form:

(1,0,...,0)T, if X} € class Cl

T .
T (0,1,..,0) , if x; eclass C2 15
Yak = Va1 Yk Yam) = k (15)

(O,O,...,l)T, if X € class CM

When the initial structure has been identified with N inputs, R rules and M classes, the
fuzzy system then performs the parameter identification to tune the parameters of the
existing structure. To minimize the sum-squared error E(®), a two-phased hybrid parameter
learning algorithm (Jang et al., 1997; Wang et al., 1999; Wang & George Lee, 2002; Lee & Lin,
2004) is applied with a given network structure. In hybrid learning, each iteration is
composed of a forward and backward pass. In the forward pass, after the input pattern is
presented, we calculate the node outputs in the network layers. In this step, the parameters
A, by, and cy, in layer 2 are fixed. The parameters wy,; in layer 4 are identified by least
squares estimator. In the backward pass, the error signal propagates from the output
towards the input nodes. In this step, the w;,; are fixed, and the error signals are propagated
backward to update the a,,, b, and ¢, by steepest descent method. This process is repeated
many times until the system converges.

Next, optimization of the parameters w,, in layer 4 is performed using least-squares
algorithm in the forward step. To minimize the error E(®) in Eq.(14) , we have to minimize
each output-error (m-th output):

K

Ep = kél Vi — ydkm)2 (16)
When the training pattern x; is fed into the fuzzy system, Eq.(13) can be written as:
Vi = P10+ B1 G011 + o PG g +
B2 ()00 + B2 (X101 X1 + - B2 (5 0 X +)

BRX)WR0 + ARX)WR 1 ¥ 1+ + PR (X)W RN NK

For all training patterns, we have K equations of Eq.(17). Thus, Eq.(16) can be expressed:

Epn =[|AW,, =Y, (18)

Fuzzy System with Positive and Negative Rules 179

Where, W, Yy, and A are matrices of (N+1)*R)x1, Kx1, and Kx((N+1)*R) respectively.

W T
m = (010 @117+ ©1mN 7 ©Rim0 CRm1 7 YRmN) (19)

Y. = T
m=Watm Yaom -~ Yakm] (20)

,El(xk) El(xk)xll 21(Xk)x1\71 ﬂR(Xk) ER(Xk)xll é’R(Xk)le

A B1(xp) Br(xp)xqp o B1(xp)xno - BR(XE) BR(X)Xp - BR(X)XND

ﬂl(xk) ﬂl(xk)le ﬁl(xk)xNK ﬁR(Xk) IBR(Xk)xH(ﬂR(Xk)xNK
(21)

Next, we apply linear least-squares algorithm (Jang et al., 1997) for each output (m-th
output) to tune the parameters w;,,.

T,\1,T
W, =(A A) A'Y,

(22)
After the forward pass in the learning, error signals are propagated backward to update the
premise parameters a,,, by, and ¢, by gradient decent with the error function E(®) in Eq.(14).
The learning rule is given by:
new old OE(®) prew _ old OE(®) new _ old OE(©) (23)
fn = —7 O =O%m TN Crn = Cm
0ayy, ob,y,

0Cpyy

Where, 11 is the learning rate. The formulae used to update the parameters a,,, b,, and c, are
given in the Appendix.

5. Simulation Results

In the first set of simulations, the proposed method is compared with Fuzzy C-Means
(Hppner et al., 1999), K-Means algorithm (Dubes, 1993), Feedforward Backpropagation
Network (Schalkoff & Robert, 1997; Russell et al., 2003) and Anfis methods (Jang, 1991; Jang,
1993; Russell et al., 1997). The performance of our classifier system is demonstrated for SAR
Image and a natural image.

To test the effectiveness of our proposed method, in the next set of simulations, fuzzy
system is used to detect the edges of the image when it is significantly degraded by high
noise. The proposed system is compared with other edge-detection methods: Prewitt
(Prewitt, 1970), Roberts (Roberts, 1965), LoG (Marr & Hildreth, 1980), Sobel (Sobel, 1970),
and Canny (Canny, 1986).

180 Machine Learning

5.1. SAR Image Classification

The JPL L-band polarimetric SAR image (size: 1024x900 pixels) of San Francisco Bay (Tzeng
& Chen, 1998; Khan & Yang, 2005; Khan et al., 2007) as shown in Fig. 2(a) is used for this
simulation. The goal is to train the fuzzy system to classify three different terrains in this
image, namely water, park and urban areas.

(b)

Fig. 2. SAR Image Classification, (a): original Image, (b): training data with 3 classes

The training patterns are shown enclosed in red boxes in Fig. 2(b). The proposed system was
trained using these features to estimate the parameters. The algorithm was run with 100
training iterations.

K-means Clustering Method FOM Method

ANFIS Method Proposed Method

C
Fig. 3. SAR image classification results, (a): K-Means clustering method, (b): Fuzzy C-Means

methods, (c): Anfis method, (d): proposed method.

In this example, the proposed system was used to indicate three distinct classes (M=3), with
3 inputs corresponding to 3 polarimetric channels: I, vo, and vh (Tan et al., 2007), 4 rules

Fuzzy System with Positive and Negative Rules 181

(R=4). The desired outputs for urban, park and water classes were chosen to be [0 01], [01 0],
and [1 0 0], respectively. After training with the patterns, the system was used to classify the
whole image. Fig. 3(d) shows the classification results of the proposed method. A
comparison of the proposed classifier with the K-Means classifier and Fuzzy C-Means
classifier is shown in Fig. 3(a) and Fig. 3(b), respectively. These two methods were executed
using MATLAB with the same 3 inputs (hh, vv, and vh), 3 outputs and default values for
auxiliary parameters. As can be seen from Fig. 3, the classification accuracy of K-Means and
Fuzzy C-Means methods was lower in water and park regions, as compared to the proposed
method.

Fig. 3(c) shows the simulation result of Anfis. In this example, the same training areas in red
boxes as shown in Fig. 2(b) were used to train the Anfis system. Anfis system with 3 inputs
and 8 rules was run for 100 training iterations. The desired outputs for urban, park and
water classes were chosen to be 1, 2, and 3, respectively. Compared with the Anfis method,
clearly, our classifier accuracy is higher and the effect of noise on the performance of the
detector is much less.

5.2. Natural Image Classification

In this experiment, the proposed system is compared to other classification algorithms by
testing them on natural image taken from the Berkeley Dataset (Berkeley Dataset, 2001), as
shown in Fig. 4.

Fig. 4. Natural Image Classification.

Fig. 5(a) shows the image corrupted by Gaussian noise (0 mean, 0.1 variance) that we want
to segment into 3 classes (snow, wolf, and tree). This input image is scanned left-to-right by
taking a square window of size 5x5 pixels around a centre pixel, which is then feed into the
trained fuzzy system for classification into snow, wolf or tree.

To train our proposed system, the training patterns are generated as shown by red boxes in
Fig. 5(a). For this experiment, we have chosen a fuzzy system with 25 inputs (corresponding
to the 5x5 window), 8 rules (R=8) and 3 distinct classes (M=3) with the desired outputs for
snow, wolf and tree classes as [0 0 1], [0 1 0], and [1 0 0], respectively. Fig. 5(b) shows the
clustering results of Fuzzy C-Means classifier with 25 inputs, and 3 outputs.

The image shown in Fig. 5(c) is the result obtained using Feedforward Backpropagation
networks. In this example, the networks is established with the structure of 25-8-8-8-3, five
layer network with 3 hidden layers, 8 neurons in each hidden layer and 3 neurons in the
output layer. We use tansig for hidden layers and purelin for the output layer. Both Fuzzy C-
Means and Feedforward Backpropagation networks in this example were executed using

182 Machine Learning

MATLAB with default values for auxiliary parameters. As can be seen, compared to other
methods, the proposed system as shown in Fig. 5(d) could not only successfully segment the
image when it is significantly degraded by high noise, but also reduces the effect of noise on
the final segmented image.

FCM Method

@

Feedforward Backpropagation Network Method

Proposed Method

(d)
Fig. 5. Natural image classification results, (a): Noisy image, (b): Fuzzy C-Means methods,
(c): Feedforward Backpropagation Network, (d): proposed method.

5.3. Edge Detection in Noisy Images

a b c
Fig. 6. Edge dete((ttl)on training data, (a) g)l)iginal image, (b) Corg’lzpted original image with
40% salt and pepper noise, (c) Target image.

In principle, edge detection is a two-class image classification problem where each pixel in
the image is classified as either a part of the background or an edge. For this reason, a fuzzy
system consisting of 2 output nodes corresponding to the 2 classes (edge, background) is
chosen. In this experiment, a window of size 3x3 is scanned left-to-right across an image
taken from the training set, and a determination is made as to whether the centre pixel

Fuzzy System with Positive and Negative Rules 183

within the square neighbourhood window belongs to an edge (desired output classification
[0,1]) or the background (desired output classification [1,0]). The the fuzzy model is
structured with 9 inputs (N=9) corresponding to the 3x3 window, 16 rules (R=16), and 300
training epochs, to predict the binary decision class.

Roberts Method

(b)

Sobel Method

(d)

Proposed Method

m

Fig. 7. The first natural image for checking (a) Original image, (b) Corrupted with 20% salt-
and-pepper noise, (c) Prewitt method, (d) Roberts method, (e) LoG method, (f) Sobel
method, (g) Canny method, (h) proposed method.

(e)

To train the proposed system, simple images (see Fig. 6) of size 128x128 pixels are utilized
(Yksel, 2007). Fig. 6(a) shows the original image, where each square box of size 4x4 pixels
has the same random luminance value. The input to the fuzzy system consists of the
corrupted original image with 40% salt and pepper noise, as shown in Fig. 6(b). The target
image shown in Fig. 6(c) is a black and white image, with black pixels indicating the
locations of true edges in the input training image.

Once trained, the model is tested by applying it to a set of natural images taken from the
Berkeley Dataset (Berkeley Dataset, 2001) as shown in Fig. 7(a). Images are corrupted with
20% of “salt” (with value 1) and “pepper” (with value 0) noise with equal probability, as
shown in Fig. 7(b). The proposed detector is then compared to the existing methods -
Prewitt, Roberts, LoG, Sobel and Canny detector. It is not an easy task to select good
threshold values for these methods. In this case, all these methods are executed using
MATLAB and with default values for auxiliary parameters. It can be easily seen that most of
the edge structures of the noisy image cannot be detected by Prewitt in Fig. 7(c), Roberts in
Fig. 7(d), LoG in Fig. 7(e), Sobel in Fig. 7(f) and Canny in Fig. 7(g). Besides, the effect of noise
is still clearly visible as real edges are significantly distorted by the noise, and many noise
pixels are incorrectly detected as edges. Comparing the results with these operators, the
proposed method’s classification accuracy as shown in Fig. 7(h) is quite high, the effect of

184 Machine Learning

noise on the performance of the detector is much less, and the edges in the input images are
successfully classified. These results indicate that the proposed system performs well when
the even when image quality is significantly degraded by high noise.

Error! Reference source not found. shows the edge images which have been detected by
our proposed system with different percentages of salt and pepper noise as applied to
various natural images. The proposed fuzzy model consists of 16 rules (R=16) and 250
training epochs. The 1-st, 2-nd and 4-th column show the original images, images corrupted
by 10%, and 20% salt and pepper noise, respectively. The final edge images corresponding
to these noisy images as detected by the proposed system have been shown in 3-rd and 5-th
columns. It can be easily seen that the proposed fuzzy system is highly robust with respect
to noise in the natural images.

ammm

= Tamwm

-
Fig. 8. The edge images which have been detected by proposed system with difference salt
and pepper noise of difference natural images.

Fuzzy System with Positive and Negative Rules 185

6. Conclusions

In this chapter, we have introduced a fuzzy rule-based system that combines both positive
and negative association rules in its structure. A major advantage of this system is that each
rule can represent more than one class. Through experimental tests and comparisons with
existing algorithms on a number of natural images, it is found that the proposed system is a
powerful tool for image classification.

7. Acknowledgement

This research has been supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

8. References

Abe, S. & Thawonmas, R. (1997). A fuzzy classifier with ellipsoidal regions, IEEE
Transactions on Fuzzy Systems 5 (3), page(s): 358-368.

Berkeley Dataset, (2001): http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
grouping/segbench.

Branson, J.S. & Lilly, J.H. (1999). Incorporation of negative rules into fuzzy inference
systems, Decision and Control, Proceedings of the 38th IEEE Conference on, Volume: 5,
page(s): 5283-5288.

Branson, J.S. & Lilly,].H. (2001). Incorporation, characterization, and conversion of negative
rules into fuzzy inference systems, IEEE Trans. Fuzzy Syst., vol. 9, page(s): 253-268.

Brin, S.; Motwani, R. & Silverstein, C. (1997). Beyond market basket: Generalizing
association rules to correlations, Proc. of SIGMOD, page(s): 265-276.

Canny, J. (1986). A Computational Approach to Edge Detection, IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 8, no. 6, page(s): 679-698.

Dubes, R.C. (1993). Cluster analysis and related issues, Handbook of Pattern Recognition and
Computer Vision, World Scientific Publishing Co., Inc., River Edge, NJ, page: 332.

Gonzalez, A. & Perez, R. (1998). Completeness and consistency conditions for learning fuzzy
rules, Fuzzy Sets and Systems 96, page(s): 37-51.

Han, J. (2006). Learning Fuzzy Association Rules and Associative Classification Rules, Fuzzy
Systems, IEEE International Conference on, page(s): 1454-1459.

Hppner, F.; Klawonn, F.; Kruse, R & Runkler, T. (1999). Fuzzy Cluster Analysis, Wiley.

Ishibuchi, H. & Nakashima, T. (2001). Effect of rule weights in fuzzy rule-based classification
systems, IEEE Trans. on Fuzzy Systems, vol. 9, no. 4, page(s): 506-515.

Ishibuchi, H. & Yamamoto, T. (2005). Rule weight specification in fuzzy rule-based
classification systems, IEEE Trans. on Fuzzy Systems, vol. 13, no. 4, page(s): 428-435.

Ishibuchi, H.; Nozaki, K. & Tanaka, H. (1992). Distributed representation of fuzzy rules and
its application to pattern classification, Fuzzy Sets and Systems 52, page(s): 21-32.

Jang, J.R.; Sun, C. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice-Hall,
Englewood Cliffs, NJ, page(s): 113-115.

Jang, J.S.R. (1991). Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter
Algorithms, Proc. of the Ninth National Conference on Artificial Intelligence (AAAI-91),
page(s): 762-767.

186 Machine Learning

Jang, J.S.R. (1993). ANFIS: Adaptive-Network-based Fuzzy Inference Systems, IEEE Trans.
on Systems, Man and Cybernetics 23 (3), page(s): 665-685.

Khan, K. & Yang J. (2005). Novel features for polarimetric SAR image classification by
neural network, International Conference on Neural Networks and Brain, page(s): 165-
170.

Khan, K.U.; Yang J. & Zhang W. (2007). Unsupervised Classification of Polarimetric SAR
Images by EM Algorithm, IEICE Transactions 90-B(12), page(s): 3632-3642.

Lee, CH. & Lin, Y.C. (2004). Hybrid learning algorithm for fuzzy neuro systems, Fuzzy
Systems Proceedings, IEEE International Conference on, Volume 2, 25-29 July 2004,
page(s): 691-696.

Lilly, J.H. (2007). Evolution of a negative-rule fuzzy obstacle avoidance controller for an
autonomous vehicle, Fuzzy Systems, IEEE Transactions on, 15(4), page(s): 718-728.

Mamdani, E.H. & Assilian S. (1975). An experiment in linguistic synthesis with a fuzzy logic
controller, Int. |. Man-Mach. Stud., vol. 7, page(s): 1-13.

Mandai, D.P.; Murthy, C.A. & Pal SK. (1992). Formulation of a multivalued recognition
system, IEEE Transactions on Systems, Man, and Cybernetics, 22 (4), page(s): 607-620.

Marr, D. & Hildreth E. (1980). Theory of edge detection, Proc. of Royal Society Landon,
page(s): 187-217.

Nayak, P.C; Sudheer, K.P.;, Ragan, D.M. & Ramasastri, K.S. (2004). A neuro fuzzy
computing technique for modeling hydrological time series, Journal of Hydrology 29,
vol 291, Issues 1-2, page(s): 52-66.

Pal, S. & Mandai, D.P. (1992). Linguistic recognition system based on approximate
reasoning, Information Sciences 61, page(s): 135-161.

Prewitt, L.G. (1970). Object Enhancements and Extraction in Picture Processing and
Psychopictorics, Academic Press, New York, NY, page(s): 75-149.

Purwar, S.; Kar LN. & Jha A.N. (2005). Adaptive control of robot manipulators using fuzzy
logic systems under actuator constraints, Fuzzy Sets and Systems 152, page(s): 651-
664.

Roberts, L.G. (1965). Machine Perception of Three Dimensional Solids, in Optical and
Electrooptical Information Processing, MIT Press, Cambridge, MA, page(s): 159-197.

Russell; Stuart; Norvig & Peter (2003). Artificial Intelligence: A Modern Approach, 2nd Edition,
Prentice Hall.

Savasere, A.; Omiecinski, E. & Navathe, S. (1998). Mining for strong negative associations in
a large database of customer transactions, Proc. of ICDE, page(s): 494-502.

Schalkoff & Robert, J. (1997). Artificial Neural Networks, International Editions. McGraw-Hill.

Sobel, 1. E. (1970). Camera Models and Machine Perception, Ph.D. Thesis, Electrical Engineering
Department, Stanford University, Stanford, CA.

Takagi T. & Sugeno M. (1985). Fuzzy identification of systems and its application to
modeling and control, IEEE Trans. Syst., Man, Cybern., vol. 15, page(s): 116-132.

Tan, C.P,; Lim, K.S. & Ewe, H.T. (2007). Image Processing in Polarimetric SAR Images Using
a Hybrid Entropy Decomposition and Maximum Likelihood (EDML), 5th
International Symposium on, Sept. 2007, page(s): 418 - 422.

Teng, W.; Hsieh, M. & Chen, M. (2002). On the mining of substitution rules for statistically
dependent items, Proc. of ICDM, page(s): 442-449.

Fuzzy System with Positive and Negative Rules 187

Thanh, M.N. & Jonathan, W.Q.M. (2008). A Combination of Positive and Negative Fuzzy
Rules for Image Classification Problem, Proceedings of the 2008 Seventh International
Conference on Machine Learning and Applications, page(s): 741-746.

Tzeng, Y.C. & Chen, K.S. (1998). A fuzzy neural network to SAR image classification, IEEE
Trans. Geosci. Remote. Sensing, vol. 36, page(s): 301-307.

Wang,].S. & George Lee, C.S. (2002). Self-adaptive neuro-fuzzy inference systems for
classification applications, IEEE Trans. Fuzzy Syst, vol. 10, page(s): 790-802.

Wang, J.S.; Lee, C.S.G. & Juang C.H. (1999). Structure and Learning in Self-Adaptive Neural
Fuzzy Inference Systems, Proc. of the Eighth Intl Fuzzy Syst. Association World Conf.,
Taipei, Taiwan, page(s): 975- 980.

Wu, X,; Zhang, C. & Zhang, S. (2002). Mining both positive and negative association rules,
Proc. of ICML, page(s): 658-665.

Yksel, M. E. (2007). Edge detection in noisy images by neuro-fuzzy processing, International
Journal of Electronics and Communications, vol 61, Issue 2, page(s): 82-89.

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and
decision processes, IEEE Trans. Syst. Man. Cybern., vol. SMC-3, no. 1, page(s): 28-44.

APPENDIX:

We apply the gradient descent technique to modify the parameters a., bm,, and cp.
Parameter update formula for k-th data set of a,, is represented in Eq.(24). Similarly, the
update rule of c,, is derived in Eq.(25). The update rule of b,, is derived in Eq.(26)

OE OE(©) iy, OBr(xp) 0B.(x)) 0Ap,(xy)

- - (24)
0Odyyy Gykm 6[ﬁ’r(xk) 6[ﬁ’r(xk) 6Am(xk) 0Oy,
OE(®) _OE(®) Yy Ofr(xy) By (xy) 0Ap (xy))
0cryy 6ykm aﬁr (xk) 6,6’,,(xk) 6Am(xk) 0cyyy
OE(®) _OE(®) Yy Ofyr(xy) OBy (xy) 0Ap (xy)
by Wy OBr(xp) OBp(xp) FApy(xg) Bbyy (26)

Moreover, the partial derivatives in Eq.(24) to Eq.(26) are as follows:

E@) 1 K M

?y = oL kZ::1 mz:1 Yiem = Y k) (27)
km

Y
=W,
0y, rm @)
OBy (xp) Br(xp) .
ok Tk [1—ﬁ(xk)] (29)

oy, By (xk)

188 Machine Learning

Pr(xy) Br(xp)
- 2b
oa n
m 1+[xnk —cmj (30)
Arn
2y
Yuk ~
0Ay, 2b., Ay
= 2
0,y Ay v 2bpy 31
1 +(nk ~“m) (31)
Arn
2bpp
("nk ~Cmn]
0Ap _ 2by “rn
- 2
S ~ 2byy (32)
1+ [x”k frn j
drn
2byy
X . —c
(nk m j Zbrn
Ay Irn 0 (X —Cm)

= o) og . 2b1‘7’l (33)

11

Automatic Construction of Knowledge-Based
System using Knowware System

Sio-Long Lo and Liya Ding

Macau University of Science and Technology
Macau SAR

China

1. Introduction

Knowledge-based system (KBS) is a problem solving approach that makes use of human
knowledge in possible ways. Usually, the knowledge used in KBS may be obtained directly
from domain expert or through some kind of machine learning based on available data. The
quality of knowledge used has an important impact on the performance of KBS. The success
of development and application of an intelligent system requires the availability of two
groups of people: Al experts who hold the techniques and tools for problem solving, and
domain experts who know well the problem to be solved and hold domain knowledge
leading to a necessity of the development of intelligent system. However, in reality, it is
often a challenge to get the both groups working together to derive the inherent synergies.
Knowware System (KWS) is a framework proposed as development tool for design and
development of KBS. KWS offers classes of knowledge-based processing unit to support
developer in modelling their KBS, and generates the target KBS based on the definition from
developer. A typical KBS generated by KWS is a hybrid intelligent system that contains a
knowledge hierarchy and an inference engine. The knowledge hierarchy consisting of
multiple components forms a static inference structure in KBS while the inference engine
controls the dynamic inference flow through managing execution of components.

The inference in a hybrid KBS constructed by KWS is a truth value flow inference, with
knowledge-based processing handled locally in each individual components and a truth
value flow throughout the entire KBS. As a uniformed format, interval-valued confidence
defined as fuzzy number has been proposed to represent the imprecision and uncertainty
during inference. The KWS inference engine realizes control of inference through three
aspects: the management of protocol between components, the control of execution order of
components, and the confidence transfer.

2. Knowware System

The Knowware System (KWS) has been proposed for the development of knowledge-based
systems. It can accept from user knowledge sources represented in varied formats and select
appropriate intelligent techniques to construct desired knowledge-based processing units of

190 Machine Learning

hybrid KBS, therefore allow the KBS developer more easily and conveniently model and
develop a customized intelligent system.

2.1. Hierarchical Modeling of KBS

In a typical application, the mapping relation between inputs and output of the problem
may be complex, and description of such a mapping relation using a global knowledge can
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to
multiple units, with each of the units described by a corresponding local knowledge base,
and the type of knowledge and the inference mechanism in each of the units varied upon
the specific problem solving and the availability of knowledge. Following this sprit,
hierarchical problem representation represents a domain problem with a hierarchy and uses
multiple Al techniques for problem solving.

2.2. Construction of KBS using KWS

The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L.
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not
only allows developers to easily design their system, but also realizes an automatic
construction of the target KBS based on the developers’ design.

As a typical development process, KWS receives the description of KBS from developer and
then automatically constructs the target KBS. Therefore a Knowledge Description Language
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details
of implementation.

Fig. 1. Structure of KBS constructed by KWS

2.2.1. Sub-Systems of KWS for KBS Construction

There are three subsystems of KWS supporting the automatic construction of customized
KBS.

Intelligent Editor - It provides a friendly GUI for the developer to design a KBS. Developers
use the graphic description to describe their KBS. Editor also does error checking for the

Automatic Construction of Knowledge-Based System using Knowware System 191

process of developing KBS. Once design is confirmed, Editor will construct the internal
inference structure of target KBS based on the graphic description, and generate the
corresponding KDL text.

KDL Processor - It receives the KDL description of a target KBS, and compiles it to a
corresponding knowledge hierarchy as the internal inference structure, using suitable
intelligent components stored in the warehouse with possible customization. The KDL text
can be either from the interactive editor or user’s input. In the latter case, it also checks the
syntax of KDL text inputted.

Installer - It saves the internal knowledge hierarchy in a suitable data format when a user’s
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy
with the KWS inference engine as well as the installer itself to a stand-alone target
application. The embedded installer will be responsible to reload the saved KBS upon user’s
calling of the application.

2.2.2. Work Flow of KWS

In order to develop a desired intelligent system, the developer can choose any of the
knowware that fits into his/her need, via two possible ways. One is to define his/her target
system in KDL text and then call the KDL processor for compilation to generate the internal
inference structure. The other alternative is to use the intelligent editor to design the target
system step-by-step and get the target knowledge hierarchy constructed after confirmation.
In the latter case, the editor also generates a corresponding KDL text so the developer can
make modification conveniently later on. For a KBS successfully constructed, the installer
will save the internal inference structure to a suitable format and reconstruct it later upon
request. Figure 2 shows the work flow of KWS.

Intelligent
% P Editor

KDL Procasor
Devloper v
ol erence
Insdler | ——» O/ng Endne) (%)
& =
A A

Knowware System
Target KBS ¢

%4' 4’ {% \O‘ Kli;:eo(;%

Taget KBS

End-User
Fig. 2. Work flow of KWS

192 Machine Learning

2.2.3. Knowledge Description Language

The Knowledge Description Language makes it possible for developers to describe their
target KBS in a text format. The knowledge-based processing units offered by KWS will be
used as building blocks to make up the KBS. The input/output of each intelligent
component (IC) called field must be specified, this information indicates the linking between
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts:
1) declaration of fields, each including name and data type; 2) declaration of intelligent
components, each including name, component class and type, knowledge source, fields of
input(s) and output linked with. The details of intelligent component and field will be
presented in Sections 2.3. An example of KDL text is shown in Figure 3.

Support-Field-Name = (Fieldl) , Support-Field-Data { Char (2) }
Result-Field-Name = (Field2), Result-Field-Data { Char (2) }
InCom-Name = (Filter-01) , InCom-Body {
Filter Dictionary
NoCondition
Standard { Program = (Standard Dictionary) ,
Knowledge-Source = (Filter01_Knowledge) }
Input = (Field = (Fieldl)), Output = (Field = (Field2))
}
Fig. 3. An example of KDL

2.2.4. Generation of Target KBS

The last process of developing KBS using KWS is the generation of target KBS. The
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with
hierarchy record, corresponding components, knowledge sources, inference engine, and
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing
and reloading of KBS is done by the Installer which also provides a GUI to the end-user
based on the input/output of target KBS.

Ve

d\Ok

—
i{ { '}) Hierarchy
X & O Record

[
B

) 5 o

N J
Fig. 4. Packing the KBS using Installer

Instdler

(Packing)

Upon call to the target KBS received the installer will be started first to reload the KBS with
all the necessary components, knowledge sources, and inference engine.

Automatic Construction of Knowledge-Based System using Knowware System 193

Hier@chy ’ (K”"W'edgﬂ

‘ Record Sources
Install_er
(Reloading)
Irrfermce]t ® J
S,

Engine Component

Target KBS

Fig. 5. Reloading the KBS using Installer

2.3. Components and Fields

The KWS warehouse stores pre-defined knowledge-based processing units that are the basic
building blocks of KBS. Intelligent components are further classified by the nature of
processing, in terms of the corresponding input and output. A KWS offers a set of k classes
of intelligent components defined as

COM = {comy, ..., comy},
and

com;=<cli t; s ¢;>,

wherei=1, ...,k clje CL = {cl, ..., clg}, the set of class names of intelligent components; t; €
T, the type set under the class cl;; s; € Sa, the source and strategy set under the class cl; and ¢

€ Cai, the connection set under the class cl;. At an abstract level, for any class cl defined, there
is a mapping function fcr:

K
feriIco —> OcL

where, Icp is the input of the intelligent component of class cI, Oct is the output, and K
represents the corresponding knowledge-based processing. The features and properties of
intelligent components under different classes are determined by their mapping function fcr.
It is an important feature of the KWS that an intelligent component under certain class
always follows the same syntax for the interface with other intelligent components no
matter which specific intelligent approach is adopted for the knowledge-based processing
inside it. At the same time, intelligent components under the same class may behave
differently when different approaches of knowledge-based processing are applied in
problem solving. For instances, a decision-making may be done by applying traditional
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural
networks; a knowledge discovery may be achieved by data mining applying different
approaches; a prediction may be made by statistical methods or by using neural networks.
When an intelligent component is defined as ‘conditional component’, it chooses suitable
knowledge source to be applied among the alternatives provided according to run-time
conditions detected. We have designed ten classes of intelligent components under two
different categories: processing components and learning components, with each category
including several classes based on the nature of function.

194 Machine Learning

KWS also provides a possibility for the developers to include their own mathematical
formulas or algorithms as user-defined procedures and make them intelligent components.
Once such a procedure is defined, it becomes a special knowledge-based processing unit for
possible use in other intelligent components in the same KBS under development.
Each of the input(s) and output of component is linked with a Field; fields are the basic data
units indicated for input and output of processing intelligent components. They provide a
pipeline for the data flow between components. An intelligent component can have multiple
inputs, but only one output.
There are seven classes of processing component and three classes of learning component
supported by KWS, as listed in Table 1.

Processing Component

Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad”
members.

. K
fFilrering . IFi/IPring O

Filtering
1. Where IFittering and OFiltering are the input date set and output data set respectively, and Iritering =
OFiltering;
2. The input and output share the same type of data structure;
3. The length of output should not be longer than that of input;

Recognition class applies its knowledge to “read out” the meaning of a single input pattern.
. K
Sy Recognition + P ——L

1. Where p is a single pattern, and L = {I1, ..., L} is a set of labels as possible recognition result, each
of li(1 < i < k) may be associated with a confidence value;

2. The input and output usually have different types of data structure;

3. The processing establishes one-to-one relation between an input pattern and an output label.

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly
summarized meaning.

. K
f Summarization * p) P

1. Where p is a single input pattern, P = {p’1, ..., p'i} is a set of patterns as possible summarization
for the p, and each of p’i (1 <i < k) may be associated with a confidence value;

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or
explanation;

3. The degree or the level of abstraction of the output is determined by the knowledge applied and

the inference mechanism adopted.

Confirmation checks the input, and gives “Yes/No” to each of the candidates.
. K
~fCun/Irmal[on : Dc YN

1. Where Dc= {d, ..., di} is a data setand 1 <k, YN = {1, ..., t} is the corresponding truth list and i
(1<i<k) e{Yes, No};

2. It can be used as a conditional checker to support other intelligent components;

3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided.

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic
terms or values, such as high, expensive, going-up, or so.

. K
f Judgement * D >JP
1. Where Djp = {d, ..., di} is a data set and 1 < k; JP = {termm, ..., termx} is a corresponding term list

with possible confidence value associated, and termi(1 <i <k) € LT, the set of pre-defined
linguistic terms;

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply
represented as Yes/No;
3. Changing the LT may change the behaviour of intelligent component.

Projection projects an input data set with k features to an output data set with j < k features.

Automatic Construction of Knowledge-Based System using Knowware System 195

fPrq/ectilm : Dk L)D/

1. Where Di = {<d®y, dW,, ..., dVx >,..., <d®1, d®,, ..., d™Wk >} is an n-entry data set with k features, Dj
={<dW, dV, ..., dOj>,..., <dO)1, dv5, .., dVj>} is an n-entry data set with j (j < k) features, and
for any 1 <i<n, the entry <d'1, d©, ..., d®j >e Djis an image of the entry <d(), diy, ..., dix >eDx
under the projection defined;

2. The process does not remove any data entry, but “remove” some of its features;

3. After projection, the data set will remain the entries but each of them appears in a space of
probably lower dimension.

Decision checks the input as a situation and recommends a possible decision.

. K
S pecision * S >AD

1. Where s is a single situation, and AD = {adj, ... , ady} is a list of recommended action or decision
with possible confidence value associated;

2. This class of intelligent components is usually used at a late or final stage of intelligent systems,
but not at the beginning;

3. For a complicated problem, multiple techniques and approaches may be required to form the

inference strategy used in the component.
Learning Component
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for
input and gives output as the knowledge discovered.

. K
f Discovery * DD KD

1. Where Dp= {d1, ..., dv} is a data set and 1 < k; and Kb is a set of discovered knowledge of selected
form, such as rules, relations, or other types;

2. Its output result can be applied as knowledge source to support other intelligent components;

3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing.

Training can train some rule on it based on the user input’s data.
Post-Processing support Learning Component for post-processing.

Table 1. Intelligent component

2.4. KWS Inference Engine

The inference structure of a KBS constructed by KWS is represented as a knowledge
hierarchy with multiple intelligent components connected. The task of construction can be
done either by the intelligent editor or the KDL processor.

The knowledge hierarchy forms a static inference structure of the target KBS. A single
intelligent component realizes the mapping from its input to its output with the support of
its local knowledge base. The entire mapping of the KBS is achieved through the integration
of intelligent components. There is no direct mapping relation from the input to the output
of the KBS, but each intelligent component contributes to part of the mapping.
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in
individual intelligent components, and also to connect the inference of individual
components to the inference flow of the entire KBS.

One of the main challenges facing KWS for the construction of intelligent system is the
complexity associated to inference mechanism having multi-level, and multi-modal
knowledge integration. Each single intelligent component is actually a smaller KBS for a
sub-problem of the target application, and its input and output can be directly linked to
problem domain or the result from different stages of processing. How to assemble
intelligent components to get a meaningful and unified data/information flow in the entire
intelligent system constitutes a key task. Inference engine is necessary to control